Chapter 2

and magnetic fields. Bo juation :- -.m iefly. The provided theory

aims at forming a mo magnetic field.

2.1 Classica

Considering a A an isotropic effective mass and

the energy-independent relaxati 1] é,tion, the motion of the electron

with charge —e in a_uniform ex L slectr = (E,, E,,0) and a magnetic

—

field B = (0,0, B,) {s'escribed-Simply b quibtion of motion
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where v is a ﬂo% 8 ’3 a‘i{le&l:t‘w %W@ qaﬂeiand 7 is a constant

relaxation time YA standard geometry of Hall an ma.gnetoremstWy measurement
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positive Value e for hole carriers. Under a steady-state condition, the acceleration

(2.1)

term is vanished and the velocity of the carrier becomes
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and
v, = (—ez 7-Ey + (=e) TBZ'U,,.. (2.3)
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_ ' etoresistivity measurements.
Vyau is the Hall vol e current, density in the flow direction (after
Grosso et al. (2000)). TN

Figure 2.1: Standard( effe .{.{ {
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-rank magnetoconductivity tensor o (B) is defined where o,, and Ty
are the longitudinal and transverse magnetoconductivity tensor components respec-
tively. n is a carrier concentration and  is an electrical mobility. It shows that,
under the influence of a magnetic field, the motion of carrier is deflected and the
current density is no longer parallel to the applied electric field, E,. The trans-

verse electric field E, is called Hall field. The magnetoresistivity p,, and the Hall



coefficient Ry are defined and obtained form the measurement,

Ey
Pos =~ (2.8)
and
= (2.9)
By inversion of o (B), the mag ';\‘: esist! r p (B) is provided as
— (B) B
0 (B jmrt _ — )}, (2.10)
AN SS
and its components relatgso mag d om ponents with
v [ 7 ‘
(2.11)
and
(2.12)
On the other hand, we obtain =
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e S "] 2.13
T Y (2.13)
I
and E . ]
_ &vg - (2.14)

ctive mass and constant relaxation time are
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In this approﬂ on, an 1sotroplc e e 'TI ﬂ

(2.15)

and

Ry =

1
: 2.16
Y (2.16)
It can be said that the magnetoresistivity and Hall coefficient are independent of the

magnetic field. By Eqs. (2.15) and (2.16), the type of carrier, mobility and carrier
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concentration are obtained from the measurement of p, and Ry. This is a simple

way to characterize the material having single carrier species.

This model can be applied to both cases of holes and electrons. Considering
a sample having hole group of concentration n; and mobility u,, and electron group

of concentration ny and mobility

respectively. By assuming that there are no

interaction between them, the diag ts are merely the summation of

the conductivity compo the off-diagonal components are

the difference between™the conGuttivit Nsof hole and electron species.

The resultant magnetocondt

\ , i
nieu noeus B )
1+ (mB 1+ (p,B)
o = (2.17)
2
nieu; B : noel
- 4 : L1 —2_2.
(1 + (4, B) 15 1+ (p,B)
For the mobility spectrum s is; these équations are generalized to
(2.18)
and ‘
D = ¥ (2.19)
where s? = nPey,; and o pp ﬂﬁ%ﬁuﬁ:ﬁ of hole species and
electron speciﬁ ue&llgiﬁ ‘ alistic-case, ergy dependence of

t
U
the relaxation time and other comﬁficated stpiﬁ 0 eEeIgj‘ bar e considered.
Then ‘:ﬂ ﬂ&ﬁnﬂﬂnﬁ%oﬁm : tien i uired to describe
q .
accurately the transport properties in a complex sample.

2.2 Quasi-classical Boltzmann equation

The Boltzmann equation is used to describe the transport of an electrical

carrier under the influence of an external electric field, a magnetic field, and a
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temperature gradient. In the case of an electron gas, the equation can be written as
[Beer (1963)]
e

h

(E+vva)-ka+v-Vrf=<%> , (2.20)
coll

where E is the electric field, B is the magnetic field, and v is the carrier velocity.

The distribution function f = f(k, p e carrier distribution in phase space

which is modified when the external fie ) For simplicity, the temperature
mm—

neglected. O__!e can-use-arrelaxation time approximation

when the thermal energy isdafge conipa ed to the energy of carriers, which is

(2.21)

where fj is the equilibriug
McClure (1956) salveg . (2.20)) with the relaxation
time approximation (Eq. ( band structure at an arbitrary
magnetic field. By assuming th ] ime is constant around a cyclotron

-

orbit, McClure expressed the components as a Fourier
series expansion B (nd) in & affequency w. For a single

band, the expression iﬂsee Kiatgamolchai (2000

El u g"ﬁﬁ% W%@ﬂ ‘j (2.22)
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and

Sy = 3 et [1B(m = ] ~ |B(- (m+ 1))P]

1+ (mwr)? ' (2.24)

m=1

It is easy to generalize these expressions to multiple bands by summing each single
band term. These expressions are more fruitful than other Boltzmann solutions

because they are valid for a wide range of magnetic field strength. In particular,
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they allow a finite number of conduction bands, nonparabolic bands, and energy-
dependent scattering mechanisms with field-dependent mass and relaxation time

[Beck and Anderson (1987)].

Beck and Anderson (1987) transformed Eq. (2.22) from the wave vector

space into the mobility space, whi h

(2.25)
and
(2.26)
where
N\ (2.27)
. . Lo \\\ . N
s() is the conductivity S 8, qtias . r\ function of mobility, also called
“mobility spectrum”. In ghi | \ hole 8 positive mobilities and electrons

Egs. (2.25) and ical limit where quantum effect

is neglected. At a T'J -magnetic field, fiw e is plank’s constant and
k is Boltzmann’s consﬁnt, ed aﬁl the energy band is split.
The presence of discretefieaslity of states lﬁgis to quantum effect; for example, the

Shubnikov-de %cﬂt@swg tﬂm@%&éﬂnﬂo%llates with magnetic

field and Hall réﬂstivity becomes stgpwise.
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2.3 arameters from mobility spectrum

The Hall factor is the ratio of Hall mobility (pg), measured at a low mag-
netic field, to drift mobility (y p), measured in the absence of the magnetic field, or

the ratio of carrier concentration n to Hall concentration ny;

rp=tl (2.28)
KUp Ny
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or [Swanson (1955)]

i = i 2.29
T Ry (B> 00) ey (B> ) 2]
By using Egs. (2.14), (2.18) and (2.19),
(2.30)
and
(2.31)
which leads to
(2.32)
Hall mobility and concentration of { each carrién species can be calculated by con-
sidering the mobilitytange that the peak of interést/in a mobility spectrum.
R X
Hall mobility is defir ed, 3 -
'l p—y — ) _|jl
= (2.33)
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Carrier concentration is also the summation over the selected mobility range,

S
= —_ 2
ng — eu, (2.35)

The drift mobility is defined as

_ RH(B—)OO)

Ho = e (B=10) (2.36)
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Using Egs. (2.28) and (2.32), it is easy to obtain

D
i

pip = (2.37)
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