ดุณสมบัติการ เคลื่อนย้ายในตัวนำยิ่งยวกโลหะทรานซิขัน



นายสำเนา ยาติเสนะ

# 003609

วิทยานิพนช์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัญติต แผนกวิชาฟิสิกส์ บัณฑิตวิทยาลัย จุฬาลงกรณมหาวิทยาลัย

W.A. 6660

TRANSPORT PROPERTIES OF THE TRANSITION METAL SUPERCONDUCTORS



#### Mr. Samnao Phatisena

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

Department of Physics

Graduate School

Chulalongkorn University

1977

1 17912891

Thesis Title Transport Properties of the Transition Metal

Superconductors

By , Mr. Samnao Phatisena

Department Physics

Thesis Advisor Dr. I-Ming Tang

Accepted by the Graduate School, Chulalongkorn University in partial fulfillment of the requirements for the Master's degree.

1 hadrahm . Dean of Graduate School

( Professor Dr. Visid Prachuabmoh )

Thesis Committee

... Chairman

(Dr. Anantasin Tachagumpuch )

Ming Joing ..... Member

(Dr. I-Ming Tang ) ... Member (Dr. Kopr Kritayakirana )

Tobles Katabararakoa Member

(Dr. Pisistha Ratanavararaksa )

Copyright of the Graduate School, Chulalongkorn University

Thesis Title Transport Properties of the Transition Netal

. Superconductors

Name Mr. Samnao Phatisena Thesis Advisor Dr. I-Ming Tang

Department Physics

Academic Year 1977

#### ABSTRACT

The thermal conductivity coefficient is calculated for a d-band superconductor described by a Hamiltonian which combines a Eardeen-Cooper-Schrieffer-type electron-phonon interaction between the d-electrons of the transition metal with the Anderson Hamiltonian. Since the heat current is carried only by normal selectrons in both the normal and superconducting phases, the Green's functions for the s-electrons are used in Kubo's expression for thermal conductivity. Because of the hybridization term in our Hamiltonian, the s-band electrons also begin to condense into superelectrons which do not carry any heat. Numerical evaluation of thermal conductivity of the d-band superconductor is carried out as a function of temperature. The resulting curve shows the general features of the thermal conductivity behavior seen in superconducting niobium.

| หัวข้อวิทยานิทนธ์  | ลุยสมบัติการ เครื่อนข้ายในตัวน | ำยิ่งยวคโอหะทรานซิขัน                 |
|--------------------|--------------------------------|---------------------------------------|
| ชื่อนิสิท          | นาย สำเนา ย <b>า</b> ติเสนะ    | •                                     |
| อาจารุยพี่ปรึกษา   | Dr. I-Ming Tang                | •                                     |
| แ้ผุนกวิชา         | ปิสิกส์                        | STUNI DELLE                           |
| ปีการศึกษ <b>า</b> | පිරිතර                         | A A A A A A A A A A A A A A A A A A A |

บหกัดยอ

การทา่กาสัมประสิทธิ์ของสภาพนำความร้อนในตัวนำยิ่งยวคโลหะทรานซิชัน เราใช้ยามิลโทเนียนซึ่งได้จากอันตรกริยาระหว่างดีอิแลดตรอน ในทฤษฎีของบาร์ดีน ดูเปอร์ และชรีฟเฟอร์ รวมกับอามิอโทเนียนของแอนเคอร์สัน เนื่องจากเอสอิเลคตรอนในสถานะ ปกติเทานั้น ที่เป็นด้วนำความร้อนทั้งในสถานะปกติและในสภาพนำยิ่งยวด เราจึงโซ้ กรีนฟังค์ขันสำหรับเอสอิเลกตรอนคำนวนหาสภาพนำความร้อนจากสูตรของคูโบ และเนื่อง จากไอบริไคเซชันของคีแบนค์กับเอสแบนด์ ดังนั้นเอสอิเลกตรอนบางส่วนจะกลายเป็น อิเสลตรอนยิ่งยวดซึ่งไม่นำความร้อน เราคำนวนหาล่าตัวเฉขของสภาพนำความร้อนของ . ตัวนำยิ่งยวคโอหะทรานซิขัน <mark>เป็น</mark>สังค์ชันของอุณหภูมิ กราชที่ ได้มีอักษณะคล้ายกราฟสภาพ นำความร้อนของโอหะไนโอเบียมในสภาพนำยิ่งยวด

#### ACKNOWLEDGEMENTS

The author is particularly grateful to Dr. I-Ming Tang of Mahidol University who suggested this problem and gave freely of his valuable time, knowledge and experience in supervising it to completion.



# ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

### TABLE OF CONTENTS

•

ŧ

| ABSTRACT                                           | Page |
|----------------------------------------------------|------|
| ABSTRACT                                           | iv   |
| ACKNOWLEDGEMENTS                                   | vi   |
| LIST OF ILLUSTRATIONS                              | ix   |
| CHAPTER I TRANSITION METALS                        | 1.   |
| I.1 Band Structure of Pure Transition Metals       | 1    |
| I.1.1 The Transition from Bound to Free Bands      | 1    |
| I.1.2 Resonance Bands                              | 4    |
| I.1.3 d-Band in Tight Binding                      | 6    |
| 1.1.4 Width of the d-Band                          | 7    |
| I.1.5 Density of States of the d-Band              | 8    |
| I.2 Transport Current in Transition Metals         | 10   |
| I.3 Anderson Model for Transition Metal            | 13   |
| CHAPTER II SUPERCONDUCTIVITY                       | 16   |
| II.1 One-Band BCS Theory                           | 16   |
| II.1.1 Mechanisms of Superconductivity             | 16   |
| II.1.2 Bogoliubov Formulation                      | 18   |
| II.2 Transport Properties of One-Band Superconduc- |      |
| tors                                               | 21   |
| II.2.1 Thermal Conductivity                        | 21   |
| II.2.2 Ultrasonic Attenuation                      | 24   |
| II.2.3 Electrodynamic Properties                   | 26   |

,

|   | - | • | • |
|---|---|---|---|
| v | ÷ | ᆂ | ᆂ |
|   | _ | _ | - |

| CHAPTER III THEORY OF TRANSITION METAL SUPERCONDUCTIVITY | 30 |
|----------------------------------------------------------|----|
| , III.1 Suhl-Matthias-Walker Model                       | 30 |
| III.2 Other Possible Mechanisms for Superconduc-         |    |
| tivity in the Transition Metals                          | 33 |
| III.3 Theory for the Electron-Phonon Coupling            |    |
| Constant                                                 | 37 |
| , III.4 Hamiltonian of the Transition Metal              |    |
| Superconductors                                          | 39 |
| CHAPTER IV GREEN'S FUNCTION TECHNIQUE                    | 41 |
| IV.1 Double Time Temperature Dependent Green's           |    |
| Functions                                                | 41 |
| IV.2 Self-Consistent Solutions                           | 44 |
| CHAPTER V THERMAL CONDUCTIVITY                           | 51 |
| V.1 Mechanisms of Thermal Conductivity                   | 51 |
| V.2 Kubo's formulas for the Transport Coefficients       | 52 |
| V.3 Calculation of the Thermal Conductivity              | 53 |
| V.4 Analytical Treatmen't                                | 58 |
| V.5 Numerical Solutions                                  | 63 |
| CHAPTER VI CONCLUSIONS                                   | 70 |
| REFERENCES                                               | 73 |
| VITA                                                     | 76 |

.

## LISTS OF ILLUSTRATIONS

4

.

-

| Fig               | ure                                                          | Page                                         |
|-------------------|--------------------------------------------------------------|----------------------------------------------|
| 1 <sup>#</sup> •1 | Conventional LCAO description of the formation of            |                                              |
|                   | metallic conduction bands                                    | .2                                           |
| 1.2               | (a) The bottom of free electron bands lies a little below    | N                                            |
|                   | the assumed muffin-tin zero                                  | 3                                            |
|                   | (b) Conventional LCAO description of the formation           |                                              |
|                   | of metallic conduction bands in terms of the                 |                                              |
|                   | muffin-tin potentials                                        | 3.                                           |
| 1.3               | (a) d-bands crossing s-bands                                 | 4                                            |
|                   | (b) s-d hybridization                                        | <u>    4                                </u> |
| 1.4               | (a) Band structure of a transition metal                     | 5                                            |
| ·                 | (b) Band structure of anoble metal                           | 5                                            |
| 1.5               | Energy shift and width of a narrow band                      | . 7                                          |
| 1.6               | X-ray absorption and emission spectra                        | 8                                            |
| 1.7               | Density of states for the d-band in b.c.c. chromium          | · 9·                                         |
| 1.8               | Density of states for the d-band in f.c.c. metals            | 9                                            |
| 1,9               | k-space of metal with two zones                              | 12                                           |
| 3.1               | Variation of $\mathcal{Y}(Z)$ for the three transition metal | ÷                                            |
|                   | series                                                       | 38                                           |
| 5.1               | Log-log plot of $K/(n/mk_B)$ vs temperature of super-        |                                              |
|                   | conducting .Nb                                               | 67 ·                                         |
| 5.2               | Thermal conductivity of normal and superconducting Nb.       | 69                                           |

ix