. _CHAPTER IV

GREEN'S FUNCTION TECHNIQUE

-

IVat Double Time Temperature Dependent. Green's Functions

The double-time retarded and advanced temperature dependent

la. 20) .
Green's funct10n<(A(£) B(%)$7 are defined as
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where_<-->; denotes a grand canonical ensemble average,
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is the Heaviside function
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and [ ] denotes an antlcommﬁtatlon or commutatlon relation,
The opefator A(t) and B(t) are general products of quan-

tized field operators or of pafticle creation and. destruction

_operators in thg géneralized Helsenberg picture, By generalize@

Heisenberg picture, we mean. that
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where )+ !=H UN, Hered H ils (bhe br&inary_Hamiltbnian operator,
M the ch;mica1>potentiél, and N the total number ‘of particles
‘6pérétor.' ‘
| ‘From the above definitioﬁ, we find that both the retarded

and advanced Greeh’s‘function satisfy the following differential

equation
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cf dourse, the advanced dnd retarded_Greeﬁ"s functions will
satisfy different'boundary conditions.

From the definitions ofithe Creen’s functions, it follows
that they are functions  of bt only in thé, case of _statist_icai

equilibrium. Hence we irtroduce the Fourier transforms
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T
defined for real W &

Now because of the rIeav1s:.de function-in the deflnltlons 3
of ((.A('t) B(t )>> {a A., it follows that (( B>> can be analy-
tically continued into the entire upper half complex W plane,
and << A:, B)}'Z into the entire lower nalf complex .(wJ 7p1ane‘.

We then define +the. function
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assuming (0 to be complex.
This is a very convenient definition because K A B }>

satisfies the simple equation

w€< ASB, .:;.‘,_f;T(’[/‘LBJI>‘+'<<[A)>-4];;'B»w_, (445

which followes from Eqe{%.2) and definition (4,3) and(4.h)

* ' -
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The function((ﬁtﬂzab is analytic in both the upper and
lower halvés of the complexw-plane with poles or discqntinuities
on the real axls.' The spacial case of A-ck and B=c ;f ,lwhere k
and k label ‘states of a complete orthonormal set of one-partlcle
“states, gives the so- ~called one particle Green’s funct10n4ﬁ: C ))
They are of pdrtlcular interest sinec€é they determlne the one-par-
ticle time correlatlon <£Z(iﬁ CLO)> which fully describe all
oﬁenparticle properties’ of & system in equilibricme The explicit

relation between the gorrelation function and the one-particle .

Green's function is ’ it
_ [ 75 pahnn —c<A ;8 A= '“_;Lj)
(Bt Actr> =1 lim f _
) et iﬁw +1
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is called the"spectral intensity functlon” of ¢ B(f)fA(i%>

For a system of large number of 1nteract1ng particles, the
one-particle Green?s function will have & cut along the real axis
rather than poles, “We expect poles’'only in a first approximation.
The poles can be identified with the energy spectrum of elementa-

ry excitations o6f the system. A cut indicates dampinges The time:

. o N 1
correlation function will oscillate as |t-t 1—)00 with finite

dampinge
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We also can prove that the Green’s functions ({C€_,C k'>>
determine the ground §tate energy even when there are two-particle
jnteractionse Therefore, it is usually sufficient to calculate
only the one-particle Green’s_functionsAto get all the information
we want to kﬁow about a given sysiem.

Tﬁe problem in using the, double=time temperature dependent
Green's function-is'kn;wing hé% to truniﬁate'the hierachy of coup-
led equations arising £1 o (4.5). Sinéec{[fb}i1+38)2u Qill most
iikely result in higheér jorder Green's function. Brieftly mention

that the hierachy of equatlons is connectea to the dlagram tech=-

nlque,l.e., every time we see a line, a bubble or any thlng in the

-
-

dlagram representation, we .can be sure that there is an equivalent
4erm in the hierachy of coupled eguation.
- To trunicate- the hierachy of equations arising in our study,

we have used the Hartree=Fock approximation

atgTeD =R 87D r4CD)A B* AHEDECBDYAL, (48)

' The.above approximation is used tg treat both'the BCS term and the
Coulomb repulSién term appearing in the Anderson Hamiltonian in
chapter I, ' The approximation has also been used to.treat‘both

i .

terms simultaneously in the study of- transition metai.impurities

in simple superconductorse

IV.2 Self~Consistent Solutions

!

We want to obtain the Green's functionsor propagators for

the s-electrons 50 we must evaluate the commutations of the four
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. operators °§&7ck$f’ @;g and ds with the Anderson Hamiltonian(3.%).
~1ecey _
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Using the relationShip

| '[’A)BC]_ ’:_{A,B}c'— B_{A)c} y | | (.9

where‘; ] denotes the comnutation and (j ~}'1 the anticommuta-

tion, we obtadin

. - o *d-k :
EC )H‘l ¢ bEKCkg—ZJ?‘;\/Kj' jg g . T (ke10,5a)
.‘[CkGJ’H] = 2 d > ) (4,10.b)

, J

— - . _*_
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Substituting the commutation relation(4.10.a) and(4e10+b)

_ . .
into the Eqe(4+5) for the Green’s function G(k,k ), we get
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G =L U(k\é‘ +Z:,‘C,ck)\/( ;)Mrj,b s (k1)

where the matfices G(k,k ),Go(k), V(k,3j) and ¥(j,k) are defined

as
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and
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oA AT Cké» 96 “ke-s -
M(j’ ')k) q . (4.15)
& d- v Q >> (( d ; & s » '

”~
The matrix Green's function M(j,k) is obtained by substi=
tuting the commutation relation(4,10.c) and(4,10.d) into the equa-
tion(4.5) for ﬁ(j,k). The results of these substitutions is the

new matrix equation

- = + A
E"’]o(i)l I\A(j,k) = E;\/ (j,ﬂ) G Ly, (4416)
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where

A - - . . - t u(h$> 'lf_\.g
[(Mpl = ( . > (4a17)

A@ . Wt +Likn >

where V(l,g) is the complex conjugate of the matrix(k,14)s Sub-
stituting the matrix equation{lis, 11) into the matrix equat10n(4 16) 4

‘we obtain .

LIV - L . :

Mep] Moo = \/c p(,(k)w‘}:]\/Uk){gtk)m;k). (4418)
) ’ )

To gbtain the above, we/have used the fact that V(k,3j) and Go(k')
commute with .each other Sinceithey are both diagonal matricess

Substituting the matrix equation(h.18) into the eguation(e11),

G oK) =.2'—T(G;(K)§%k ?[,Lk)\/akn lVl \/ck G(k)

Y ” : '/\, ~
+ 3 G ek L MG |\ .,! G(!i)l"] (j)
; ° S °

+ A o
X' \ (ﬂij)(}o(k) + higher order terms - (4419)

‘where

[ﬁ;(j)]-t U"(M Z’\/( j){ G(Q). 20y

The matrix equat10n(4 19) can be rewrltten in the form of

(21}

a Dyson equation

[é“;k'):\—fl f_(} UO] 7/( kzk) 5 | (4421)
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“where "Tka;kii is the energy correction
~ A, -!-—
x1l ' S 7 . N /-
oK) = 50 E .\/Ck))MO(J) VK, (4s22)
3
. "
Letting M, M, 5y, 9and M, be the élements of M (3)siees,
1Y
N/ "4\; M!z \} ‘ _
M = o’ | ) 2 (4423)
. .
i\ i ,L,L /

the energy correction metrix is

£ _ : *
Mt \ ) -V M
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Substituting (4.24) into (4. 21) we -find that the inverse of the .

matrix Green’s Lunctlon G(k,k ) is

.

_ T Sy, 2
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st
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‘where we have assumed ij V 5 Invertiﬁg(hg25),we get
-k, Ber
- 1 ‘ \ .
. | | e —,L%,I\/M-l M2 ._LTT?I'V"JIZ]V'“ ) .
(kY = ——==| | ’
G 7 ) Detc'r i | s | /
iﬁjzs\/k’]l ntz_ woEs g j lm

o ' (4,26)
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where

Det G = (w5 1Y, M) Cwre H T,

' (4427)
J
Since o
s = )
S—w l .Qj”
- +Uingy e
B 2
(4428)
we find that .
L wrgruties : (4.29.2)
M = .
1
N ‘ (4.294b)
™,
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and ‘
i o
hq _ Lg t ~Levg > - -§; w- , . (4.29.d)'
. _zz o ej-[ qujl o .
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" where o | i\{e’!l B ‘U< N Z: ]\;61'*2)
det [M[T = (wrEjrUno+ o~ _)(F‘” jTe T e TR
a1t e

By assuming that le is a constant and by replacing the sum-
mation over 1 by an integration over d31, the above equations

(4,29.a) to (4,29,d) begbme

_ w3 |
gM\I - 1 f A ia s S (He31.a)
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-‘where
o . AVES Ly~ 3
8 ; = B+ Ll(‘ﬁ6>+ EYE_F’Y.W :ﬁY\ —Lf—-_———‘? (4o32)
- o @)} wiwg -

Because ‘the integral diverges, a cut-off at the Debye fre-~

quency'has been introduced.

>
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