CHAPTER I

TRANSITION METALS

I.1 Band Structure of Pure Transition Metals

As the atoms of a giver element are brought close togethér,
we find that -the oute£ atemic s~electron wave functions jbin
together forming a bénd ot electfons. The Band would have plane-
wave character with somesatomic, symmetry near the ion sites. As
the atoms are brought still clpser together; the outermost d-
electrons would also be expgctea to form a band.. The d-band
: woula be narrower thanm the sp-band since d-wave functions overlap
less and so remain more tightly bounéed by the atomic potential.

I.1.17 The Transition from Bound to Free Bands

We can forim the electronic energy bands in solids into’
narrow_tighf—bound bands and nearly free electron bands as shown
in Fig.1.7. The figure on the left shows the electronic states
for a free~atompotential which)ig gtrong enough to bind all
electrons thatijwill later be free in.the conducfion band Qf the
metal (on thel Fight)s WhHer | dunbér o f sﬁch dtomé laPé brought
together to form a solid, this not only aldows the atomic ofbitals
on neighﬁouring sites to interact and form a band but also the
overlap of potentials lowers the barrier between neigthuring
cells to such an extent that some of the supposed atpmic levels®
now lie above the zero of muffin~-tin potentials formed and ére no

longer bound states of the muffin-tin wells. As the bands arising



from distinet atomic 1évels begiﬁ to overlap one another in energy

such as /s and 4p bands, they simply coalesce into a'single nearly

free electron distribution, refered as sp-bands. Atomic d-levels,

however, from d-bands. These are shown in Fig.1.2.
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Fig.1.2 (&) The'bottom of free electron bands,Eo,lié‘s‘a little
below the assumed muffin-tin zero,EMTZ.
(b) Conventional LCAC description of the formation of

metallic conduction bands in terms of the muffin-

tin potentials.



I.1.2 Resonance Bands

The pure and narrow d-bands'are usually calculated by using
-fhe tight-kinding method. It was noticed- that the d-orbitéls are
s0 closely concentfated within the core of an atom that they produce
only narrow bands b& overiap with neighbours., In the transition
elements these inner d-states are not all filled, but lie very
close to-the 5 or p " walence ' states, which themselves combine to
form an ordinary conduétion band. The narrow d-band, with a density
6f stateg aapable cfsholding up to 10 electrons per atom, lies

within the s~p-band,'and hybridiges with it where they c;oss(Fig.1.3)
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Fige1+s3 (a) d-bands crossing s-bands;

(b) s-d4 hybridization.



This complicated band structure is associated with a
resonaneerat the former atomic d-level, and canndt be analysed
into sepafate s-and dmband;. Nevertheless, we can say for example,
that neither.of the bands is full, so that the mater%al is metallic,
with conduction mainly by the s—electronsl(Fig.ﬂ.Q(a)). In the noble
metals the d-states awe in fact' full, but they generate a resonanee

d-band within the ordinery N.F.E. band of the valence electrons, a

few volts below the Heérmi devel (Fig.1.4%(b)).
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I.1.3 d-Band in Tight Binding

Exceptifor important hybridization effébts the d—baﬁds
clbsely resemble those obtained in the tight binding approximation
whereas the conduction‘bands are similér to those of nearly free
electron calculations. 'Conéequently, the unhybridized d—bands‘can
be represented in texms of linear combinagions of atomit orbitals
(LCAO)} and the lowest genduction bands in test of a‘”four—OPW
approximation®.

o The principles of LCAG méthods are:
. (1 Write down the latfice potential as the sum of '"atomicH potént?al

Vi centered on the various lattice sites i,

v—»Zv A ' | (1.1)
(2) ¥Write down each electronlc state in the solid as a linear ‘
combination of atomic (d) functions. For_eaéh site, i, there are
5 such atbmic funetions, denote iﬁ), where the orbital‘moment m

goes from 1 to S53they are eigenfunctions of Vi’ with energy EO, their

overlap integrals over-_two, sites are neglected
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(5) From matrlx ‘elements (LYnI |3vnj> only the two-center

1ntegrals between first ( or second ) neighbours are retained.



The set of linear equations satisfied by the a; o coefficients

is then of the type

(ED+°CCm—t)a’ ’ Z ﬁ *= 0 (q'é)

. J#zLVh - ,
with | ’ d’f_m - <Lml z \/ l Lm> [ 7 (1 .7)
: ' thL :
and 3'm/ - <Lm ‘ \/ [jh’(> : (1.8)
s, - 71O - o

Thec( integrals merely ™ shift ' the energy of the atomic

levels kﬂf (EOJ, while the‘ﬁ integrals mix them into molecular
om

states extending ovexr the whole solid. The.P integrals also give
rise to the width w of the band;they are akin to the bonding
molecular integrals“](Fig.1.5).
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Fig.1.5. Bnergy ohlft(s)and width(w) of a narrow band.

I.1.% Width of #¥he d-Band

The shape of the d-band thus obtained depends on the values

taken for the & andjglntegrals(1 L7, (1.8 Al computaulons in

metals p01nt to d-bands with a width w larger than their shift s,



as in Fig.1:5. Typical values are w=5-10 eV; s=1 to 2 eV, Such
Widths are consistent with experimental aata from x-ray spectré?)
In the tight-ginding scheme, the atomic selection rules

should hold to a good approximation.: They predict’a strong transi-
tion .probability for absorption from/or emission to inner p-shells.
For elements of ﬁhe first transition series, trapsitioms with 2p-~
states give rise to strong- tands, ‘with widths definitely larger

~ than the Auger life time involved. Adding up the widths of the

absorption and emissiod badds(Figs1.6),we obtain%d-band widths of

typically 5eV.
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Fig.1.6 X-ray absorption and”emission ‘Spectra

I.1.5 Density of States of 4®he d-Band

’

" The density of states curve n(E) can be deduced from the

knowledge of the E(k) curves, since

n(E) = 5 __,

s(E) i‘VkB! .



_wheré S(E) is the surfacé of energy E in the first Brillouin =zone.
This has beenldone in tgght binding with some accuracy ohly in the
cubic (becsCoesf.cec.) phasés.- |

‘Results iﬁ the tight-binding approximatién are pictured'in

Fié.1.? and 1.8. Because the band width is large compared with

spinnorbit corrections,these do not chaﬁge thermain-fe%tures of

n{E) (Fig.1.8a,b).
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Fige1.8 Density of stafeg n(E) for the d-band in f.c.ces metals:

(a} Pd; {b)Pt.
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Even in these cases,the results can not be taken as very
accurate,owing to uncertainties in the values of theo(and‘ﬁ

integrals and corrections for sd-mixing.

I.2 Transport Current in Transition Metals

In the classical theory of florcntz the conductivity of a

metal is

& - 1’192,77 ' | . | (1.9)
where n is the numbexrsofielectrons per unit volu@e, m the mass of
an electron,d balf the‘time between coliisions ori'time of relaxa-
tion'*. In the quantum theory of cbnéuction,this.formula remains
true with thé'following modifications;for m we muét understand the
"effective’ mass of an eleciron in the crystal lattice,which will
in gengral be greater than the -actual mass mo'of'a'free electron.
Secon&ly,ﬁ'must be ‘calculated by the methods/of quantum mechanics,'
so that 1/y is prbpnrtional (for Tﬂ)C%<)td: .
(1)¥ne meén sguare displaceﬁent,due to thermal motion,of the
at&ms from thedt mean) posdtionss/ Lhis| s proportional to T/ﬁ(%z,
where M is the mass of an atom,@% the'chaﬁacteristic.temperatureo
(é)‘fhe deffsity ofystatds | N(EI\at tHePsurfabeldf the Ferﬁi
distribu@ion,i.e;,for the occupied states o?_highest energy.
According to the theory, the electrons in all states

belonging to zones which are not fully occupied can contribute to

-

-

the electric currentjtheréfore the d as well as the s elettvons
. —_ Ty 7, :
must be classed as conductiwgﬂaaelectrons.»‘The effective masses,

however, will be very differentj;the conduction electrons of copper



and silver have been investigated by Fucég)by the method of Yigner
.and Seitzihe finds that_they behave approximately as free electrons,
. The same should be true for similar fields of ﬂi}and ﬁg swe shall
thus assume for the s-¢lectrons ' .
' Mg & Mo 2

where m is the actual mass of a Iree electron.. For the d-elec’ .
trons, on the other hana,Aowing tovthe small overiap of one d-wave
function with another; wel mist s

| md>> me. 3,
In other words, the @d-clectron takeé ;onger to move from atom to
atém unaer theAinfluence of anm applied field than does the s-
electron; ' : )

The case where /the Fermi distribution lies in two Brillouin
zones has'beén discussed in detéil‘by Mot%hgnd a solution for TCk)
obtained, subje¢; ﬁo_the_followipgwsimplifying.condifions:

71lvfhe surface of the Fermi distribution.lies in two zones,(a),
and (b); zone (a).is nearly.full and zone (b) nearly empty, the
number of elegtrions’ in{b) being equal to the numger-of holes in(a).
2. The stat®l of an electron in either éone'beiﬁg described by

wave vectorns k_, kb, theenergies in the "two zones| are given by .
- ‘ ' ! ol 2 :
E = -B K %2 x, °
a_,o—gf ) B, = — D,
2m
- A s , .
3. The transition probabilities P(kaka) 'P(kbkb)'P(kakb)_are'

functions éniy of the angles between the initial and final wave

«te "

vectors.,
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The new feature of the problem is that transitions are

allowed from one zone to another,as shown in Fig.1.9.
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'Fig.j.9 k-space of mefal with two zonesjoccupied states are shaded.

With these agSumptions it may be shown that J is independ
dent of k in either zonej we may thus define two times of relaxa-

.tion,:§‘7iaﬁ one for each zone., JFormula for the conductivity then

;

ey '

5 = ‘IE':T (9&+'3’b), ’ | (1.10)

where - n is the number of electrons per unit wvolume actually in the
zone(g); and thus the. number of holes in zone(a). The first term

represents the current carrien by.the>positive holes, the second.

by the electrons.

Fof tﬁe'transiﬁion,ﬁéfals we~have) two | zonhes, tﬁe d zone
ané the s zone, to take into consideration; In the d zone the
deﬂsity of states is large. PFrom this if follows that, iffgand
Tﬂ>are comparabie, the curfent is neafly all carried by the elec~
trons in the s zone. On the_other hand, the transition probabili-
"ty from one state to aﬁo#her is proportionél to the density’éf

states in the final state., Therefore transitions in which the
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electron jumps from the s zone to an unoccupied state in the d
zonerare more pfobable,than the ordinaryrscattering ﬁrocesses,
in which an electron jumps froﬁ one s state to another. This
appears to be the reason for the low conductivity of‘the'transi;

tion metals,

I.3 Anderson Model for Transitien Metals

Andersogsgroposed a modei to study the occurence of a
localiged magnetic noments on ironﬂgroup‘a£oms which:are dissolv-
ed as dilute impurities ' in nonmagnetic'metals. He infroduced é
mode} Hamilténian whilch/ takes into account the presence of both
free gléctron states and localized states. Included in his
Hamiltonian are terms for the hybridization of the conduction
eiectrons with localized d-electrons and fér the-Coulomb'ihterac—
.ft;on between electrons of oppoéite-spiné éccﬁbying the localiéed'
orbital state. |

In Anderson’'s theory the Coulomb répulsion between 1lo&-

calized atomile orbitals gives the appropriate energy

U fcbm]

For o single hondeéenenéte d-level the Anderson Hamiltonian

\f'd,3 C~o1008V. (1.11)

is ' - :
H =% E (: CA 'k CL CL +—[ C CL .
(1.12)

+zva ] uzdddg

6 AR 16 )6 3=

-
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4
where § labels the spin orientation.Ck,Ckare the creation and des-

truction operators for s-electrons of momentum k;df)d_are the crea-
: 3

tion and destruction operators for d-electfons located at a lattice

site R..
J .
The first term is the unperturbed energy of the free elec-
he kP
trons where € = 5 for free electrons.

-

The second term.ds . the eneréy of the boundCﬁ.d—électrons
. where Ej is the bindingﬁforvthe orbital.

The third term.is the4over1ap term where ij is the matrix
element that connects the localized stated at position j and the
conduction state with the momentum l. \

Thé fourth term is Coulomb energy.

By using Hartree-Fock approximation;

d e d s <ﬂ>cL+ b >d d

j6 J6 - -6 1-87 J 76 16

—addl Sd, 4

'<d'd.>k+d, 9

and let

ny

1

u<dj-6d—56>. R | (1.48)

be the fluctuation due to the Coulomb repuision.

With this approximation, the Hamiltonian becomes:
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. _ | )
H =Ylec ¢ + IDCE+Ui)dd
o 156

kg kK6 ke
’ ¥ +
+
4+ (v.cd +V d.
(O i TV A0 ) (1.15)
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The Hartree-Fo;k approximationrleads to an overestimate
of the gffect of the"Coulomb ccrgélation energy, U, on the_produ0a
4tionfofla locélized.magnetic moment. Since we are only interested
in the model for tpénsition metals, the cfiterion for the occur-
r¥ence'0f the_loqalizedAmagnetic moment will not be met in thé

_transition metals we arg interested and therefore should not. be

of any concern to this study.
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