CHAPTER IV

Facial Feature Detection

st facial features are coarsely
detected by a neural visua NV ' be free from the usage of intensity infor-
mation, the inputs of the NV. o ﬂ . roni the position and face shape information.
applying image dilation algorithm
in the second step. In the last __c‘__ 15) e sform is used to evaluate the face angle

of a rotated image. .

w il

4.1 Neural Vlsug Model (NVM) |

Neuzl vimal b ¢ llﬂ 1/} Z eI e ot consi
of three rq W”I"ﬂ“ﬂﬁ? vqu\ W ng i Egroﬁle an.d flght-

profile views of faces. For eac ere are two parts. st part is input
preparation. The network inputs are facial parameters obtained from position and face

shape information. The other part is model construction.
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ﬁ' O is a face center. Line EF is

Figure 4.1: Notation used cial ypar
parallel o the Y-axis. THTE ST lind & ace width. Lines AD and BC

are perpendicular to each A e 30D and AOC are divided into two halves

4.1.1 Facial Para - 'ff '

Seven facial parameters ob o f are extracted from the position

and face shape information s eters denote the position of any given
CORIA

image pixel with respe%to the center of face oordinates. The remaining

lidean distances measured

from the four corners, i] upper o

center of face im ?ﬁﬂ ETV] ﬁﬁted in Figure 4.1. The
normalized size O@Hﬁlﬁng 1magm
e f°”°“'=’~‘lg°ﬁ“"1"‘WﬂsTth“T TMITNY

1. (z,9,) : Coordinate of the center point O. z, is measured in terms of the number

upper right, lower left, and lower right, to the

of rows and y, is measured in terms of the number of columns. The values of z,
and y, are dependent on the length and width of the image, respectively. Since the
length of a given image has no effect on the analysis of facial features by NVM, the
value of z, is set to [/2. However, the value of y, depends upon the actual width

of a given face and must be derived from the image. Discussion of this derivation
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will be given later.

2. (r,0) : Polar coordinate at any point (z,y) with respect to the center point calcu-

lated by
V(8 ~ 22+ (y~ 1) (4.1)
and
7 ~ Sy, (4.2)
3. L, : Face width (/ is ' f a line connecting two boundary points
(E and F) of the fage. F, j ATe - Y-axis. The actual value of L,

(O) and the far upper left(A),
upper right(B), lower left( gy or right corner (D), respectively. These values

depend upon thesac s,

"'

values will be giveh later. A J

3 n of how to compute these

The values of L,, and y, can be derived from a given image by the following algorithm.
a Ky

AUYINYNINYING

Algorithm 2: “Fmdmg Face,Width _
L Exele e bR o DLSAANEINE o 10
2. Convert the face image from step 1 into edge face image.

3. Generate face template of size 128 x 128 from resizing face template of size 24 x 24

and dilate the face boundary of the face template.

4. Apply AND operation to the dilated template and the edge face image.
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5. Dilate the face boundary from step 4 in order to connect all pixels.
6. Apply thinning method to dilated face boundary.

7. Consider two pixels at the 64" row (because the face is length-fitted with normal-

ized image of size 128 x 128 and the face width is measured from two pixels at the
half of thinned image length), th n from the left side of the face image,
v, having a white pixel i§ ea. ' éint and the first column from the

The values of L, ied by the following equations.

and

(4.4)

the face width is shown in

An example of locatir{ghgf
Figure 4.2. “

Lines AD and BC are mrpendicular to each other. ’lme angles BOD and AOC are

divided into twoﬁfzﬁ m ﬁic, Lp by counting the
})per le

number of pixels i\lfour 1rect10ns upper right, lower left, and lower right)
from the @tﬁﬁ}:ﬂn@ ﬂﬁﬂj 3\1 %xﬁ]lﬁﬂ% Elq ﬁ E]he thinned image
(step 6 of face width algorithm).

These facial parameters are independent of the facial color, light condition, and any face
occlusions such as wearing the spectacles, sunglasses, and covering the mouth by a scarf.
Participating parameters in locating essential facial features are r, 6, L., La, Lp, Lc,

Lp.
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(f) (g) (h)

Figure 4.2: Steps for finding face width and facecenter point. (&) Face detection. (b)

Normalized! face froni"(a). ! (c) ‘Edgé’ version' of (). I (d)-Dilated beundary from face
template. (e) Result of applying AND operation to (c) and (d). (f) Dilated version of
(e). (g) Thinned version of (f). (h) Two points at the 64" row. The face width is the
distance between these points and the face center is at the center of the line between

these points.
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4.1.2 The Feedforv Neural
s 4
A node(neuron) is an information ' that is fundamental to the operation
of a neural network. The block diagram of Figure 4 3 shows the model of a node which

\7
forms the basis for des'1 g

i
w

described by the following P‘ag of equa.tions.u

AULINENINYINT

PANIAIMINGINY @

mathematical terms, a node k is

)

and
Yk = Y (uk + bi) (4.6)

where
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Bory T« = oy Bity : input signals

W1, Wk2, - - -, Wem - Synaptic weights of node &

U, . linear combiner output of node k£ due to the input signals
by . bias of node k

()

Yk

The use of bias by has the & g @nsform to the output u; of the
linear combiner in the mode 413,88 - ownby

(4.7)
A popular activation functi ) ‘:.\. ction shown in Eq.( 4.8).
(4.8)
A feedforward neural network is onnected nodes without having a feed-
back loop. There are ctures [58]
1. Single-layer feedfoa.rd networks: In the simplest form of a layered network, an

input layer of source fiodes that projects.onto output layer of computaional nodes,

were o8 NI INE 1113
2 RSV T YA s o

tlngulghes itself by the presence of one or more hidden layers of computaional

node.

4.1.3 Implementation of the Neural Visual Model

Typically, a multilayer feedforward network (Figure 4.4) consists of a set of sensory units

(source nodes) that constitute the input layer, one or more hidden layers of computation
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nodes, and an output layer of computation nodes. The input signal propagates through
the network in a forward direction, on a layer-by-layer basis. These neural networks are

commonly referred to as multilayer perceptron (MLP) network [58].

Output layer

Hidden layer

Input layer

Figure 4.'4 rchitecture ultl-layer perceptron.

ﬂﬂﬂ’l‘i’lﬁlﬂ‘ﬁﬂﬁl’]ﬂi

Facial feature detéction model is constructed usmg MLP networks with back-propaga-
tion ( BP)‘aawqaa)lﬂl'ﬂ ?Wtﬁﬁé}ﬂ%&} ’]:lﬁl E}ual networks for
frontal, leftsproﬁle, and right-profile views. Four essential facial features, i.e., left eye,
right eye, nose, and mouth, are considered. Each feature will be located using one MLP
network. Hence, four MLP networks must be introduced for all features in each neural
visual network. The problem of locating facial feature is considered as a problem of
classifying a given set of facial parameters into two classes, interested facial feature class

and uninterested facial feature class.
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BP learning [58] consists of two phases, namely, learning phase and operating phase.
In learning phase, a set of input patterns (training set) is presented to the input layer
together with their corresponding desired output patterns. Each input pattern consists
of seven facial parameters as described in the previous section. In this study, there are
two classes of desired output patterns. The first class corresponds to the input pattern

\ lb Other class corresponds to the input

ure u . A small random initial weight
T —

embodied in a facial feature under
pattern not embodied in a
value is assigned to each im the input layer and the hidden
layer because it is grad ‘ u the appropriate weight value. As each
input pattern is applied
layer and the hidden la;

reduces the difference b T g@p ¢ actual outputs and the desired outputs for

a given input pattern.

namely,

1. Forward pass, an aﬂlw t@he input node of the network.

Its effect propagate ough the network layer by layer and produces a set of
o

o TS HENSHE N
st Ryt

of the network from the desired response. It then propagates backward through
the network. The synaptic weights, which are all fixed in the forward pass, are
adjusted to minimize the difference between actual and desired outputs of the

network.

The input to each node for successive layers is the sum of the scalar products of the

incoming vector components with their respective weights. Thus the input to a node j
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(Figure 4.4) is given by

znput, = Z Wy; * Out,' (49)
i
where
wj; : weight connecting node ¢ to node j
out; : output node . , ,”
No calculation is performed t la er stage merely feeds input patterns

to the network. For inpu
(4.10)

and this output is sent in the len lay \ his computation is continued

\' \ tput vector is generated.

The function 1(:) is the activation#unction‘of each node. In this study, the sigmoidal
= |

activation function is employed. B = difference error term or ¢ term in the

output layer, the weightic mputed by [58 £
V. 4

m""" , | (4.11)
here oD @ Ef TN TIE oo voiontesD

and n, respectivelyjland 7 is a learmng rate parameter The § term of the nodes in hidden

e QAR NV B G oo o

(another hidden layer or input layer) are updated accordingly by
wji(n + 1) = wji(n) + n(d;out;) (4.12)

where w;;(n+1) and wj;(n) are the weights connecting nodes j and 7 at iteration (n+1)
and n, respectively. These calculations are repeated until all weights have been adjusted

to decrease the difference error.
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The § term in previous equation is often referred to as the rate of change of error with

respect to the input of node k, and can be written as
Ok = (dg — outy)Y' (inputy) (4.13)

for nodes in the output layer, and

(4.14)
,.d L

———
for nodes in the hidden la is the desired-.output of node k. The fundamental
of BP learning algorit gradient descent optimization

procedure which mini een network output and the

desired output of all in
(4.15)

The training set is presented iterat fe the network, whereby the weights are

updated until their values bécome sta ili%ed ac | 0 e following criteria:

o X
e a user-defined erroﬂ o m

e a maximum number éfdterations is redelied.

VERLEA R TR
L LNk} Y eERGE

The important goal in the learning phase of the neural network is to obtain an optimal

—

generalization performance. Generalization performance means small errors on examples
not seen during training [60-62]. Because standard neural network architectures such as
the fully connected multilayer perceptron (MLP) network almost always have too large
a parameter space, such architectures are prone to overfitting. While the network seems

to get better and better, i.e., the error on the training set decreases, at some point during
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training the error actually begins to get worse again, i.e., the error on unseen examples
increases. There are two methods to solve this situation [60-62]. The first method is
to reduce the number of dimensions of the parameter space or the effective size of each
dimension. Details on the first method can be found in [63-65]. The other method is

early stopping. Early stopping is widely used because it is simple to understand and

implement. It can be used eith ‘intera r automatically, i.e., based on human

Time

Figure 4.5; Idealizéd fraining @ alization error curves.
i 1 J
Figure 4.5 shows the evel araple error on a training set and

J

1.|J

on a test set not used in }rammg The followmg steps explain how to perform early

stopping using Cﬁsﬂlﬁq W‘H qn ﬁ W Elﬂ ﬂ ‘j

Algorltwqwﬂ’ﬁm 64 Y| 26 ¢

1. Split the training data into a training set and a cross validation set.

2. Train only on the training set and evaluate the per-example error on the validation

set once in a while.

3. Stop training as soon as the error on the cross validation set is higher than it was

checked the last time.



36
4. Use the weights in the previous step as the result of the training run.

This method uses the cross validation set to simulate the behavior on the test set,
assuming that the errors on both sets will be similar.

There are a number of plausible proposed stopping criteria where Prechelt [60] classified

them into three classes based on the f efinitions. Given

/&he training algorithm,

——

,-

_ ning set, measured after epoch

e E,.(t) be the average e

t

e E,.(t) be the correspo £y 7 o .. >t and is used by the stopping
criterion,

e FE,(t) be the corresponding - on the test set, and

o E,u(t) be the lowest validatio , btained in epochs up to t¢that is,

Eopi(t) = miny e O

The generalization loss y ‘poch tis the re relatlve percen@ge increase of validation error

o N S T E 11
Amasea R gy

A high gengrahzatlon loss directly indicates overfitting, hence the stopping criteria of
training. Consequently, the first class of stopping criteria (GLc) is to stop as soon as

the generalization loss exceeds a certain threshold [60], that is,

GL.: stop after first epoch ¢t with GL(t) > ¢
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As training error still decreases quickly, no overfitting takes place. When the error
decrease rate begins to level, overfitting will likely occur. A training strip of length & is
defined as a sequence of k& epochs numbered n + 1,...,n + k, where n is divisible by k.

The training progress (in per thousand) measured after such a training strip is [60]

- 1) (4.17)

larger than the minimum steipe"" ——
The second class of stop/ efined a wotient of generalization loss and

progress as follows [60]:

UP,: stop after epoch 1f UP,_, stops after epoch t — k and Eyq(t) > Euw(t — k)

o GUEANENINEINT. o
deﬁalmaam@w SAAFHEE FBJonc, bt g

S consecutlve strips and assumes that such increase indicates the beginning of final
overfitting, independent of how large the increases actually are.

From all stopping criteria classes (GL, PQ, and UP), the classes GL and PQ are em-
ployed as the stopping criteria of the training under back-propagation learning approach
because model construction applying the classes GL and P(Q takes less time than ap-

plying U P although the results of applying all stopping criteria classes are similar.
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If the error on validation set is not consistent with the error on test set, the data
in training set, validation set ,and test set must be rearranged so that the errors on
validation set and test set are similar. The other choice is adding inputs in order to give

more information for training.

4.2 TImage Dilation @W//{é

The field of mathematical @ [G?COMwide range of operators to image
——

processing, all based aroM ‘

operators are particularly

ical concepts from set theory. The
images and common usages
nt, and image segmentation.

is dilation. This operator takes
two pieces of data as input: an i *‘ -' : ) ed and a kernel. For a binary image,
white pixels are normally tak _- 1t foreground regions while black pixels denote
background. The set of coordinak@eéﬁ onding:to that image is simply the set of two-
dimensional Euclidean egordinate 2 e foreground pixels in the image, having an
origin normally taken in @fjé of t { ooinates have positive elements.
The kernel is just a set of point coordinates ﬁl}hough it is often represented as a binary

image. The kenﬂ b e %‘iﬂeﬂﬁf{l idlagolopordihgt gt in that it is normally

much smaller, and its coordinate origin is often notsin a corner. , some coordinate
elements QI ﬁqe@ﬁ m ‘i m;olliﬂ ’lgym;leﬂlnfltaoa of morphological
operators, i.e., dilation and erosion, the kernel is a particular shape (e.g. a 3 x 3 square)
and so is hardwired into the algorithm.

The basic effect of dilation on a binary image is to gradually enlarge the boundaries
of regions of foreground pixels (i.e. white pixels, typically). Thus areas of foreground

pixels grow in size while holes within those regions become smaller. The mathematical
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definition of dilation for binary images is as follows:

Suppose that X is the set of Euclidean coordinates corresponding to the input binary
image, and that K is the set of coordinates for the kernel. Let Kz denote the translation
of K so that its origin is at . Then the dilation of X by K is simply the set of all points

z such that the intersection of Kz with X is non-empty.

In this dissertation, image dilati / to eliminate some irrelevant regions

remaining after using NVM. 1thm ting the irrelevant regions [61,62,
J —' ’
66 is described as follovy . \&“
Algorithm 4: Eli rre -, 5ns
1. Filter the origin esh ~ . rt the threshold filtered image.
mdl
The black-and-white f mage c c 0 t is step.
Jﬁf‘ b

2. Apply dilation to the image from

V) (4.18)

where

oy um ﬁa NINLNDA..
| ﬁ'l AN IR e

Ipijatea(z,y) : dilated image

3. Combine the dilated image and the detected image from the NVM with an AND

operation by

Ipetected(, ¥) = AND(Ipiated(2, ¥), INvm (2, Y)) (4.19)
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(d) (e7 (f)

Figure 4.6: Left-eye region deteetion steps bsmg image dilation. (a) Face detection. (b)
Normalized face from (a). (c) Left-eye reglon L detection from NVM. (d) Black-and-white
image obtained from original unage thh thresho,ldlng filter (step 1). (e) Dilated image.

"—..'

(f) Left-eye extraction from detected rchon u,smg the image dilation technique.

where (~ v
Invm(z,y) : d_etected image from NVM
IDetectea(,y) : deteeted image aftep eliminating the irrelevant regions

An example of how the algorithm works'is shown'inrFigure '4.6.

4.3 Rotational Invariance

Radon transform [68] transforms a 2-dimensional image with lines into a domain of pos-
sible line parameters. Each line in the image gives a peak position at the corresponding
line parameters such as the distance to the center of image (p) and the angle of a line
(0). This leads to many line detection applications within image processing and com-

puter vision. For algorithm, some lines of rotated edge image provide an important line
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'

Z

parameter called face ange./' in an dge fa - image can be expressed in the

form:

(4.20)
where # is the angle of a li . ! he smallest distance to the center of the face
image. An example of line expre .'-='-e—-. shao igure 4.7. Radon transform of a set

of parameters is the line summat o)afv;;u dge image Ieqge(,y), where the line is

pOSltloned corresponair C};w;;—_:;_—;:;; 1€ Kronecker delta as follows:

e === iy ;

s

.y ’ﬂ@ﬁfvrﬁﬁ‘%’wmfﬁ@’““

In the face detectl% stage, a face is detected by f e templates \“}h eight angles (Fig-

wes 35 0 Y| B T 34%1’9 Flestguil Fom the masimum

intensity of t;he transformed image by Eq.(4.21). The algorithm for facial feature detec-

tion with rotational invariance is as follows:

Algorithm 5: Rotational Invariant Facial Feature Detection

1. Construct the edge image using Canny edge detector.
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2. Eliminate the face boundary by removing outside white pixels from possible face
regions. A face region is in the circle region with radius a and center at face center

(o, Yo)- The radius is calculated by
a = 0.3 x max(m,n) (4.22)
‘ w 0.3 in the above equation is a yield
a&egions but face boundary. This

——
coefficient is statisti ) lemention.

where m X n is image size.

value which retains t

3. Apply Radon transf: e imag the previous step. The face angle,
s t intensity on the transformed
direction using a bilinear interpo-

lation.

5. Detect face and __i‘ ci ed image using face and facial

Y

D

6. Bound the regions of facial features byrectangular blocks.

7. Inversely roﬂyxﬂm’g@naﬂ byb!ksi)wﬁgli:]c ock?rise direction and super-

=~ WTRAMTRIINIINY1A Y

An example of rotated face and facial feature detection is shown in Figure 4.8.

feature detection ?.
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20 40 | 69 —80 >0
4‘_‘ 4 | i i B ddegrees) o f;

Figure 4.8: Detection steps of rotated image. (a) Face detection. (b) Detected face. (c)
Edge image. (d) Edge image eliminating face boundary. (e) Radon transform of (d)
which the highest intensity is at 45°. (f) Re-rotated image obtained by rotating 45° in
a counter-clockwise direction. (g) Face and facial feature detection of re-rotated image.

(h) Detected image.
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