ผลของภาวะพอลิเมอไรเซชันต่อไอโซแทคติคซิตีของพอลิโพรพิลีนโดยตัวเร่งปฏิกิริยา

ซีเกลอร์-แนตตาและตัวเร่งปฏิกิริยาเมทัลโลซีน

นาย ปฏิญญา พิพัฒน์ประทานพร

ฐนย์วิทยทรัพยากร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2546 ISBN 974-17-5054-4 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

I21510325

EFFECTS OF POLYMERIZATION CONDITIONS ON ISOTACTICITY OF POLYPROPYLENE USING ZIEGLER-NATTA AND METALLOCENE CATALYSTS

Mr. Patinya Pipatpratanporn

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Chemical Engineering Department of Chemical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2003 ISBN 974-17-5054-4 Thesis TitleEFFECTS OF POLYMERIZATION CONDITIONS ON
ISOTACTICITY OF POLYPROPYLENE USING
ZIEGLER-NATTA AND METALLOCENE CATALYSTSByMr. Patinya pipatpratanpornField of studyChemical EngineeringThesis AdvisorProfessor Piyasan Praserthdam, Dr. Ing.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

(Professor Direk Lavansiri, Ph.D.)

THESIS COMMITTEE

Wongser Chairman

(Montree Wongsri, D.Sc.)

..... Thesis Advisor

(Professor Piyasan Praserthdam, Dr.Ing.)

(Assistant Professor ML. Supakanok Thongyai, Ph.D.)

Chaye Chao Member

(Dr. Chariya Chao, D.Eng.)

ปฏิญญา พิพัฒน์ประทานพร: ผลของภาวะพอลิเมอไรเซชันต่อไอโซแทคติคซิตีของพอลิ โพรพิลีนโดยตัวเร่งปฏิกิริยาซีเกลอร์-แนตตาและตัวเร่งปฏิกิริยาเมทัลโลซีน (EFFECTS OF POLYMERIZATION CONDITIONS ON ISOTACTICITY OF POLYPROPYLENE USING ZIEGLER-NATTA AND METALLOCENE CATALYSTS) อ. ที่ปรึกษา: ศ.ดร. ปิยะสาร ประเสริฐธรรม 103 หน้า ISBN 974-17-5054-4

พอลิโพรพิลีนได้ถูกสังเคราะห์โดยตัวเร่งปฏิกิริยาซีเกลอร์-แนตตาบนตัวรองรับ (MgCl₂/TiCl₄/DEP) และตัวเร่งปฏิกิริยาเมทัลโลซีนที่มีสมมาตรแบบ C₂ บนตัวรองรับ (SiO₂/MAO/TMA/rac-Et(Ind)₂ZrCl₂) ค่าไอโซแทคติกซิตีของไอโซแทคติกพอลิเมอร์ที่สังเคราะห์ได้ ภายใต้ภาวะพอลิเมอไรเซชันต่างๆกันได้ถูกตรวจวัดด้วยเทคนิค ¹³C NMR ผลของภาวะพอลิเมอไร เซชันต่างๆ ได้แก่ ขนิดของตัวทำละลาย อุณหภูมิพอลิเมอไรเซชัน ความดันโพรพิลีน และ ความ เข้มข้นของตัวเร่งปฏิกิริยา ต่อค่าไอโซแทคติกซิตีของไอโซแทคติกพอลิโพรพิลีนได้ถูกตรวจสอบ ใน การศึกษาผลของตัวทำละลาย เฮกเซน เฮปเทน โทลูอีน และ ไซลีน ได้ถูกใช้เป็นตัวทำละลาย ค่า ไอโซแทคติกซิตีของไอโซแทคติกพอลิโพรพิลีนเมื่อใช้ ตัวทำละลายที่มีโครงสร้างเป็นอะโรมาติกส์ คือโทลูอีน และ ไซลีน มีค่าต่ำกว่าในกรณีที่ใช้ตัวทำละลายที่มีโครงสร้างเป็นอะโรมาติกส์ คือโทลูอีน และ ไซลีน มีค่าต่ำกว่าในกรณีที่ใช้ตัวทำละลายที่มีโครงสร้างเป็นอะโรมาติกส์ สอโทลูอีน และ ไซลีน มีค่าต่ำกว่าในกรณีที่ใช้ตัวทำละลายที่มีโครงสร้างเป็นอะโรมาติกส์ สอโทลูอีน และ ไซลีน มีค่าต่ำกว่าในกรณีที่ใช้ตัวทำละลายที่มีโครงสร้างเป็นอากลงพอลิเมอร์ จากตัวเร่งปฏิกิริยาลงสู่ตัวทำละลาย สารให้อิเล็กตรอนภายในซึ่งมีโครงสร้างแบบวงแหวนสามารถ ละลายในตัวทำละลายที่มีโครงสร้างเป็นวงแหวนได้ดีกว่าในตัวทำละลายที่มีโครงสร้างแบบโซตรง ส่งผลให้ค่าไอโซแทคติกซิตีของพอลิเมอร์ที่ได้มีค่าด่ำกว่า

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชา	.วิศวกรรมเคมี	•••	
สาขาวิชา	วิศวกรรมเคมี	• • •	•
ปีการศึกษา			•

ลายมือชื่อนิสิต. ปฏิญญ. . พิษัญญประกาน ฟรี ลายมือชื่ออาจารย์ที่ปรึกษา. . 🔍 🤇 การ 🤇 🥵

ACKNOWLEDGEMENTS

I would like to give special recognition to Professor Piyasan Praserthdam, my advisor for his invaluable suggestion and highly constructive comments.

I wish also to thanks to Dr. Montri Wongsri, chairman of the committee, Assistant Professor ML. Supakanok Thongyai, Ph.D.and Dr. Chariya Chao who were members of the examining committee are acknowledged for their spending time in review my thesis and for their criticism and advice on my work.

This thesis would not be possible without the kind assistance from Associate Professor Takeshi Shiono, Bangkok Polyethylene Co., Ltd. For chemical supply and polymer characterization with GPC by Ms. Supaporn Khorbunsongserm, Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, for SEM characterization by, Central Instrument Facility Faculty of Science Mahidol University for DSC characterization by Ms. Pungpit Komprapunt, Department of Science Service for ¹³C NMR characterization by Ms. Nongnaphat Duangdee, Tosho Akzo (Japan), BASF and Capolactam Thai Co., Ltd. and National Petrochemical (NPC) for chemical supply.

Finally, I would like to manifest my greatest gratitude to my parent and all friends and colleagues in Petrochemical Laboratory for their tremendous support and overwhelming encouragement, which embodied the completion of this work.

CONTENTS

ABSTRACT (IN THAI)iv		
ABSTRACT (IN ENGLISH)v		
ACKNOWLEDGEMENTSvi		
CONTENTSvii		
LIST OF TABLESx		
LIST OF FIGURESxi		
CHAPTERS		
I INTRODUCTION1		
II LITERATURE REVIEW		
2.1 Ziegler-Natta Catalysts		
2.1.1 The Composition of Ziegler-Natta Catalysts		
2.1.2 Stereospecificity		
2.1.2.1 Steric Isomerism and Tacticity		
2.1.2.2 Stereochemical Control by Ziegler-Natta		
Catalysts4		
2.1.3 The Mechanism of Ziegler-Natta Polymerization		
2.1.3.1 The Cossee Mechanism		
2.1.3.2 Chain Termination		
2.2 Metallocene Catalysts		
2.2.1 The Metallocene7		
2.2.2 The Methylalumoxanes (MAO)10		
2.3 Microstructure of Polypropylene11		
2.3.1 Bridged metallocene with rac-C ₂ -symmetry11		
2.3.1.1 Catalysts and polymerization mechanism11		
2.3.1.2 Polymer configuration		
2.3.1.3 Chain constitution		
2.3.1.4 Structure of the end-groups20		
2.3.2 TiCl ₃ and MgCl ₂ /TiCl ₄ -based systems22		
2.3.2.1 Catalysts and polymerization mechanism22		

CONTENTS

2.3.2.2 Chain configuration	.27
2.3.2.3 Chain constitution and structure of	
the end-groups	.35
2.4 Characterization of Polypropylene Tacticity by Solvent Extraction	36
III EXPERIMENTAL	.42
3.1 Chemicals	.42
3.2 Equipment	
3.2.1 Cooling System	
3.2.2 Glove box	
3.2.3 Inert Gas Supply	.44
3.2.4 Magnetic Stirrer and Heater	
3.2.5 Schlenk Line	.45
3.2.6 Reactor	.45
3.2.7 Schlenk Tube	.46
3.2.8 Vacuum Pump	46
3.3 Preparation of Catalyst Precursors	46
3.3.1 Preparation of Ziegler-Natta Precursor	46
3.3.2 Preparation of Metallocene Catalyst Precursor	
3.4 Propylene Polymerization Procedure	47
3.4.1 The Effect of Solvent	48
3.4.2 The Effect of Polymerization Temperature	48
3.4.3 The Effect of Propylene Pressure	48
3.4.4 The Effect of Catalyst Concentration	
3.5 Polymer Characterization	
3.5.1 Differential Scanning Calorimetry (DSC)	19
3.5.2 Scanning Electron Microscope (SEM)4	9
3.5.3 Soxhlet-Type Extractor4	9
3.5.4 ¹³ C-Nuclear Magnetic Resonance (¹³ C-NMR)4	.9
3.5.5 Fourier Transformed Infrared Spectroscopy (FT-IR)5	50

CONTENTS

IV RESULTS AND DISCUSSIONS
4.1 The Effect of Solvent
4.1.1 The Effect of Solvents on the Catalytic Activity51
4.1.2 The Effect of Solvents on the Isotacticity of Polymer52
4.2 The Effect of Polymerization Temperature
4.2.1 The Effect of Polymerization Temperature
on the Catalytic Activity
4.2.2 The Effect of Polymerization Temperature
on the Isotacticity of Polymer
4.3 The Effect of Propylene Pressure
4.3.1 The Effect of Propylene Pressure on
Catalytic Activity
4.3.2 The Effect of Propylene Pressure on the
Isotacticity of Polymer
4.4 The Effect of Catalyst Concentration
4.4.1 The Effect of Catalyst Concentration
on the Catalytic Activity
4.4.2 The Effect of Catalyst Concentration on the
Isotacticity of Polymer
4.5 Polymer Morphology
V CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions72
5.2 Recommendations74
REFERENCES
APPENDICES
APPENDIX A. ¹³ C-NMR Spectra
APPENDIX B. DSC Curves
VITA

LIST OF TABLES

TABLE

PAGE

2.1 Steric pentad distributions evaluated from the two ¹³ C NMR spectra
of Figures. 2.8 and 2.9, along with best-fit calculated ones in
terms of the enantiomorphic-site model15
2.2 Data of Natta relating solvent fractionation to stereoregularity
2.3 Comparison of polypropylene stereoregularity from ¹³ C-NMR and solvent
extraction measurements
2.4 Comparison of solvent extraction versus NMR tacticity from the data of
Martuscelli et al
4.1 Catalytic activity using different types of solvent
4.2 Isotactic index of polypropylene by Ziegler-Natta catalyst using
different types of solvent
4.3 Catalytic activity at different polymerization temperatures
4.4 Isotacticity of polypropylene at different polymerization temperatures
4.5 Catalytic activity at different propylene pressures
4.6 Isotacticity of polypropylene at different propylene pressures
4.7 Catalytic activity at differenct catalyst concentrations
4.8 Isotacticity of polypropylene at different catalyst concentrations
4.9 Propylene polymerizations using Ziegler-Natta catalyst67
4.10 Propylene polymerizations using metallocene catalyst67
5.1 Effects of polymerization conditions on isotacticity of polypropylene73

จุฬาลงกรณ์มหาวิทยาลัย

FIGURE

2.1 The steric isomers of monosubstituted alkenes
2.2 Cossee mechanism for Ziegler-Natta olefin polymerization
2.3 Chain termination reactions
2.4 Structures of two metallocenes with $C_{2\nu}$ symmetry
2.5 Structures of the Brintzinger catalysts
2.6 A proposed structure of MAO with a coordination number of 411
2.7 Model of a (R,R) -Me ₂ C(1-Ind) ₂ Mt(iso-ButyI) ⁺ cation (Mt = Zr),
with a <i>re</i> h ² -coordinated propene molecule
2.8 100 MHz 13C NMR spectrum of an isotactic polypropylene sample
prepared with the catalyst system rac-Me ₂ Si(1-Ind) ₂ ZrCl ₂ /MAO
at T = 80°C, $[C_3H_6] = 5.7 \text{ mol/l}$ (in toluene)15
2.9 150 MHz ¹³ C NMR spectrum of a predominantly isotactic
polypropylene sample prepared with the catalyst system rac-Me ₂ Si
$(1-\text{Ind})_2$ ZrCI ₂ /MAO at $T = 80^{\circ}$ C, [C ₃ H ₆] = 0.08 mol/l (in toluene)16
2.10 ¹³ C NMR fraction of <i>meso</i> diads, [<i>m</i>] for polypropylene samples
prepared at 80°C in the presence of the catalyst systems rac-Me ₂ Si
(1-Ind) ₂ ZrCI ₂ /MAO17
2.11 Possible propene insertion path for Ti-based Ziegler-Natta catalysts,
according to Cossee
2.12 Schematic drawing of a structural layer of 'violet' TiCl ₃ , before (top)
and after (bottom) a cut along the (110) crystallographic direction24
2.13 Possible models of catalytic species on a (110) (A) or (100) (B)
cut of a structural layer of 'violet' TiCl ₃ 26
2.14 Model of a Ti_2Cl_6 relief on a (110) cut of a structural layer of
'violet' TiCl ₃ (a), and of a Ti ₂ Cl ₆ species chemisorbed epitactically
on the (100) cut of a structural layer of MgCl ₂ (b)27

FIGURE

2.15 Methyl (top) and methylene (bottom) regions of the 125 MHz 13 C NMR
spectrum of the xylene-insoluble fraction of a polypropylene sample
prepared with the catalyst system MgCl ₂ /TiCl ₄ -2,6dimethylpyridine
/AlEt ₃
2.16 Methyl (top), methylene (centre) and methine (bottom) regions of the
150 MHz ¹³ C NMR spectrum of the diethyl-ether-insoluble/pentane
-soluble fraction of a polypropylene sample prepared with the catalyst
system MgCl ₂ /TiCl ₄ - 2,6-dimethylpyridine/AlEt ₃
2.17 Schematic models of active species for highly isotactic (a), isotactoid (b),
and syndiotactic (c) propagation in heterogeneous Ziegler-Natta
catalysts
3.1 Inert gas supply system
3.2 Schlenk line
3.3 Schlenk tube
10
4.1 Catalytic activity using different types of solvent
4.1 Catalytic activity using different types of solvent
4.1 Catalytic activity using different types of solvent
 4.1 Catalytic activity using different types of solvent
 4.1 Catalytic activity using different types of solvent
 4.1 Catalytic activity using different types of solvent
 4.1 Catalytic activity using different types of solvent
 4.1 Catalytic activity using different types of solvent
 4.1 Catalytic activity using different types of solvent
 4.1 Catalytic activity using different types of solvent
 4.1 Catalytic activity using different types of solvent
 4.1 Catalytic activity using different types of solvent

FIGURE

4.11 SEM pictures of polypropylene prepared by Ziegler-Natta
and metallocene catalysts at different catalyst concentrations:
5×10^{-5} M (a) and 7×10^{-5} M (b)
4.12 SEM pictures of polypropylene prepared by Ziegler-Natta
and metallocene catalysts at different propylene pressure:
40 psi (a) and 100 psi (b)70
4.13 SEM pictures of polypropylene preparing by Ziegler-Natta and metallocene
catalysts at different polymerization temperature: 40 °C (a) and 80°C (b)71
A-1 ¹³ C-NMR spectrum of isotactic polypropylene prepared by Ziegler-Natta catalyst
using hexane as solvent
A-2 ¹³ C-NMR spectrum of isotactic polypropylene prepared by Ziegler-Natta catalyst
using toluene as solvent79
A-3 ¹³ C-NMR spectrum of isotactic polypropylene prepared by Ziegler-Natta catalyst
using heptane as solvent80
A-4 ¹³ C-NMR spectrum of isotactic polypropylene prepared by Ziegler-Natta catalyst
at polymerization temperature 40 °C80
A-5 ¹³ C-NMR spectrum of isotactic polypropylene prepared by Ziegler-Natta catalyst
at polymerization temperature 50 °C81
A-6 ¹³ C-NMR spectrum of isotactic polypropylene prepared by Ziegler-Natta catalyst
at polymerization temperature 60 °C81
A-7 ¹³ C-NMR spectrum of isotactic polypropylene prepared by Ziegler-Natta catalyst
at polymerization temperature 70 °C82
A-8 ¹³ C-NMR spectrum of isotactic polypropylene prepared by Ziegler-Natta catalyst
at propylene pressure 60 psi
A-9 ¹³ C-NMR spectrum of isotactic polypropylene prepared by Ziegler-Natta catalyst
at propylene pressure 100 psi
A-10 ¹³ C-NMR spectrum of isotactic polypropylene prepared by Ziegler-Natta
catalyst at catalyst concentration 5×10 ⁻⁵ M83

FIGURE

A-11 ¹³ C-NMR spectrum of isotactic polypropylene prepared by Ziegler-Natta
catalyst at catalyst concentration 6×10 ⁻⁵ M
A-12 ¹³ C-NMR spectrum of isotactic polypropylene prepared by Ziegler-Natta
catalyst at catalyst concentration 8×10 ⁻⁵ M
A-13 ¹³ C-NMR spectrum of isotactic polypropylene prepared by metallocene catalyst
using toluene as solvent85
A-14 ¹³ C-NMR spectrum of isotactic polypropylene prepared by metallocene catalyst
using heptane as solvent85
A-15 ¹³ C-NMR spectrum of isotactic polypropylene prepared by metallocene catalyst
at polymerization temperature 40 °C86
A-16 ¹³ C-NMR spectrum of isotactic polypropylene prepared by metallocene catalyst
at polymerization temperature 50 °C86
A-17 ¹³ C-NMR spectrum of isotactic polypropylene prepared by metallocene catalyst
at polymerization temperature 60 °C87
A-18 ¹³ C-NMR spectrum of isotactic polypropylene prepared by metallocene catalyst
at polymerization temperature 70 °C87
A-19 ¹³ C-NMR spectrum of isotactic polypropylene prepared by metallocene catalyst
at propylene pressure 60 psi
A-20 ¹³ C-NMR spectrum of isotactic polypropylene prepared by metallocene catalyst
at propylene pressure 100 psi88
A-21 ¹³ C-NMR spectrum of isotactic polypropylene prepared by metallocene catalyst
at catalyst concentration 6×10 ⁻⁵ M89
A-22 ¹³ C-NMR spectrum of isotactic polypropylene prepared by metallocene catalyst
at catalyst concentration 7×10 ⁻⁵ M89
A-23 ¹³ C-NMR spectrum of isotactic polypropylene prepared by metallocene catalyst
at catalyst concentration 8×10 ⁻⁵ M90
B-1 DSC curve of isotactic polypropylene prepared by Ziegler-Natta catalyst using
hexane as solvent91

FIGURE

FIGURE

PAGE

B-16 DSC curve of isotactic polypropylene prepared by metallocene catalyst at
polymerization temperature 50 °C98
B-17 DSC curve of isotactic polypropylene prepared by metallocene catalyst at
polymerization temperature 60 °C99
B-18 DSC curve of isotactic polypropylene prepared by metallocene catalyst at
polymerization temperature 70 °C
B-19 DSC curve of isotactic polypropylene prepared by metallocene catalyst at
propylene pressure 60 psi100
B-20 DSC curve of isotactic polypropylene prepared by metallocene catalyst at
propylene pressure 100 psi100
B-21 DSC curve of isotactic polypropylene prepared by metallocene catalyst at
catalyst concentration 6×10 ⁻⁵ M101
B-22 DSC curve of isotactic polypropylene prepared by metallocene catalyst at
catalyst concentration 7×10 ⁻⁵ M101
B-23 DSC curve of isotactic polypropylene prepared by metallocene catalyst at
catalyst concentration 8×10 ⁻⁵ M102

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย