CHAPTER Il

LITERATURE REVIEW

Chemometrics

Chemometrics can briefly be described as the interaction of certain

mathematical and statistical meth igal problems. It has developed as a

consequence of the change in. hemistry with the emergence of

new analytical techniqu as ic@. The applications' using

chemometric technique
have been revealed in speclios ro nat \:\:\\\’

chemistry. A major stréngthso

umerous and applications
er disciplines of analytical

[ . lin their ability to find and
extract information Qiyen iafge \ mentioned above, with the
development of analytlc stiting n'?b a ha \ hanged from being uni- and
low -variate (£ 2 variables)ito | =5 :-. M **', iitivariate. | he field of chemometrics has

thus found its natural connec ny it!

Chemometries, in s fhe ase of ml tepcalibgation methods applied to
spectroscopic data %: according to the type of
spectral information uﬁj and bra iorocess is direct or inverse
(Table 1). The commoQ task of all multlvanate methods is to efficiently extract

information cﬁéﬂvﬂﬂ Wﬁﬂjwm ﬂgs of multicomponent

mixtures. Perh@ps the simplest of these methods is quares (CLS). CLS

.y, MNP/ e 10T

wavelengths (in practice n >>/), and, thus, it is considered to be a full-spectrum method.
This generally leads to higher precision as compared to using only a small number of
wavelengths (25); however, it also has some drawbacks. First, it uses a direct
calibration step, which requires the knowledge of all sample components. The term

direct refers to the usual definition of Beer's law (A = kc) extended to multicomponent
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mixtures. Second, it is very sensitive to spectral noise, baseline drift, and spectral
overlap of the sample components (25). Inverse least squares (ILS) circumvents these
problems. Because the inverse Beer's law, c= kﬁ, (extended to multicomponent
mixtures) is used, it only requires the knowledge of the concentration of the analyte of
interest for calibration (25); however, it is restricted to a small number of wavelengths.

Better performance is obtained with - ods which use spectral factors, such as

principal component regression «(F '~ ’ /r jial_least squares (PLS) (30). These

methods use inverse o-—:m;,___:" DS, COfF 2 a prior optimization of the

information contained in the calibratic ectramihey. d slay the following advantages:

nly the concentrations of the

1 7 A e
g //'/ : \\1\\ d into factors, avoiding the

problems associated withov,

(1) they use full spectra

analytes of interest, and

\ e drifts, and other spectral
artifacts (25). They are idg Suited ; r th dy of . co a» biological samples, such
as drug or metaboli itoring *f (31) ‘or harmaceutical analysis of
multicomponent preparati 7 ot be known (32). A common
requirement to all these iv ! the that the matrix shou!ld be modeled
during calibration; that is, al! :52 G

be present in the calibrafion samples (althoug dhotkrow their concentrations).

e chemist is not interested should

A summary of the V i “:\' . is shown in Table 1.
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Table 1 Summary of Some Popular Multivariate Calibration Methods.

Method Advantages Drawbacks
CLS Uses full spectra. All components should be known.
Classical Sensitive to collinearities, baseline
L,eést Squares drifts, noise, etc.
ILS Only the compon Uses a small number of

Inverse interest ne avelengths.
Least Squares _‘_“:u, ive to collinearities.
PCR Only ‘ 1\ ix should be modeled in the
Principal interesfheg ok \x\
Components ‘ bs (Ie8s 4 \ '
Regression _ e '\
2%\
PLS 10 4| The matrix should be modeled in the
Partial Least ‘ ‘ \
Squares

v
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s ﬂ between chemometrics and
!
spectroscopy.  Figure ‘2 shows in a snmpllfed manner why this is a powerful
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Spectroscopic analysis Chemometrics

*short time of analysis *extract the information in large
*large amount of data amounts of data

Figure 2 lllustration of why spectroscopy and chemometrics work well in conjunction.
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Spectroscopic techniques are generally fast, with the analysis taking from a few
seconds to a few minutes. As previously mentioned, spectroscopy also produces large
amounts of data for each sample analyzed. Roughly speaking, this data can be said to
consist of two parts: information and noise. The information part of the data is what
eventually leads to knowledge about the sample, while the noise is a non-information
part. A matter of concern is always to mini |ze and, if possible, to get rid of disturbing
/ ained. This is where chemometrics
& to extract the lnformatnon from

Ies instead of univariate data

noise in the data since it impairs_
comes in, since multivariate
large sets of data. Using

offers many advantages i ectroscoplc analysis. The

'\\

One could therefore say ‘ \\\ e optimal choice for the
. '

methods generally beco ensmve to spectral artifacts.

evaluation of spectr of spectroscopic analysis

techniques with multi ¢ \ J possibilities in analytical

chemistry.

ning numerous or many

\J

data anatysis is thus the

and “variate” meaning’ va

analysis of data consns:glr? of multiple vanables measuredwom many samples. The aim
of chemometr ﬁo find a small number
of latent van@v ﬂﬂ?ﬂﬁnﬁmn data matrix studied.
Multiv. Zﬂ ariables and
samp Wﬂ ﬁii’ ﬁﬁﬁaﬁﬂﬁg e important
defi nmons in multivariate data analysis are the terms variables and observations, as
shown in Figure 3 below. The rows of the matrix are generally called objects or

observations and thus comprise the samples. The columns are in turn called variables

and consist of the entities measured for each object. The variables are generally divided
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into X and Y. As previously mentioned, in experimental design the X variables are

called factors, the y-variables responses and the objects experiments.

Variables
Z = &
Factors Responses
.3 i
il % F 1
Objects, o |
observations = K Y
or experimeits '
Figure 3  lllustration © J ; ', s and experiments, variables,

factors an

Multivariate me p between x and y-variabies are

N

generally called regressio ese methods are PCR (6), PLS

(29,33) and MLR (6).

Often differing,pre-tréati T 6 the o2 re 4, is carried out before the
multivariate data a -* —qf;g ing data pre-treatment
are generally to reduhe 3 e %dictive ability of the model
and simplify the model (lgwer model dlmensmnahty) by making the data more normally

distributed. ﬁWﬂsW?wm ﬂvﬁ\ematlcal formula to

change the digfribution of the data examples belng Ioganthmlc and exponential

ol . S

standard deviation (s) for each variable is calculated and by multiplying each value of

that variable by 1/s, all variables are then given an equal weight. This is also sometimes

called variance scaling or auto-scaling.
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Figure 4 Data pretreatm umnr eam (a) followed by variance

The term calibrati e defineddas, the Use of empirical data and prior
knowledge for determi .to, pre -' known' quantitative information Y from
a jnathematical transfér function of some kind (6).
Calibration can hence be a4 he ess of establishing this mathematical
function (f) between the meas ' oyav dependent variable y:

N =y (1)
fofo X

¥= Iﬂ ()
where k is the r gressmr‘ oGefficient and / is the intercept of the linear approximation. In

linear regres o u ﬂ% %ﬂ nim &J %ﬂlﬁnultwanate calibration

(6,34,35), however numerous variables are used d the term mu&}arlate calibration

R A AT ATy s

as conasnt or identity to the absorbances of a set of known reference samples at more

One of the simples

than one wavelength. Multivariate calibration thus means using many variables
simultaneously to quantify one or many target variables Y. A calibration model is
determined from a set of samples of known content and identity, the calibration set. This
can be done by means of PCR or PLSR and the resulting model is used to predict the

content of new unknown samples from their digitized spectra. The calibration set could
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consist, for instance, of m samples of known content (y). From these samples the n
spectral variables are measured. If the resulting first-order data arrays of each sample
are put together in a table, the result is as illustrated in Figure 5. From the X and Y
matrices of the calibration set, the calibration model is then constructed and
subsequently validated. The best way to perform this validation is by using new

samples not previously used, a validatio

t consisting of new samples (p) from which
. v

Content
n
Calibration set l Y
n
Validation set ?

|
Figure 5 Schematic @script’uo of the calibration se and@lidation set used in
multivariate cail tion.
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There e a number of reagpns for usmg multivariate callbratnon Univariate
cahba qu Mﬂrﬁam ﬁmﬂ E&j q E]alysed absorb
light afithe wavelength used, i.e. the wavelength is selective forﬁ compound under
study. If this is not the case, all the other absorbing compounds, i.e. the interferences in
the solution must be known. In multivariate calibration, however, this is not the case
since using many x-variables automatically corrects for each other’s selectivity problem,
and the x-variables used thus do not need to be totally selective. The precision of

multivariate calibration is generally high as long as there is a linear relationship between
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the x and y-variables. Multivariate calibration is also generally more robust to small
changes in the experimental or instrumental parameters such as small changes in pH,
temperature or lamp intensity. Samples that differ in some way, outliers, are also more
easily spotted and evaluated with multivariate data than with univariate data since
multivariate residuals will show how an unknown sample fits into the calibration model.

In addition, in multivariate calibration numerous graphical diagnostic tools are generally

2

available.

J
The calibration s uldin tw set span the calibration
experimental domain as sinle “s tc -: desngn can be used to find
suitable samples to incluge"in ihecalibralio . best calibration is generally

obtained when the calibraiion es of variation that can occur

in the actual measurefen 2 o a e Samples are analyzed is one source
of variation and randon v at # 3 alysis minimizes the error caused by
day-to-day variations. stive ability of a quaniitative
multivariate calibration model cz gg’-g: ade cans of the root mean square error of

prediction (RMSEP) (6) and rel W _ of prediction (RSEP) (36,37).

X

iy

€)

awm&m Emz&;ﬁ:ﬂmaal

where y,., is the predicted concentration in the sample, Y, is the observed or
reference value of the concentration in the sample and p is the number of samples in
the test set. RMSEP gives an estimate of the prediction error in the same unit as the

initial data, while RSEP gives a relative measure of the prediction error in terms of
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percentage. RSEP has also been defined as the relative standard deviation of
residuals of the concentrations (37). In recent years the use of multivariate calibration

has become well established and standardised guidelines have been published (38).

Principal component analysis

In the following text capi rs (X) represent two-way matrices,

underiined capital bold face and lower-case boldface letters

matrices (29,39). Ahe g AL Q‘_ \ m observations and n
variables, is decomp pal components (PCs) that
gs. 4 In Figure 6 the geometrical
elve observations and three
variables is shown. The st insthe al interpretation of PCA are as follows.
Firstly the X-space is given a co na sm where each variable gets an axis whose
length corresponds tyits i s G arigbtes mean three coordinate
axes. Each observafio —'\'éj t. The average of each
variable is then calculﬂd and subtre ring@This is equivalent to moving
the swarm of points to thg centre of the coordinate system. Thereafter a function is fitted

oo 4 AN i

X-space. This i8the first PC and is re&resented by the line in Figure 6b

By prmect@g each pomtg wn He Ilnz]Euchl.!\ g'sltanc@ng‘lmeasunng the

distance between the centre point and the projection point, the score value (t) of each
observation is obtained. Since the data set consists of twelve objects, the same number

of score values (t1) are obtained for the first PC. The angle between the line and each
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x1 x2 x3 X3
a b)
2
3
4
5
& X
7 X2
8
9
}2 X1
12
Figure 6 Geometrical interpretation ¢ odeleonsisting of one PC: a) data set
consisting of twel d three variables, b) a geometric interpretation
of the first PC ¢
variable axis determi i e ' vaiiable, | e loading value (p). One

‘ 1). In this example twelve
e first PC. When the first PC

has been calculated, the re i l,:—:-'-- ariange is left in the residual matrix, E:

(5)

-
-

The decomposifi ti€ally described in Figure 7,

where the initial data mafrix X is dee A using two PCs.

- ﬁdﬂéﬁ SARIAAE Y R Ao on o s

matrix E1, whicAlcontains the variance not explained by the first PC.

¢
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+tapa’ + E 6)



14

PC1
7 N
Lk |
X =t & E4
PC2
AN

Figure 7 Schematic d

PCs.

atrix X with PCA using two

The second PC#iS o v : - iherfirst, More (a) can be calculated as
long as unexplained infog a' N | : n Zber of principal components
can be estimated by diffg $ ) , validation is an often-used
method. The variance of a v M 0 is described by the eigenvaiue, which
is proportional to the variance expia . he eigenvalue (7») can be described

as the length of the P€ an imated as the es of.the scores:

X

1 . 7 m

m=1

AU INININYINT

where ¢, is tHel score of object m for component a. Hence the Iength of the score

vecto& mt : eﬁ( aﬁe mﬂm ﬂawﬂsaltﬁ, Er much of the

vanancq

Although PCA can be calculated using different algorithms, the two methods
most common are non-linear iterative partial least squares (NIPALS) (29) and singular

value decomposition (SVD) (39).
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One problem with applying PCA to matrices with a chemical rank larger than
one is that is does not give directly interpretable profiles like chromatograms and
spectra since scores and loadings become linear combinations of the true analytical
profiles. This issue is also called the problem of rotational freedom since the scores and

loadings can be rotated without changing the fit of the model.

Iy,

PLSR (28,32) ha blished wrd data analysis tool for

Partial least squares regressi

multivariate data in the last ears and tr re numerous applications in

In PLL

R

different fields of analytic ance in a data matrix X and a

N

dépendent matrix Y i ating PLS components that

capture the variance Detwee \. , Figure 8 the geometrical
interpretation of PLS o S .\ \. of twelve objects, three x-
variables (x1-x3) and thr iabl ‘_ y3) are shown. The steps in the geometrical

interpretation of PLS are as PCA, the X space gets a coordinate

system where each variable get§ ength corresponding to them scaling

and in PLS this is dl§0.¢ Y ‘space e data sets in this example

consisted of three x&Z ) 21y ﬂ spaces both get three

7 i
- ﬂ%g SN HIT BN o svam ot pos

the middle of tfi8 coordinate system. ('-\ function is then fitted to the data in a way that
=9 o

best ﬁcﬁﬂlﬂm&ﬂnﬁmﬂm wﬂmﬂe correlation

betweem X and Y. This function is a line in both the X and the Y space and it is the first
PLS component. PLS can be seen as the regression extension of PCA since it
simultaneously fit two ‘PCA-like” models, one for the X space and one fer the Y space, in
such a way that the correlations between X and Y are maximized. In contrast to PCA,
PLS is a maximum covariance method since the main aim of PLS is to predict the y-

variables from the x-variables. As in PCA, the PLS decomposition summarizes the
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variance in the data sets in new latent variables, scores and loadings. By projecting
each point down to the line and measuring the distance between the center point and

the projection point, the scores for the X space (t1) and Y space (u1) are

a)
X1 %2 X3

1

2

3

4

5

8

3 X

8

9

10

1

12

Figure 8 Geometrical i i S mo! 0 ling of one PLS component.
a) a data set cgnsi twelvelobie 5 3 k\ ee x and y-variables, b)
geometric interpretati e firs >0 m nent in the X space, c)
geometric interpret StPLS Jponent in the Y space, d) PLS
inner relation. /
given. The PLSR mai .7.'.‘::..‘..7.:7:5:.';.’::.:.;:.;91.:.:;.'..';.:-:-‘.;-:.:_i- er relation and an inner

AY )
plock individually, while the

il
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R8N TN TR INYAY

q

where T is the score matrix and P’ the loading matrix of the X space, U the score matrix

relation, where the ‘

and C’ the loading matrix of the Y space. E and F are the residual matrices of the X and
Y spaces respectively. By plotting the t1 values of the twelve objects in the example in
Figure 8 against the corresponding u1 values, the PLS inner relation showing the
coirelation structure between X and Y is obtained (Figure 8d).

U=BT+H (10)
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where B is an identity matrix and H is a residual matrix. In PLS a type of additional
loadings is calculated that expresses the correlation between X and Y, the weights, W.

The weights are related to the PLS regression coefficients, By, g:

Bes = WPW)™' C' (11)

by

(12)

‘one can be calculated on

residual matrices E angfF. nudiberef cant PLS components (the model

-\ eans of cross validation. The

A\

component, t, u, w, p and c are & c.details of PLS regression have been

igure 9 and, for each new PLS

thoroughly described else

o
Lig S

Rawdata _ Raw data
-4

AusAndstienhs

A TE TN e

Figure 9  Schematic description of the matrices in PLS regression.
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Validation

Validation is an extremely important part of model building. There are two main
purposes of validation.
The first is to make sure that the model will work in the future when the model is

apblied to new data of future measurements. This is done by estimating the prediction

gives a value of good t
The second p complexity of the model. In
the case of PCR or RIES ededn ‘ is the ~K of PCs or latent variables

included in the model.

1 alibration se

L i
In order to validate a .'.Aai'& we'have {0 have both calibration set and
i ’ .l o J # |
validation set. Calibration afa --u O J > model and validation set is used to

- - J.-:‘.#‘Htfa‘ S o
test the prediction ability of themocet it is img 1at bot callbratlon and validation

set covers all possibie-aspec Sle-oi-fuite-gaia—te—tho-aat ‘ ation and validation set

should be representat' oncentration of some sort,

it is important that callbratnon set and valsdatlon set covers the range of the
concentration In order words, the
calibration se@umm m ?Wﬂqﬂjand y. If the results
form a ﬁused for the
prednﬁ Wﬁ mirfliﬁlﬁ ﬁ )1 %nﬁﬁ

2. r of principal componen
If the underlying model for the relation between X and y is a linear model, the
number of components needed to describe this is equal to the model dimensionality.

Although it is possible to calculate as many principal components as the rank of the X
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block matrix, not all of them are usually used. The main reasons for this are the
measured data are never noise-free and some of smaller components will only describe
noise. As mentioned in earlier paragraphs, it is common to leave out small components
because they carry the problems of collinearity.

In any empirical modeling, it is essential to determine the correct complexity
of the model. With numerous and correlated X-variables there is a substantial risk for

il
“over-fitting”, i.e., getting a well fitting model
SN\

ittle or no predictive power. Hence, a
strict test of the predictive significance
then stopping when comp@

Cross-validation (@V)#6tleave-on: Q0 rocedure must be used to
establish the number of \ and reliable way to test this
predictive significance. v S Ihg'pe ¢ f de - testmg is defined by leaving
out one measurement.for e del @ Ui e sub-model on the rest of the
measurements. Each vs 4 l e 1o -: - ne easurements is left out once
and thus we get as many ib-j leld 26 Watitye meSsuments.

After developing'a g fér‘- between actual and predicted Y-
values are calculated for the de_ m of squares of these differences is
computed and collgtted: V the models : e predictive residual sum of

——
squares (PRESS), whigh & model.

Iﬂ 9

ﬁR%Eﬂ FRUNINYING

=1 j=1 ¢
= WIR SRR 215
y”; = predicted concentration of analyte j in i calibration samples left
out during calibration
y;; = actual concentration analyte j in i calibration sample left out
during calibration

analyte of mixture sample

3 3
Il

= the number successive principal component
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This parameter is a measure of the efficiency for a calibration fit model.
One reasonable choice for the optimum number of factors would be the number that
yielded the minimum PRESS. However, using the number of factors (h*) that yield a
minimum PRESS usually leads to some over-fitting. A better criterion for calculating the
optimum number of factors involves the comparison of PRESS from the models with

fewer than h* factors. The model selected is that model is nor significantly greater than

where n
a2 = the numberstccessiv ipal c¢ n
O ﬁ#‘%ﬁ pal component
This is explaine genva:ues (a principal
component) explain Iegvarianc data and hence e L lains the continual drop in

the residual percent variancgs,
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