CHAPTER IlI
THE IMPROVEMENT OF GA PERFORMANCE

3.1 Background to Improvement of GA Performance

As mentioned in previous chapter, it has been shown that GA can
efficiently solve complex optimization problems because of its advantages. However,

GA is not a panacea. It usually suffers from the problem of premature convergence and

In order tafenhdnge/the ° : simple genetic algorithm
(SGA), many approache oping. v n suggested in various

applications. Each genetic & o (z { n ious chapter) has been developed.

and Leboreiro (2004) have : shock technique to improve the
Y
performance of GA. They have p@@ed hnigue enable GA to speed up the

A Wyl
B

process of finding a bﬁfr solution. ﬁgWé\fé e ' very effective when only

t oplimization problem. Shin,
D. J., Kim, J. O, Kim, T. g 6hoo, 004) @/e introduced Tabu search
(TS) into mutation step, andgthis technique igcalled Genetic-Tabu algorithm (GTA).
Because of advaﬂgufg Qhﬂt@nﬂdﬁéﬁs&%ﬂsmti to converge to local
optimum, and coll%'!:t these regions ingTabu list. So, kefore populatigny is mutated, it is
cnectea by TRl 08 Boplbbh st el et lpihaviny wi e
increased s% that population will jump out from local optimum. Furthermore, GA can be
developed at crossover step. Dowsland, K. A., Herbert, E. A., Kendall G. & Burke E.

(2004) have presented bound-based crossover. They have introduced a new way of

utilizing bound based information to improve the performance of GA.

Moreover, various researchers enhance the GA performance with

managing population. Wang, Qian, Yuan, and Yao (1998) have proposed a sub-
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population-based distributed evolutionary technique. In this technique, population is
divided into a number of sub-populations. Each group is optimized through GA and
provides a local optimum. Then, local optimum of each sub-population is communicated
through SS-crossover so as to find the global optimum point. Their result have showed
that their approach provide fast computational time and stable in converging to global
optima. Shi, X. H., Liang, Y. C., Lee, H. P, Lu, C. & Wang, L. M. (2005) have also

improved GA performance with mana |ﬁ lation. They have proposed a variable

population-size (VPGA) techni t eliminates parents after they

mo;p op@to survive if they have higher

cy of solutions. However, it

provide offspring. The pa
fitness than offspring. T

requires much computation

In this re o /i nagement at the step of
generating initial populatio ‘ h >ment are discussed in the next

topic.

Searching with population or
multiple points in the se@h space. ' g opulﬁon is generated by random
sampling. Unfortunately, agrandom populatiop wsually results in the over-sampling in

some areas anc%%éegn%ir%ir&dt%jowgrﬂ/,meiﬁiﬂal population from
random samplingﬂas less uniformity gfoperties—lackof diversity, w@e the diversity of
s R RATY T ) V1B oo e
an effecti\aa way to improve GA is to enhance the uniformity properties of initial
population. One of the approaches is to start generating initial population with uniform

distribution, and this approach ensures diversity of the initial population.

Monte Carlo sampling technique is widely used to generate a set of
uniformly distribution; however, this approach occasionally brings about large error

bounds and variance. In order to cope with the poor precision of the standard Monte



22

Carlo approach, more efficient sampling methods are being suggested in such

application. Two of such approaches are here considered:

® Pseudo-probabilistic simulation, such as Latin hypercube

sampling (Iman and Conover, 1982) and Descriptive sampling

(Saliby, 1990);

e 1o full stratification in high
dimensional problems. Iﬂenera : U -strat@ation bins in a particularly

effective way. Those N poihts, in dimension gk» are chosen so that all k& marginal

s QI BN TN NG
—-—cl) W URTPE NPT SALSH

dimension k we can imply the algorithm:

1. Generate a (N xk) matrix of independent and uniform over [0,1]

numbers U}, j=1k,i=1,N.

2. Compute a vector 7T j=1,_k,independent random permutations of

{1,2,..., N} sampled uniformly from all N'!'such permutations.
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7)) -1+u,/ _—

3. Calculate V' = T ,j=Lk. (3.1)

4. The N points ¥} =(¥,...V,),i=1,N, constitute a Latin hypercube

sample of size N in dimension k.

Each of these vectors can be transformed into vectors of given

distribution. In the Latin Hypercube Sa

each component U /is divided i

ing method, the range of probable values for
p qual probability. For example, for

the case of dimension k=3

10x10x10=10%cells. Th

arameter space is divided into
——
hoose~40.cells from the cells. First, the

uniform random number, number. The cell number

indicates the segment

parameters. For exampl 206 2 2S, that the sample lies in the

segment 2 with respect to fifs! tef S8
and in segment 4 with respec &wﬂﬂ ge

ety |
random sample is generated, s ' ' if it does not agree with any previous

sample on any of the segment numbers.
AN T, o

As an‘agvantage of LHS me: ,v,‘==-“3=5={-:‘ ptotically eliminates the
contribution to the van - lj function being integrated.
Disadvantage of this me' od is it does not provide a means of estimating a standard

error to be useﬁ ﬂrﬁ %lﬁnﬁ lﬁnﬁi WH é])ﬂt?timate. Because the

sample points arefgo highly correlated in hypercube sampling, proper estimation of error

requires ar%ﬂ(aﬂﬁ)ﬂe?gﬁd a Ww ﬁoﬁr ﬁﬁe of the error

we should qalax some of the variance reduction properties.
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3.4 Low Discrepancy Sequence Sampling

3.4.1 Definition of Discrepancy

Discrepancy measures the departure from the uniformity property (Traub
and Papageorgiou, 1996; Morokoff and Caflisch, 1995). The discrepancy of the point set
{x}._ _w €[0,1)" is defined as:

DY = (3.2)

Other “"'.’I [ c3 gle, A(E)is the length,

area, volume etc, Al Emand the discrepancy is the

largest d:fferenceﬁeqj g] w ﬂ# ‘%’w EI ’] ﬂ ‘j

A Iow discrepancy sequence is a setef s-dimensionalpoints, filling the

o R 715 D TGN oo

number set One simple way to understand the discrepancy concept — and the uniform

property — is geometrically. As such, two sets of fifty two-dimensional points are plotted
in a unit-square. Figure 3.1 presents a set of fifty points generated by using random and

using a low discrepancy sequence for each dimension.
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Random Sampling
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Figure 3.1 Points in the unit squa )m and low discrepancy

Given the i e of the un gberty in any Monte Carlo

application, and that low/d 1' ore uniform than random
ones, it is reasonable to Epeot that low discrepancy seriesmill generate better results in

simulation experiments thaf random samﬁnﬁlhe use of low discrepancy sequences
lingl(Q

is the basis of m@iuuﬂngcmﬂn %ﬂﬂ)ﬂ ‘j
ARTRITPITIENTINGAE

The van der Corput sequence is the simplest one dimensional low

discrepancy sequence. To obtain n" point x, of the van der Corput sequence (with a

!
prime base of p), first write the integer n in base P:n= Zai(n)* p', then transpose
i=0

the digits around the “decimal point” to get the corresponding quasi-random number

!
a,(n
x,=0,(n)= z# Only a finite number of these a,(»n) will be non-zero. / is the
i=0
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lowest integer that makes a,(n)= 0 for all i > / (/ equal to integer part of

In(n)/In(p),n =1, N .

For example, let p=3 and n=19. We can write 19 in base 3 as

19=2x32+0x3"+1x3%° =201. When reflecting 201 (in base 3) about the “decimal

point” we obtain. x,, = ®,(19) = L + 9+i = 1—1- This is a number in the interval [0,1].
3 9 271 27

a=lrl=1 ' :
n=2:2.—/ = Y.
] 4
n=3:3 —=2;
n=4:4=] <D2(4)=9+9+l=1...
2 4 8 8
After every N =28~ S qunce is “maximally spread out”,

i.e. the longest interval (a,b)<- not contain any points from the

sequence is a short '""i"72:*i-_'_"__—-'-1-*1‘1‘!:!‘*--"'-‘"-"-’-’-*"'-?"-‘1-“ of new low discrepancy

sequences involves sub=divic e | sub-volumes (boxes) of

constant volume, which ha\ée faces parallel to the hypercube's faces. The idea is to put

F- 9 L7
s S RTINS
Y
Different bases have different cyclehn%, the quauéjf numbers to
i an

coe A dAe DI W bl e b, b6)

3/4) are the two first cycles. For other bases this cycle is larger. For example, in base 3

the pair (1/4,

the sequence has power of 3 denominator with length cycle = 3 (e.g., 0, 1/3, 2/3 is the

first cycle). It looks like:
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Two keys to the successful use of QMC methods in high dimensions are
the construction of good sequences and the intelligent use or the sequences for path
generation. There are several high-dimensional sequences for use in QMC: Halton,
Faure, and Sobol sequences. Other important sequences are Hammersley sequences

and Niederreiter.

3.4.3 Halton Sequence

Halton sequence

/Jiscrepancy sequence in multiple
uldifigablock of other low discrepancy

sequences. The Halton e neral s-dimensional sequence in the unit

dimensions, which can b
hypercube [0,1]s. The first ence is the van der Corput
sequence base 2 and the segbng en ion is the \ rput sequence using base
t sequence using the s-th

prime number as the basei'As ‘ 7‘_1 &\ t sequence is getting larger

as the dimension increasesy'it fakes jincrea [ to fill the unit hypercube (for
example, 25° and 26 pri rrespondingly). The sequence
corresponding to the prime p bﬁ@a]eg gth p with numbers monotonically
increasing. This chara¢ ak two sequences highly

In one dimension for a prime base p, the n" number in the sequence

=13 bl Hiahida W E) 1717
q W"l AN INYIAY

1. Write as a number in base np. For example, suppose =3 and n=22,

then we can write 22 in base 3as 22 =2x32 +1x3' +1x3° =211.

2. Reverse the digits and put a radix point (i.e. a decimal point base p)in

front of the sequence (in the example, we get 0.112 base 3).

3. The resultis H, .
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In s-dimension problem, each component a Halton sequence are made
with a different prime base p (first n primes are used). Every time the number of digits in
n increases by one place, n’s digit-reserved fraction becomes a factor of p finer-
meshed. So, at each step as n increases points of Halton sequence are better and
better filling Cartesian grids.

Table 3.1 Halton sequence for first 3 dimensions
A

_ Dim =3
)+ (B (Base5)
n= N —
o = ,.:,,L"
Z 2 5
dhiage
n = i 1 # 3 El‘ 4 b,
4 5
' = 1
n=58 j AP 25
R 6
n= - s
n= —
¢

A 6 | o | 3
AWEANINITEMS
ARIRIATRI NN INGA Y

The Faure sequence (Faure, 1982) is also a general s-dimensional
sequence. Unlike the Halton sequence, all dimensions use the smallest prime psuch
that p2>s and p 22 as the base. The first dimension of the Faure sequence is the van
der Corput sequence in base p . Higher dimensions are permutations of the sequence
in the first dimension. For high-dimensional problems the Faure sequence works with

van der Corput sequences of long cycle. Long cycles have the problem of higher
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computational time (compared with shorter cycle sequences). As occurred with high-
dimensional Halton sequence, there is the problem of low speed at which the Faure
sequence generates increasing finer grid points to cover the unit hypercube. However,
this problem is not as severe as in the case of the Halton sequence. For example, if the
dimension of the problem is 55, the last Halton sequence (in dimension 55) uses the
S5th prime number that is 257, whereas the Faure sequence uses the first prime number
after 55, that is a base 59, which is mueh's aller than 257. So, the "filling in the gaps" in
high-dimensions is faster with Fa - equencegwihen compared with the Halton one.
General formula for the Ien@ éﬁp is P"—1. For example,.for

P =4 the first four cycles

To constr S-dimensiona 2nce we start by representing

any integer n in terms o first dimension of a Faure

known. Then

a() zl(]—l)'l ||

divided by divisor b). So, the next level of coefﬁments is obtained by multiplying by

an) an uppeﬂ'a"vd@ P %Wﬂ(”]}%
QW( ]é{”\m]ﬁ@ll BIANYIAY

o ()G 6
o o [J G

\
(3
OOOJ
i 3

the formula:

er after a number a is

O = N =

1
3
3
1

OO =
O O = =
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The successive points in the Faure sequence obtained from

Ik -

xf=0my=Y % 57),2skSs,n=l,N. (3.3)
=0 P

This recursive procedure permits us to generate S components

(dimensions) corresponding to each Faure point n (n=1,_N, N is a number of

simulations) in the Faure sequence with P as;base (p >s).

Table 3 ' ce for 3 dime s (Base 3)

w

£

: ase3)
n=} 78 &L =
ot 3 3 3
24&7 2
n=2 3 J"? 5
n=3 :
= 9

ARREN IR AIIMER Y
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3.4.5 Hammersley Sequence

Latin hypercubes are designed for uniformity along a single dimension
where subsequent columns are randomly paired for placement on a k-dimensional
cube. Hammersley sequence sampling provides a low-discrepancy experimental
design for placing n points in a k-dimensional hypercube (Kalagnanam and Diwekar,
1997), providing better uniformity prope ies over the k dimensional space than Latin

hypercubes sampling. A low di

space. The procedure of this
Each non an be expan using a prime base p:

k=a,+ L vaip N\ (3.4)

®, (k)= LIS (3.5)
P 0

: 1,2,..., is called Van der

Corput sequence as me C

Let,n iogﬂ gﬁﬂlhﬁpled Any sequence
pl’ppp;p spn_ uﬂg Iness a pN—l of

P2’

functions, whose correspondmg k-th ddimension Hafmersley poi int 18"

qu AANNITUANIN DT E

D, (k), @, (k),... le(k)) for k=1,2,..N (3.6)

Where: p,, p,, p;= prime number (2,3,5,...)
N = total of number of Hammersley points

Using the Hammersley sampling algorithm with n=3 and N =8 produces

the data points listed in table 3.3
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Table 3.3 Hammersley sequence for first 3 dimension

Diml Dim?2 Dim3
(Base2) (Base3)
1 1 1
n=1 = — -
8 2 3
ne? 2 1 2
8 4 3
n=3 L
9
n=4 ‘)
’ 9
n=a ~ .Z
b 9
. : 2
a h 9
- 3
n g o
[ 9
n=8§ F Z‘Tf_‘: §
i 9
af. TS
= ; J_;}- :‘J

3.5 Comparing Differe

mpling technique are clearly

The unlfyn
important, as discusse gbove In this sectson the uniformity properties of these

s eI PRI SV o . v

sequence samplifig (FSS), and Hammersley sequence sampling ( HSS ) techniques are

T IRTRETTS NUNINYNY

Fig 3.2 shows the space filling properties of these techniques. All of the

methods sampled 100 points. The points generated by FSS and HSS are spread evenly,

almost on a lattice in a unit square. This uniformity on the lattice makes it an attractive

method for high dimensional sampling. The Latin hypercube (which is designed to

perform well in single dimension) randomly combines with second variable to get a two-

dimensional design. As a result, it is not as efficient in two dimensions and this can
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reasonably be extrapolated from a 2- to a k-dimensional space. However, all of these

sampling techniques have more uniformity properties than random sampling.
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Figure 3 or vagious sampling
3.6 Summary m m

Al i»j e a% A ssfully solve on all of
problems. There@ﬂ hﬁﬁiﬂiis eﬁﬁjﬁﬁpeﬁormance of GA.
According to Haupt, 2004; Wei andﬂ e rsity of oéﬂ' is critical to
the abilitya ﬁrﬁrﬁh\ﬁ jljs ﬁioﬁﬁﬁvi]ty\;jy irﬁove GAisto
enhance thg uniformity properties of initial population. In this thesis, we improve these

properties by sampling technique. Various sampling techniques are also explained in

this chapter.
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