CHAPTER Il
GENETIC ALGORITHM

2.1 Background to Genetic Algorithm (GA)

Genetic algorithm (GA) is an optimization and search technique based
on the principles of genetics and natural selection. GA allows a population composed of
many individuals to evolve under specified selection rules to a state that maximize the
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including extension and related topics, can be found in the books by Goldberg (1989),
Michalewicz (1994), and Haupt (2004). A procedure of GA is summarized in figure 2.1,

and each of the major components is discussed in detail below.
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2.2.1 Chromosome Representation

For GA, a chromosome representation is needed to describe each
individual in the population of interest. The representation scheme determines how the
problem is structured in the GA and also determines the genetic operators that are
used. Each individual or chromosome is made up of a sequence of genes from a certain

alphabets. An alphabet could consist of binary digits (0 and 1), floating point numbers



or real numbers, integers, symbols (i.e., A, B, C, D), matrices, and so on. In Holland'’s
original design, the alphabet was limited to binary digits. Since then, problem
representation has been the subject of much investigation. It has been shown that more
natural representations are more efficient and produce better solutions (Michalewicz,
1994). One useful representation of an individual or chromosome for function

optimization involves genes or variables from an alphabet of floating point numbers with

values within the variables upper and lo dounds. Michalewicz has done extensive

experimentation comparing rea . He also shows that the real-
value GA is an order of m ore..fﬂm@s of CPU time. Moreover, He
presents a real-valued T V¢ em closer to the problem
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research.
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set. As started, the evaluation function is independent of the GA (i.e., stochastic

decision rules).
2.2.4 Selection Function

The selection of individuals to produce successive generations plays an

extremely important role in GA. A probabilistic selection is performed based upon the



individual's fithess such that the better individuals have an increased chance of being
selected. An individual in the population can be selected more than once with all
individuals in the population having a chance of being selected to reproduce into the
next generation. There are several schemes for the selection process: roulette wheel
selection and its extensions, scaling techniques, tournament, elitist models, and ranking

methods (Goldberg, 1989 and Michalewicz, 1994).
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Ranking methods only require the evaluation function to map the
solutions to a partially ordered set, thus allowing for minimization and negativity. Ranking
methods assign P, based on the rank of solutioniwhen all solutions are sorted.

Normalized geometric ranking (Joines and Houck, 1994) defines P, for each individual

by:



P [Selection the i " individual] = ¢'(1—¢)"™"; (2.2)
Where:
q =the probability of selecting the best individual,

r =the rank of individual, where 1 is the best,
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2.2.5 Crossover

Genetic ® areh Mechanism of the GA. The

operators are used to V ‘."f Iutions in the population.
There are two basic typm of operators: crossover and n‘mation. Crossover takes two
individuals and ﬁduces (\r@new individual§~while_mutation alters one individual to
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and their derivatives depends on the‘chromosomenepresentation fused. In this topic,
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Let X andY be two m-dimensional row vectors denoting individuals

produce a sing|

(parents) from the population. For X andY binary, simple crossover operator is defined.
While, if X andY are real-value, arithmetic and heuristic crossover procedure is

described.
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Simple crossover generates a random number r from a uniform

distribution from 1 to m and creates two new individuals (X 'andY") according to the

following equation.

x'= X 0f i<r (2.3)
{ Y, otherwise

(2.4)

mentary linear combinations of

(2.5)

(2.6)
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Heuristic crossover—produc linear extrapolation of the two

individuals. This is the on inf ation. A new individual,

X', is created using fo ‘f’ ,‘ d X is better thanY in term

of fitness.
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0, otherwise

(2.9)

If X 'is infeasible, i.e., feasibility equals 0 as given by equation (2.9), then
generate a new random number r and create a new solution using equation (2.7) and

(2.8), otherwise stop. To ensure halting, after ¢ failures, let the children equal the parents

and stop.
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In fact, there are further crossover techniques. However, according to
Haupt (2004), type of crossover is not of much importance in term of GA performance.

So, other crossover operations are insignificant in study.
2.2.6 Mutation

Mutation operation alters one individual to produce a single new solution

in order to avoid an overly fast conv to jump out off a local optimum. For the

binary chromosome, Binary m

(2.10)
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mutation, boundary mutation,” ! 1nifo ation. Leta,and b, be the lower and
upper bound, respectively, for e ach v L-_;_q,-w;g.-r.;
Uniform.mt “"*’!‘- j, and sets it equal to

an uniform random num rU(
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Boundary mutation randomly selects one variable, j, and sets it equal to

either its lower or upper bound, wherer =U(0,1):
X "= a.if i=j,r<0.5 {(2.12)
b,ifi=j,r=05

X, , otherwise
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Non-uniform mutation randomly selects one variable, j, and sets it equal

to an non-uniform random number:
x,'= x,+(b,-x)f(G).if r<0.5 (2.13)
x,—(x,+a)f(G), if r20.5

X, otherwise

)
| ati@ selecting and reproducing

The GA @ve

parents until a terminal crltgnon is met. The m&t frequently used stopping criterion is a

specified maxu‘ﬂhu)ﬂﬂo%egr%ﬁ Wtﬁ’}ﬂwﬁﬁon strategy involves

population conveﬂence criteria. In ge@eral GA WI|| force much of the entire population
o QA TR I HRADY I Gy e s
becomes §maller than some specified threshold, the algorithm can be terminated. The
algorithm can also be terminated due to a lack of improvement in the best solution over
a specified number of generations. Alternatively, a target value for the evaluation
measure can be established based on some arbitrarily acceptable threshold. Several

strategies can be used in conjugation with each other.
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2.3 Example of Solving GA by Hand
In order to improve understanding of GA and their operators, GA is

applied to a particular optimization problem step by step. Refer to Goldberg (1989), he

consider the problem of maximizing the function f(x) = x*, where x is permitted to vary

between 0 and 31, a function displayed in figure 2.1

real-value string because crosso \\ 15
randomness by computer. 0. Before we § cw simulation, let's briefly review
the notion of a binary intV |

In base i i c b

and 1; and as an exampl

1x24+0>

F(X)

Figure 2.2 A simple function optimization example, the function f(x) = x* on the interval [0, 31].
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With a five-bit (binary digit) unsigned integer we can obtain numbers
between 0 (000000) and 31 (11111). With a well-defined objective function and coding,
genetic algorithm is simulated a single generation through selection, crossover and

mutation. The operators used in this example are defined in the table 2.1

The start off, an initial population is selected at random as shown in table

2.2. In the table, it was shown that the

T}dedxvalues are presented along with the

fitness or objective function value

Table 2.1 Ope \\\tn. i solving GA by hand
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A generation of the GA begins with reproduction. Mating pool of the next
generation is selected by spinning the weighted roulette wheel four times. Actual

simulation of this process using coin tosses (Goldberg, 1989) has resulted in string 1
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and string 4 receiving one copy in the mating pool, string 2 receiving two copies, and
string 3 receiving no copy, as shown in table 2.3. Comparing this with the expected
number of copies (nx psection,) we have obtained what we should expected: the best

get more copies, the average stay even, and the worst die off.

With an active pool of strings looking for mates, simple crossover

proceeds in two steps: (1) strings are mated randomly, using coin tosses to pair off the

happy couples, and (2) mated stri ( ps ver, using coin tosses to select the

crossing sites. Random choi F-m ﬁthe second string in the mating
—— .

pool to be mated with the fi ing si , the two strings 01101 and

11000 cross and yield 0. ar : )01..The remaining two strings in

the mating pool are cro nay be checked in the table

2.4,

The last on a bit-by-bit basis. We
assume that the probabili 0.001. With 20 transferred bit
positions we should expect (001 '—., 2 bit ndergo mutation during a given
generation. Simulation of th&pdpe;@dﬁ lés that no bits undergo mutation for this

ged-from 0 to 1 or vice versa

during this generation. lj

Following $election, crossovessand mutation, the new population is

ready to be test@l Thihie o ity Bobolie B fnbsgreatea by the Ga and

calculate the fitness function values ffom the x values thus decodeds The results of a
single gﬂarﬁ%f@%@%um %@ﬂ&eﬂ@ r&le how both the
maximal gnd average performance have improved in the new population. The
population average fitness has improved from 293 to 493 in one generation. The

maximum fitness has increased from 576 to 729 during that same period.



Table 2.3 Roulette wheel selection for example of solving GA by hand
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Table 2.4 Reprod

T4\
Cro ov W

String No. Jx)= x2 pselect; Expect count Actual Count
/ Ji (Roulette wheel)
p f
1 169 0.14 0.58 1
2 576 0.49 1.97 2
3 64 0
4 361 1
Sum 1170 4.0
Average 293 1.0
W 576 2.0

of solving GA by hand

k)

Parent Mate x value f(x) = x?
01101 2 ZISE > ”
11000 | 1 e
11]o00 | 4 §_=__ o
10lo11 | 3 -

Sum | 1754
Average ﬂuﬂqtﬂ ﬂjwﬂ]ﬂ‘j 1o
" 729
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In order to improve to the next generation, the best string of the first
generation (11000) receives two copies because of its high, above-average
performance. When this combines at random with the next highest string (10011) and is
crossed at location 2 (again at random), one of the resulting strings (11011) proves to
be a very good choice indeed. Then, if mutation operation occurs in string 11011 at
location 3, it yields new string 11111. The string gives f(x) =961, and this point is a

global optimum.

2.4 Advantages of GA

GA has e GA to dominate other

- de that it

us, w\f \ e variable,
, «- wide sampling of the cost
" A\

optimization techniques.

f variables,

{,-' plex objective surface

Al op .m@,

= pro a list of optlm%vanables not just a single solution,

fr ‘Llnﬂ 3R B3 WAL B prcon s ome

the coded vanaples and
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analytical functions.

These advantages are intriguing and produce stunning results when

traditional optimization approaches fail miserably.



2.5 Applications of GA
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Because of GA's advantages, GA has been widely applied in various

fields, such as engineering, computer science, biology, and so on. Table 2.5 lists some

of the applications of GA in the field of engineering, especially chemical engineering.

For other fields, various applications are listed in table 2.6.

U/

cal engineering

Year scrlptlon
1983 | Goldberg ient optimization of gas
1991 | Androulajis and Mer networks via GA
Venkatasubrama
1998 | Garrard and Fraga l.‘m OV 4; e t Of | ss transfer networks in order
i o Ji :
10 reduc sted materials generated in the
1998 | Wang, Qian, n an, and Yao | Synthesis of distillatic s =quence by using GA
: -
1999 | Tayal, Fu, and -'.'h. kar anger networks with GA
2004 | Majumdar and M'Hra Maximize the main product of complex reaction
= ..
91811 9N PRNISBARIN NS
2004 | Son, Lee, i “ard Choi © " [*The “of | Hsel!:ét !he optimal architecture
f
LA Calin ;'Wﬂk $grocess
2005 |L 1PN h 'Q)&'Fm!a iorl oflvater idrfand
wastewater network topology via GA
2005 | Kordabadi and Jahanmiri The use of GA to optimization of methanol

synthesis reactor in order to enhance overall

production




19

Table 2.6 GA application in other fields

Year Authors Description
1981 | Smith and De Jong Calibration of population migration model using
GA search
2005 | Haldenbilen & Ceylan Improvement transport energy demand
estimation efficiency for future projections by
AN chf ,
2005 | Topcuoglua, Coruta, \"- \:1- ,.‘“’: o;;ation via GA

Ermisb and Yilmaza m— .

2005 | Tan and Bhanu y GA

, /Aﬂ? m\\

2005 | Bo, Hua, and Yu ' j optimize process route
2y technology of the
ess planning (CAPP) system

2.6 Summary

In this & ch A )“ is explained. Section 2.1

presents the backgroun cedure of GA, and their

fundamental issues are cussed In order to improve Ji standing the theory of GA,

oo :’Lfﬂ‘iféiﬁ”iﬁ'ﬂ?ﬁﬁﬁm e ot ot
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Further reading in area of GA and its application can be found in the

book of Goldgerg (1989), Back, Fogel, and Michalewicz (2000), and Haupt and Haupt
(2004).
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