CHAPTER II
SUPERCONDUCTIVITY

1I.1 One Band BCS Theory

-

The BC§6¥heory evolved from the observation by Cooper that
if one considered two electrons exéited slightly fromvthe Fermi
sea, they could form & real bound state(localized wave function
and.:n energyrbelow Ferni  sea ground state) provided there was
a weak attractive potentisl. This bound state had the lowest
energy if its net momentum was zero;i.g.,if ﬁhe wave function was
composed of a supérpbsitiop of state in which the two electrons
had equal and oppositer momentum. \

The step taken by BES is to assume that the ground state
can be expressed wholly ;n terms of paired electrons, such that if
the state‘k?is'vacant, -kl is also vacant.

Bogoliubov oriéinally(1@455developed,a transformation of
this sort for boson system, ané he applied it in his theory of
superconductifity (1958 shortly aftéf tHe| appearance of the BCS

theory, Valatiﬁ?gndepeﬁdently pointed out the convenience of the

method for! clarifying some aspects of ‘BCS. 4

-

I1.+1.1 Mechanisms of Superconductivity

in 1956,Cooper showed that the Fermi sea of fermion system’
was unstable if an attractive interaction existed between particles
in the fermion sea. This instability was due to the formation of

‘bound pairs of particles. Since no external forces are being applieqj
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the tofal(or ngt)momentum and spin of the system must remain con-
stant. This implies that the elegtroqs which are interacting_with
each other must have opposife momentum and spins. An interaction
which might give rise to an attractive interaction is the exchange
of phonons with energieé below the DebyelfrequenduC}p

The Hamiltonian which coﬁld(possibl&)describe the supercon-

ducting state is

+ +
-S"C ¢ C C C (2.1)
H = %;‘,GKLKGLk | Z X/, ) , (2.1)

14 Tk i ki xé ~k-e ~kK=-6 k; 2
' + ' AN R .
where Cxgand ckéare creation ‘and annihilation operators respect1vg~

ly, which obey the following anticommutation relations

(.- ' ’
= v b
i_ ké E C- } 6;k‘é%5'

s _ ©(2.2)
v __;_{"'\/q lepcl)tek:f (*’IQJD?
kkl. O 9 thewhdse‘ . -

Because the model Hamiltoniam does not commute with the
total number of particles itlis not.possible td work in'a subspace
with =& définite total number of particles. In consdidering the
ensemble averages 'of" the oberators we have then toluse a grandi
canonical ensemble with a definite chemical potent1a%/¢ Formally
this is easily 1ncluded by measuring the single- partlcle energies

relatl?e'tng; For the free electron model of the metal this

means that , Ty
e =Xk

k m
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The chemical potential has to be determined from the condition that

the average number of particles present is a given number @,:

<ZC > = N

ks ks K& .
Altefnative}y,we can regard/# as given and then this equation.
deterﬁines_the average nmumber of pariiecles present,‘
By using Hartree-Fock approximation

cltscjk-éc’wk% Cret L3 <°::é°tk-6> € s ke
+
s k-6 K6> k¢ -k -8
' N ‘ -+
: 288 4 30 >C

-4

C
Ké ke o
+ :
The last term 2<:c ¢/ >Sc ¢ only deads to a shift of the Feemi
k-6 ~k-pi ket ke .

energy. The Fermi energy comes in because the electrons have
energies relative to the Fermi energy. Because of ¢ e ?aull 5
exclusion principle, only electrons with energies greater than

&F can move.

Let ws’ now defineligap panameter (as

' * 5 o+
- (2.3)
_ka"“é“‘) S L"\/k’ké k-6 3.
so that’the Hamlltonlan (2.1)becomes .
TLLe e @
= Z:'ée Ekccxs S CvAka;C +Ak k-6 ks ), (2.4)

/

- IL.1.2 Bogoliubov Formulation

Since the above Hamiltonian is bilinear in the creation
and annihilation operators,it is non-diagonal., It can be diago-

nalized by means of a linear canonical transformation of these
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operators. The canonical transformation which does this was
introduced by BOgoliubov(ghd is called Bogoliubov transformation .

It transforms the c's to the quasi-particle operators X’s,i.e., .

% ¥

Coo = Wil T T 0
. W (2.5)
C“k‘é:-—Lf‘(Xka+ DLR )jka’
where the coefficient® Uy Vyyare chosen to make the Hamiltonian
. E I

diagonaljthat is,they are chosen to make the coefficients of b’k

'Ek

and Xk X in the Hamilfondan vanish. Since the ckéand °+k5 satisfy
v Ko . ‘

0 '

the anticommutation redation the ¥ ‘fand ¥ must also satisfy the
: j ' K :

i

Ko

anticommutation relation

{Xkc,;z{:o} :.{.X';)K:} =W | .. ‘ ,r)_

(2.6
{Eko)”; } = | % o Vs .{,?‘K‘ ?XK;} =0

" The condition that makes the Hamiltonian diagdnal is

ES
. e — @) , _
ZEka%;ﬂ~AKUP AKUY 4 (2.7)
The constraints on the ukand'. L is
Z L* |
Ve 1+ i N . (2.8)

BquationéR.7)and(2.8)) are | sufficient] td detardine wand v
in terms 0f A+« From the imaginary part of Eq.(2.7) we find that

Av/u is real,and hence Eq.(2.7) can be Written

1, i+ A (el 10t =

From this and Eg.(2.8) we then find

S
|Jwe |5 = 3 (1 '*‘}fi )
lVKlz :%(1 - _E_E.) 2 F‘ (2.9)

[
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. . l ’ 1
where By o= (E‘kf‘b“kil)/z ¢ (2.10)

In terms of the new operators Xl: and Xk , the Hamiltonian
o ]
becomes -

R *

H = %Ek( Kko?gk:* Kk;xkl ) + gonstants, - . (2.11)

*

Now we must remember that the physical: observed guantities

are not foperato‘rs but thesstatistical average‘- given by

(A)= ;.[‘r [exp(fﬁ H)A]/I'r [eip(-ﬁ H)]

,. Therefore thie eherpy gap parameter AK is given by’

A = —-Zj'\/ C:k-é @

k B Kt kk' i s ! .
. x % * oK
= "2 \/ _R‘K_EXP(’? GV M ¥, b TR xk'xk‘)]
T Blen]

*
=T \:k} (o G g FCE ']
L3

-V e Ak’ ['—z)((tk’)] {2..12)

kl

whére . fCE) = EEXFC’?E)—’_.’]—"

This equation is & highly nonlinear equation for the gap .
parametarbk. Given the interaction potential the equation can

be solved,

The integral equation(2.12)aiways possesses a solution
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Ak = 0 for all k.

7

For this solution the operators ﬁ(become equal to the operators ck

and we have just the solution for a'norﬁal Fermi liquid. The
system will possess new properties only if,Akis not zero for a
macroscpic number of values of kf e shall see that when Am:is
not zerd, the system does possess the properties of a superconduc-
tor, and that at low.températures the superconductive state is the

stable one. The criferion for éuperconductivity is, therefore,

that Eq.(2.12) should possess._a nontrivial solution.

IT.2 Transport Propertiés ef One Band Superconductors

IXI.2.71 Thermal Conductiviity

The general Boltzmann eguation for the distribution -func-

tion fk(r) is . L .
25,

=)
éfk-+ 3k, %j;' + ;fk 9t leon”

(2.13)
It 2t ok o ¥ -

In steady stéte conditions wiith mo mechanical orveleétro—
magnetic forceg the Iirst two terms on the left side'are'zero;
The last~texrm on-~the left.side iﬁvolves the wwedoctty of a quasi-
particle of momentum hk. Since the energy of this particle is Ek’
ﬁe.expect:the velocity to be-

s

v = °%
hak °®

H

This is borne out by more detailed consideration of the motion of

wave packeté?}.Hence
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Eg\b"
e

v = £ B, | (2.14)

The last term on the left side also involves the spatial

derivative of the distribution function. Since a spatjally depen-

dent gap parameter will not by itself produce a thermal current,
N
we can write

6_).(\( - %.{Ki - ’ __’\\: _..U/,v'r
oY O Lo & eh

—m

e,
oT (2.15) -
The interactionsbetween electrons and a single impurity is
given by
K . A :
Hi = E }U(Q) Ck_'_qsckg . W (2.16)
k56 N |
where U(q) is the Fourier transform of the potential due to the

impurity. In terms of the operators for qﬁasi—particles this can
be rewritten »
. . 4 — e . Y

i :Z:L(q)i}“k+qvk +vk+quk)(xk+q051Vl4—3;+q1 ko
kg -

%
, Y .
r+(ukuk_+q-vkvk+q)( kiq0 Kko* b,k‘l gk+q1) .
Hence the probabilif& per unit time that &' quasi-particle of type

o is scattered from k to k+q i

P(k,k+q) = %%QU(qQ{z(ukuk+q—vkvk+q)2fk(1-fk+q)S(Ek-Ek+q) (2.17)

It follows that the rate of increase of guasi-particles in

the state(k,o0) is

ot |
—k = E P(k+q,k)=P(k,k )J
Jt 'coll q (: e - e
2T . 2 2
= T ;(uku_k_l_q_vkvk-’.q) (fk+q-fk)£(E§Ek+q) U(Q) © (2.18)
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If the impurities scatter independently, this is multiplied
by the density of impurities N for the effect of all the impuri-
ties. It can be shown that to first order in the temperature

gradient the equation has a solution of the form

£, = feq wt Ko NT g(E S5 ' (2.19)

where feqis the eqﬁilibrium distribution of quasi-particlés. With
the form(2.19) for f the :ollisidn term is

k
200 277(6) BGENS ) U(k—k')la(kr-k)¢Y7T<5(Ek -5

armleol h o S5

)

:ﬂé%f (£ c)ag(E}NiN(p)k.vdﬁfd'e’%E

U (k=k! )% 2(1- ) S (E1-E),

.t
where k,k _can be putiequal to kF except in the terms involving Eb

Ero For tne normal state the corresponding term is

of, 2ﬂ‘
QT coll

U(k-k )

(1//&)

g(E)N N(O)k. f?T/f/}A

k. VTg(}s)/w
~4rY

where J is the mean free time in(the normal state. Hence in the

superconductive state one.can write

k., yT B

2T coll

)

2%y _ _l €

where T is still the mean -free time in the normal state.

The Boltzmann equation c¢an now be written

8(B) k. VT

| &
E 7

b4




and has the solution

j—fe@ v _ (2.20)

l

The measured quantity is the thermal conductivity, defined

E_i."ﬁ'

™ m
M|t

by

heat current .
T thermal gradient

Since the energysof a quasi-particle is Ek and its velocity
is v, the heat curnsenti carried by .one kind of cuasi~particle is
k
Since the two kinds of quasi—éarticle carry the same amount

of heat, the total heaf current is

SR
W =22, Ekvk.VT-E—h- ‘é,w _df
k . l'-:! m SEeq o o
-— - ol 3
- - 2 > : F 4
- Ij(O)vFVdeQIE!EaE . (2.,21)
X -— Xy
Hence v = ‘
K =3, s [as® o, (2.22)
A I

and for the normal state the integration is from O tooe,

IT.2.2 Ultrasonic Attenuation

The interaction can be written as

. A S s K v >3
H, S A A A G (2.23)
V° kyd,s . .

. ' - * . -
where A is a constant and bq and bq are,respectively, creation

" and destruction operatdrs_for phonons.
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.The probability per unitltime for a transition from any
possibie initial statdfn) to any state| n} is
D ool ST expCBE KnIM M| 2 CEmEn)
| 1% ™ 2. exp (~FEp) '

We take the states|1n> and |n>,to be states with definite numbers

of phonons and quasi<panticles, and im terms of the quasi-particle

0perators the 1vteractlon h is

*
_A S X
H = e w -rb )[( Tt Yeratic) h%b’kw“ Zfﬁ%b’ko)
" R
ﬂu,(uw;k%)(_xka; | zskw L3 P

Slnce the angular frequency is less than,Afh, only the terms

of the interaction which scatter guasi-particles are important..

Hence thé'probaﬁility-p;riunit time $hat a phohon-is absorbed is
Azcu
% - 1 q_( E (,,{kmkw £ )f(l—f )S(E —t -hw ),
RV krge K
where ng is the number, of phononsyof wave vector g present initial-

ly,which for a macroscopic [sound wave As much greater than unity.

Similarly, the probability per uhit time that a phonon is emitted

e pTT A b My 5 v ¥ O- AL
A Rk S CUIRE A M0 8 MO RLICLAL L
It follows that
,d__t\q,/ = ‘FﬂTA b Q,/Z(u Y “{(U;M)Cf { .‘E t ))
dt "V TTE §

and for small (y thls can be written
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, ci;nq( ; bﬂA anz(u - ) 3{ é‘(_ Equ:Ek)

dt \/

lf'ﬂAzﬁJ;;‘l'\%,. I\‘LD)Jd.é(e {d/ul Ig(e —6 )9
\/- ‘

The attenuation coefficient 4s proprotional to the coeffi~
cient.of_nq; " Since this coeffikient is.correctly given here both

for A; flnzte and for L«"edual to zeroy we find that

T
«, ,[. &1

(=]
This very ‘simple result means that ultrasonic attenuatlon

OLr

5 .

= 2f(4). (2.25)

is a useful tool for finding the gap parameterél.

- IT.2.3 Electrodynamic Properties

In the simple form of the theory normally used, the calcu-
1ation of the electromagnetic response is carried oﬁt strictly in
a transverse field, so that div‘z =6. To cope‘with longitudinal
fields, we would need ‘a forMa}isé capable of handling collective
' modes and backflow associated with the quasi—?articles. This more
general treatment, has-been~given by Rlckayze(1o) |

The effect of a given self-consistent field on the super-
conductér can be described through a claésical vector potential

A(ryt), Since we are concérned only with linear effects we need

only the linear term in the interaction Hamiltonian, and this is

VR R |
.H.('!:) :Le-&:l dsf(!/(\r)(v..A-}-A.V)[J/(v).
¢ )
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In terms of a(q,t), the spatial Fourier transform of the
vector potential, and of the quasi-particle operators, we have
Hoy = -eh {ac 4,8 (k)
. : 2mc k
* S
X _ ‘
[wkw q,-'k)( Kkﬂ%OKk. Xk, a‘kfégo)
-*(uu T e =YY, ~
K kige K "*0&( Ktq0-ko Ki k‘ffgo-) ¢ (2.26)
.is usually gi

The response’ ofsthel superconductor to the external field
given infterms of _the, current density.

To first order
1¢0)
op

{ W fry=alylv{a Ve LY ¥}

in the field, the operator for the current density is

Tz
k, 9k

I — — - B (2 27) .- -
Jf_V‘T jz_(v‘)) .
wheI_‘e' (v) = A(‘F't) Lr/ L_}/_’ (2 28)
z Zﬂﬂc
andy in terms of quasi-particle OPeratorSs
jf*)_ =eh STV 2k ta

)EXFCL% TjLCHk k+$
x(zf 3

U )
K k+gs

S =39, )
- )+ & :]
kg, RIS +(k(<+ el U, kf% kg K1/ 18229
The expectation value of the current density in the exter-
nal field can be found by simple perturbation theory. We have to
first ordervin the external fieléqghat the qth Fourier component
of this expectation value is : *

PP ; L, H(t
JC 1) = |v 4Cq) — & dtT" [jcq,, ) 19(2.30)

% TFMOF%. ¥
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where 4; is the density matrix for the model Hamiltonian, that is,

J:- = expC-g H;"%"E‘XPC‘FHMD- s

and Jop,Hi are Heisenberg operators defined by
T = expCiH b/h ) g pGi b tim) s, - (23
op ‘ . Top T .

and a similar equatioﬁ Tor ﬁ.,, Itis assumed in'Eq.(2.2§)that the
field is switched on at tge Fi e W0

. The component 32 of Jop will contribute anly to the first
term of Eqs(2.29) andmidl give a contribution’

s : o : ’
J Caywy 7= -.ff,,,-*—% @ (Ga9) s (2.32)

L
where n is the density of electrons,.
77 7T The cbmpénénf”j1ﬂof jag'contrrbute% only to the second- texm PR

of Eq.(Z 29) and yields a contribution

C)C‘is;w) = ZE‘XF(—)BEW{J {<m'j(%’)|ﬂ><‘n“‘tkw)]m>

-E +Rwt Thfy
“'(2.33)
el ummmucoplm>}x@,exi,(ﬁg 7] ,
: E,, -E -I-TT&)"\"L‘%[’)’
where B
' H.wi = _\é ZQ—(*%JW.)'_J.(?).‘
Hence ¢ . % ‘ |
- Tgw) = w) . (?-krta)z‘zkwg)
- etV
(H U ¥ U )Z'[ fk ~ f#fﬁf — + ) ﬁ<jqr_ f; _]
ket % Tk Reds Ek-rq,' E tHw+ihg .‘Ek_EHrJ*Hw.,.H’p/T__
+'(M U’ AN [ 1~ fi - )(k-rqf' ' \;Jck—’fkfdz{"r
A Ll I LR D E s
(2434)

ne .
Y‘;;,z Q_(OD—,VJ) ®
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For the weak dissipation we have assumed the limit of I
tending to infinity, ' L -

‘The relation(2.34) between current and field can also be

written in the forg@
o G,w) = (2435)

Since the ve ated to the electrié

field by

the 'superconductor -? \ ve vectour-dependent

or K €4, (2.36)

so that 1f6'(q,u:) ‘u‘ s K(g, uj) -constant.

ﬂumwﬂmwmm
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