
i

ตวัจ ำแนกประเภทกำรเคล่ือนไหวส ำหรับไมโครซอฟต์ไคเน็กต์

นำยชิตพล ไวทยำนนท์

วิทยำนิพนธ์นีเ้ป็นสว่นหนึง่ของกำรศกึษำตำมหลกัสตูรปริญญำวิทยำศำสตรมหำบณัฑิต
สำขำวิชำวิทยำกำรคอมพิวเตอร์และเทคโนโลยีสำรสนเทศ

ภำควิชำคณิตศำสตร์และวิทยำกำรคอมพิวเตอร์
คณะวิทยำศำสตร์ จฬุำลงกรณ์มหำวิทยำลยั

ปีกำรศกึษำ 2554
ลิขสิทธ์ิของจฬุำลงกรณ์มหำวิทยำลยั

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ต้ังแต่ปีการศึกษา 2554 ท่ีให้บริการในคลังปัญญาจุฬาฯ (CUIR)

เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ท่ีส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR)

are the thesis authors' files submitted through the Graduate School.

ii

MOTION CLASSIFIER FOR MICROSOFT KINECT

 Mr. Chitphon Waithayanon

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in
Computer Science and Information Technology

Department of Mathematics and Computer Science
Faculty of Science

Chulalongkorn University
Academic Year 2011

Copyright of Chulalongkorn University
Copyright of Chulalongkorn University

iii

Thesis Title Motion Classifier for Microsoft Kinect
By Mr. Chitphon Waithayanon
Field of Study Computer Science and Information Technology
Thesis Advisor Assistant Professor Chatchawit Aporntewan, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master’s Degree

 ……………………………………………….. Dean of the Faculty of Science
 (Professor Supot Hannongbua, Ph.D.)

THESIS COMMITTEE

 ……………………………………………….. Chairman
 (Professor Chidchanok Lursinsap, Ph.D.)

 ………………………………………….……. Thesis Advisor
 (Assistant Professor Chatchawit Aporntewan, Ph.D.)

 ……………………………………………….. External Examiner
 (Assistant Professor Werapon Chiracharit, Ph.D.)

iv

ชิตพล ไวทยานนท ์ : ตวัจ าแนกประเภทการเคล่ือนไหวส าหรับไมโครซอฟตไ์คเน็กต.์

(MOTION CLASSIFIER FOR MICROSOFT KINECT) อ. ท่ีปรึกษาวทิยานิพนธ์
หลกั : ผศ.ดร.ชชัวทิย ์อาภรณ์เทวญั, 57 หนา้.

 ในปัจจุบนัมีวิธีท่ีใช้จ าแนกการเคล่ือนไหวอยู่หลายวิธี ในท่ีน้ีเราใช้ไมโครซอฟต์ไค
เน็กต์เพื่อจบัการเคล่ือนไหว ตวัจ าแนกการเคล่ือนไหวใช้ขั้นตอนวิธีท่ีเรียกกว่าไดนามิกไทม์
วอร์ปปิง (DTW) เราทดสอบตวัจ าแนกกบัการเคล่ือนไหวของมือ 7 แบบคือ วงกลม วงกลม
สองวง ชก อปัเปอร์คทั ส่ีเหล่ียม สามเหล่ียม และสามเหล่ียมกลบัหวั ผลการทดลองแสดงให้
เห็นวา่ตวัจ าแนกการเคล่ือนไหวใหผ้ลการท านายท่ีถูกตอ้ง 100%

ภาควชิา คณิตศาสตร์และวทิยาการคอมพิวเตอร์ ลายมือช่ือนิสิต ..
สาขาวชิา วทิยาการคอมพิวเตอร์และสารสนเทศ
ปีการศึกษา 2554

ลายมือช่ือ อ.ท่ีปรึกษาวทิยานิพนธ์หลกั…...

v

5273621323 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS : MOTION CLASSIFIER / MICROSOFT KINECT

CHITPHON WAITHAYANON : MOTION CLASSIFIER FOR MICROSOFT
KINECT. ADVISOR : ASST. PROF. CHATCHAWIT APORNTEWAN, Ph.D., 57
pp.

 Currently there are many techniques for motion classification. Herein we use
Microsoft Kinect for motion capture. Our motion classifier employs an algorithm called
Dynamic Time Warping (DTW). We tested the classifier with 7 hand motions: single
circle, double circle, punch, uppercut, square, triangle, and flipped triangle. The
experimental results show that our motion classifier yields 100% prediction accuracy.

Department : ..Mathematics and Computer Science..
signature..

Student’s Signature…..…..…..…..…..
Field of Study: ..Computer Science and..
 ..Information Technology..

Advisor’s Signature …..…..…..…..…..

Academic Year : ..2011..

vi

Acknowledgements

I would like to express my gratitude to my advisor Chatchawit
Aporntewan for his great support on my study and my thesis. I wish to thank all my
friends in the class for their help and advice. Finally, I thank my family for continuous
support.

ix

Contents

 Page

Abstract (Thai)…………………………………………………………………………….….. iv
Abstract (English).. v
Acknowledgements... vi
Contents... vii
List of Tables.. x
List of Figures... xii

Chapter
I Introduction... 1
 1.1 Objectives... 1
 1.2 Scope of the Work... 2
 1.3 Problem Formulation…………………………………………………………
 1.4 Expected Outcomes..

2
3

II Theoretical Background... 4
 2.1 Motion Classification... 4
 2.2 Dynamic Time Warping……...
 2.3 Microsoft Kinect..

5
9

III Materials and Methods.. 14
 3.1 Training Data and Testing data………………………………………………

3.2 Data Preprocessing…………..……………………….................................
 3.3 DTW package in R Statistics……………….………………..………………
 3.4 Hardware and Software Setting……..

14
18
19
19

IV Experimental Results and Discussion... 21
V Conclusion... 42
References... 43
Biography... 44

x

List of Tables

Table

1
2
3

Playable Ranges for kinect.......................................……………………...
Kinect Specifications………………………………………………………….
Distance between single circle and all motions (5 second, Same
person)………………………………………………………………………….

Page
9
9

28
4 Distance between double circle and all motions (5 second, Same

person)………..….……………………………………………………………..

28
5
6

Distance between punch and all motions (5 second, Same person) …
Distance between uppercut and all motions (5 second, Same person)..

28
29

7 Distance between square and all motions (5 second, Same person)….. 29
8
9

Distance between triangle and all motions (5 second, Same person)….
Distance between flipped triangle and all motions (5 second, Same

29

 person) ………………………………………………………………………… 30
10

11

12
13

14

15
16

17

Distance between single circle and all motions (3 second, Different
person)………………………………………………………………………….
Distance between double circle and all motions (3 second, Different
person)………..….……………………………………………………………..
Distance between punch and all motions (3 second, Different person)..
Distance between uppercut and all motions (3 second, Different
person)………………………………………………………………………….
Distance between square and all motions (3 second, Different
person)………………………………………………………………………….
Distance between triangle and all motions (3 second, Different person).
Distance between flipped triangle and all motions (3 second, Different
person)…………………………………………………………………………
Distance between single circle and all motions (5 second, Different
person)………………………………………………………………………….

30

30
31

31

31
32

32

32

xi

Table
18

19
20

21

22
23

24

25

26
27

28

29
30

Distance between double circle and all motions (5 second, Different
person)………..….……………………………………………………………..
Distance between punch and all motions (5 second, Different person)..
Distance between uppercut and all motions (5 second, Different
person)………………………………………………………………………….
Distance between square and all motions (5 second, Different
person)………………………………………………………………………….
Distance between triangle and all motions (5 second, Different person).
Distance between flipped triangle and all motions (5 second, Different
person)…………………………………………………………………………
Distance between single circle and all motions (7 second, Different
person)………………………………………………………………………….
Distance between double circle and all motions (7 second, Different
person)………..….……………………………………………………………..
Distance between punch and all motions (7 second, Different person).
Distance between uppercut and all motions (7 second, Different
person)………………………………………………………………………….
Distance between square and all motions (7 second, Different
person)………………………………………………………………………….
Distance between triangle and all motions (7 second, Different person).
Distance between flipped triangle and all motions (7 second, Different
person)…………………………………………………………………………

Page

33
33

33

34
34

34

35

35
35

36

36
36

37

xii

List of Figures

Figure Page
1 Time alignment of two time-dependent sequences Kinect…………….... 5
2 Distance matrix of the sequences and .. 6
3 Valid and invalid warping paths.. 7
4 (a) distance matrix. (b) accumulated distance matrix.............................. 8
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

An algorithm for finding an optimal warping path from an accumulated
distance matrix………………………………………………………………..
All human joints that were tracked by Kinect……………………………...
Kinect coordinate system…………………………………………………….
Create motion 1 (single circle)...
Motion 1 graph result (single circle)…..
Create motion 2 (double circle)…...
Motion 2 graph result (double circle)..
Create motion 3 (punch)...
Motion 3 graph result (punch)..
Create motion 4 (uppercut)...
Motion 4 graph result (uppercut)..
Create motion 5 (square)..
Motion 5 graph result (square)...
Create motion 6 (triangle)...
Motion 6 graph result (triangle)...
Create motion 7 (flipped triangle)...
Motion 7 graph result (flipped triangle)..
Conversion from a position (a vector) to an angle…………………………
A concatenation of multiple joints……………………………………………
A comparison between single circle and single circle.............................
A comparison between single circle and double circle…………………..
A comparison between single circle and punch......................................

9
13
13
14
15
15
16
16
17
17
18
18
19
19
20
20
21
22
23
38
38
38

xiii

Figure
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

A comparison between single circle and uppercut..................................
A comparison between single circle and square.....................................
A comparison between single circle and triangle…………………………
A comparison between single circle and flipped triangle….……………..
A comparison between double circle and single circle…………………..
A comparison between double circle and double circle………………….
A comparison between double circle and punch………………………….
A comparison between double circle and uppercut………………………
A comparison between double circle and square…………………………
A comparison between double circle and triangle………………………..
A comparison between double circle and flipped triangle………………
A comparison between punch and single circle…………………………..
A comparison between punch and double circle………………………….
A comparison between punch and punch………………………………….
A comparison between punch and uppercut………………………………
A comparison between punch and square…………………………………
A comparison between punch and triangle………………………………..
A comparison between punch and flipped triangle………………………
A comparison between uppercut and single circle……………………….
A comparison between uppercut and double circle………………………
A comparison between uppercut and punch………………………………
A comparison between uppercut and uppercut…………………………...
A comparison between uppercut and square……………………………..
A comparison between uppercut and triangle……………………………..
A comparison between uppercut and flipped triangle……………………
A comparison between square and single circle………………………….
A comparison between square and double circle…………………………
A comparison between square and punch…………………………………
A comparison between square and uppercut……………………………..

Page
39
39
39
40
40
40
41
41
41
42
42
42
43
43
43
44
44
44
45
45
45
46
46
46
47
47
47
48
48

xiv

Figure
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

A comparison between square and square………………………………..
A comparison between square and triangle……………………………….
A comparison between square and flipped triangle…………………..….
A comparison between triangle and single circle…………………………
A comparison between triangle and double circle………………………..
A comparison between triangle and punch………………………………..
A comparison between triangle and uppercut…………………………….
A comparison between triangle and square……………………………….
A comparison between triangle and triangle……………………………….
A comparison between triangle and flipped triangle……………………..
A comparison between flipped triangle and single circle………………..
A comparison between flipped triangle and double circle………………
A comparison between flipped triangle and punch………………………
A comparison between flipped triangle and uppercut…………………...
A comparison between flipped triangle and square……………………...
A comparison between flipped triangle and triangle……………………..
A comparison between flipped triangle and flipped triangle………….…

Page
48
49
49
49
50
50
50
51
51
51
52
52
52
53
53
53
54

1

CHAPTER I

Introduction

In the past, human motion analysis was a complicated task because the
input was video images [1,2]. The most difficult part is image processing and feature
extraction from 2D images. Recently, Microsoft has released a gaming device for
XBOX360 namely “Microsoft Kinect,” plus the programming toolkit called “Kinect for
Windows SDK Beta” for developing applications on a PC. Kinect provides real-time
human skeleton tracking with positions of each human joints in 3D [3,4]. The skeleton is
very useful information for human motion analysis. Microsoft Kinect has extremely eased
the programming difficulty and has brought a new era of Natural User Interface (NUI).
Since the release of Kinect, a large number of games and applications have employed
motion detection to interface with users. Although the algorithms are not shown to the
public, we believe that most of them are hard coding, e.g. programmers putting their
knowledge for a particular motion. If users do something beyond what programmers
expect, the program will fail to detect the motion. Moreover, the motion is fixed and
cannot be changed. In contrast, good software should allow users to customize NUI. For
instance, users prefer their own motions rather than what defined by programmers. To
do so, the software must be able to learn motions with users’ assistance (telling the
software the class of motions, e.g. standing, sitting, jumping, etc). Later the software is
able to classify motions when a user repeats. In this paper, we aim to develop a
classifier for human motions. The motion classifier will ease the programming difficulty,
speed up software prototyping, and allow users to customize NUI to their preferences.

1.1 Objectives

 To design a classifier for human motions.

 To learn human motions. More specifically, we want to train the
machine with a set of predefined motions, which are the movement of
joints. After the training process, the machine would have been able
to predict unseen joint movements.

2

 To improve prediction accuracy of the classifier.

 To make the prediction accuracy less dependent on a particular
individual. For instance, the training data and unseen data can be of
any individuals, and can be used interchangeably.

1.2 Scope of the Work

 We focus only on “human” motions.

 The training and testing data are collected using Microsoft Kinect.
The device provides real-time auto-detection of human joints and
their locations in 3D space.

 For device programming, we use Kinect for Windows SDK Beta and
Microsoft .NET Framework.

1.3 Problem Formulation

Our approach for constructing the classifier is based on machine learning. The
learning system consists of three important components: training data, a classifier, and
testing data. We shall formulate each component one by one.

Firstly, the training data is a set of where is a class of

motion and is a trajectory of a joint. The training data is used to train the
classifier to know how to associate between joint trajectories and motion classes. Kinect

can do motion capture of all important human joints. Each joint is located as
in 3D space. We define a number of classes for this study as follows.

 Single circle motion

 Double circle motion

 Punch motion

 Uppercut motion

 Square motion

 Triangle motion

 Flipped triangle motion

3

Secondly, the classifier is a function that takes the trajectory of

 joints and tells the class of motion. If a trajectory is seen in the training data, obviously
we know the class. However, predicting an unseen trajectory is a more complicate task
and requires a computational method. Our first intuition is to find similarity distances

between the unseen trajectory and the trajectories of all motions in . The class
that yield the shortest distance is predicted. In case of multiple joints, we can calculate
the similarity distance of each joint independently and then add them together. An
effective method for calculating the similarity distance of time series data is Dynamic
Time Warping (DTW) [5]. In summary, DTW finds the best alignment between two
sequences. A motion or a trajectory is obviously a time series, and it is needed to be
aligned because the same motion can be done at different pace.

Third, testing data is similar to training data except that testing data is not used
to build a classifier. The purpose of testing data is to evaluate the prediction accuracy of
the classifier.

Finally, the training and testing data are collected using Microsoft Kinect. We
employ the dtw package in R Statistics [6] to perform dynamic time warping.

1.4 Expected Outcomes

 A classifier of human motion.

 Our programming is based on Microsoft .NET and C#.

 A more natural and faster way for programming applications driven
by human motions. Instead of hard coding which is complicated and
time-consuming, we can train any movements.

4

CHAPTER II

Theoretical Background

2.1 Motion Classification

 We perform motion capture using Microsoft Kinect which can track
human skeletons. A skeleton consists of 20 joints, and each joint is in 3D coordinate
system. In machine learning approach, “training data,” which is a set of joint movements
plus their known classes of motions, is given beforehand in order to train the classifier.
On the other hand, “testing data” is a different set of joint movements with unknown
classes of motions. The prediction accuracy of the classifier is evaluated over the testing
data. In our study, there are a total of 7 human motions, which involve only upper-part
joints such as head, shoulder-center, hand-left, wrist-left, hand-right and wrist-right.
Each motion is about 5 seconds in length. The position of each joint is captured every
0.2 second. A position (x,y,z) in 3D coordinate system is viewed as a vector from the
origin point (0,0,0). However, we move the origin point of the vector from (0,0,0) to a
point on the center of shoulders. The joint position (x,y,z) is then converted to an angle

(ѳ) with the reference vector, the vector from the center of shoulders to head. This is to
make the classifier independent of the origin point. A user and a kinect can be of any
places. Moreover, we believe that using an angle instead of a position reduces the
specificity among age and gender. For instance, the training data collected from a
mature man can be used to predict the test data collected from a little girl.

The rest of this chapter gives theoretical background of Dynamic Time
Warping and Microsoft Kinect.

5

2.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is a well-known technique for aligning and
measuring similarity between two sequences [5]. The sequences often vary with time,

for instance, motion or music. The input of DTW is two sequences,

 and as depicted in Figure 1. The

feature space is fixed. In motion classification, the feature space is typically positions

in 3D space. Hence, , for and . A

comparison between two different features, and needs a distance function,

 . In 3D space, the distance function is simply the distance

between two points and as follows.

Calculating the distance of every , one obtains the distance

matrix defined by as depicted in Figure 2.

The objective of DTW is to find an alignment between and that yields the minimal
overall distance. An intuition is to run along the valley (the dark area) in Figure 2.

Figure 1: Time alignment of two sequences. The figure is adapted from [5].

6

Figure 2: Distance matrix of the sequences and . The figure is adapted from [5].

A “warping path” is a sequence with

 for satisfying the following three
conditions.

(1) Boundary condition: = and = .

(2) Monotonicity condition: and

 .

(3) Step size condition: for

A warping path defines an alignment. The element of is aligned

to the element
 of . The boundary condition guarantees that first elements of

is aligned to the first element of , and the last element of is aligned to the last

element of . The monotonicity condition maintains the faithful timing. For example,

aligning to and aligning and are prohibited. Finally, the step size

condition does not allow omitting any elements in and . All elements take their part

7

in the alignment. The total distance of a warping path between and

with respect to the local cost measure is defined as:

Furthermore, an optimal warping path between and is a warping

path that yields the minimal total distance among all possible warping paths.

Some valid and invalid warping paths are shown in Figure 3. Figure 3 (a)
is a valid warping path. It satisfies all the three conditions. Figure 3 (b) is not a warping
path because it violates the boundary condition. Figure 3 (c) violates the monotonicity
condition. Figure 3 (d) violates the step size condition.

(a) (b)

 (c) (d)

Figure 3: Valid and invalid warping paths. The figure is adapted from [5].

8

The algorithm for finding an optimal path runs in using
dynamic programming technique. The first step is to find the total distance of the optimal
warping path by filling a two-dimensional table (a dynamic programming table). The

second step is to trace back the optimal warping path from the table. Let be

the total distance of the optimal warping path between and

 . is defined as:

 .

The term is defined recursively and is perfectly solved by
dynamic programming (DP). DP algorithm constructs an accumulated distance matrix

(or a DP matrix), where is at the lower-left corner and is at the
upper-right corner. The optimal warping path is a path from one corner to another. And

the total distance (accumulated) is at the end of the path. At this step, is
known but the optimal warping path is not known yet. The algorithm for identifying the
warping path is show in Figure 4. The main idea is to walk backward from the upper-
right corner.

(a) (b)
Figure 4: (a) distance matrix. (b) accumulated distance matrix.

The figure is adapted from [5].

9

Input : An accumulated cost matrix

Output : An optimal warping path

Procedure : The optimal path is compute in reserve

order of the indices starting with Suppose has

been computed. In case , one must have and we are
finished. Otherwise,

Figure 5: An algorithm for finding an optimal warping path from an accumulated
distance matrix. The figure is adapted from [5].

2.3 Microsoft Kinect

Microsoft Kinect is toolkit from Microsoft which can run on Windows 7.
Kinect sensor array returns video image, depth image, skeletal tracking and audio data.
From this paper we using skeletal tracking data for calculate the angle between two
joints of human.

Table 1: Playable ranges for Kinect [3].

Sensor Item Playable Range
Color and depth stream
Skeletal tracking

4 to 11.5 feet (1.2 to 3.5 meters)
4 to 11.5 feet (1.2 to 3.5 meters)

Table 2: Kinect specifications [3].

Sensor Item Playable Range
Viewing angle
Mechanized tilt range (vertical)
Frame rate (depth and color stream)
Resolution, depth stream
Resolution, color stream

43° vertical by 57° horizontal field of view
±28°
30 frames per second (FPS)
QVGA (320 × 240)
VGA (640 × 480)

10

Audio format

Audio input characteristics

16-kHz, 16-bit mono pulse code modulation (PCM)
A four-microphone array with 24-bit analog-to-digital
Converter (ADC) and Kinect-resident signal processing
such as echo cancellation and noise suppression

The NUI API provides the means to modify settings for the Kinect sensor
array and it you can access image data from the sensor array. Stream data is delivered
as a succession of still-image frames. At NUI initialization, the application identifies the
steams it plans to use it then opens those streams with additional stream-specific details
including stream resolution, image type and the number of buffers that the runtime
should use to store incoming frames. If the runtime fills all the buffers before the
application retrieves and releases a frame the runtime discards the oldest frame and
reuses that buffer. As a result it is possible for frames to be dropped. An application can
request up to four buffers and two is adequate for most usage scenarios. An application
has access to the following kinds of image data from the sensor array as depth data,
color data and player segmentation data.

For color image data is available at two quality levels in two different
formats :

- Quality level determines how quickly data is transfer from the Kinect
sensor array to the PC.

- The available color formats which the image data that is returned to
application code are RGB or YUV.

- At high quality the color image data is not compressed in the sensor
but it is transmitted to the runtime as original capture by using sensor. Because the data
is not compressed so more data must be transmitted per frame and the maximum frame
rate is no more than 15 FPS.

Color data is available in the following two formats :
- RGB color provides 32-bit, linear X8R8G8B8-formatted color bitmaps in

sRGB color space to work with RGB data. When opens the stream an application should
specify type of image.

11

- YUV color provides 16-bit, gamma-corrected linear UYVY-formatted
color bitmaps, where the gamma correction in YUV space is equivalent to sRGB gamma
in RGB space. Because the YUV stream uses 16 bits per pixel, when you open the
stream this format uses less memory to hold bitmap data and allocates less buffer
memory. To work with YUV data. Application should specify the raw YUV image type
when it opens the stream. YUV data is prefer only at 15 FPS and 640x480 resolution. The
YUV data and RGB data represent the same image because both color formats are
computed from the same camera data.

The depth data stream provides frames in which each pixel indicates the
distance in millimeters to the nearest object at that particular x and y coordinate in the
depth sensor's field of view. The following depth data streams are available:

- Frame size of 640 × 480 pixels
- Frame size of 320 × 240 pixels
- Frame size of 80 × 60 pixels
Applications can process data from a depth stream for support various

features such as identifying objects in background to ignore application play or tracking
human motions. The format of the depth data depends on the application specifies
depth only or depth and player index at NUI initialization as follows:

- For depth only, the low-order 12 bits (bits 0 - 11) of each pixel contain
depth data, and the remaining 4 bits are unused.

- For depth and player index, the low-order 3 bits (bits 0 - 2) of each
pixel contain the player index and the remaining bits contain depth data.

A depth data value of 0 indicates that no depth data is available at that
position because all the objects to close to the camera or too far away from it.

In Player Segmentation Data the Kinect for Windows SDK Beta, the
Kinect system processes sensor data to identify two human figures in front of the sensor
array and then creates the Player Segmentation map. This map is a bitmap in which the
pixel values correspond to the player index of the person in the field of view who is
closest to the camera at that pixel position. Although the player segmentation data is a

12

separate logical stream in practice the depth data and player segmentation data are
merged into a single frame :

- The 13 high-order bits of each pixel represent the distance from the
depth sensor to the closest object, in millimeters.

- The 3 low-order bits of each pixel represent the player index of the
tracked player who is visible at the pixel's x and y coordinates. These bits are treated as
an integer value and are not used as flags in a bit field.

A player index value of zero indicates that no player was found at that
location. Values one and two identify players. Applications commonly use player
segmentation data as a mask to isolate specific users or regions of interest from the raw
color and depth images.

Data collect via Microsoft Kinect the coordinate of joint (x,y,z) between
depth data, skeletal data and colors image data is based on different coordinate
systems. For skeletal data it can return (x,y,z) by converting skeletal coordinate to depth
coordinate which ranges between 0.0 – 1.0. After that this value is converted to 640x480
of color image coordinate. Next, x is divided by 640 and y is divided by 480 where
640x480 is width and height of screen. For z data or depth value, the measurement unit
is millimeters and can be obtained via the method DepthImageSkeletal. The center of
screen is at (0,0) and the normalized data is between –1 and +1. Microsoft Kinect
defines a position with 4D vector as (x,y,z,w). The (x,y,z) is the value of position in
camera space. The z value is the distance between Kinect and human and (w) value
gives the quality level (between 0 and 1) of the position.

13

Figure 6: All human joints that were tracked by Kinect [3].

Figure 6 shows a total of 20 human joints that Kinect sensor can track.

The Kinect coordinate system is shown in Figure 7. We used the Head as the origin
(0,0,0). Then all points obtained from Kinect were converted to a position relative to the
head. Next, each point was equipped with an angle relative to the Shoulder Center.
Finally, we used only the joint angles for motion classification.

Figure 7: Kinect coordinate system [3].

14

CHAPTER III

Materials and Methods

3.1 Training Data and Testing Data

We collect training and testing data from Microsoft Kinect. We define a
total of 7 hand motions.

1) Single circle
2) Double circle
3) Punch
4) Uppercut
5) Square
6) Triangle
7) Flipped triangle
Each motion is collected 3 times for training data, and 1 time for testing

data. All defined motions are illustrated in Figure 8 – 14. The red and blue colors
indicate left and right hands.

1. Single circle is moving left-hand and right-hand for each half circle.

Figure 8: Create motion 1 (single circle).

15

Result graph after collect data of single circle motion.

Figure 9: Motion 1 graph result (single circle).

2. Double circle is moving left-hand for one circle and moving right-
hand for another circle.

Figure 10: Create motion 2 (double circle).

16

Result graph after collect data of double circle motion.

Figure 11: Motion 2 graph result (double circle).

3. Punch is moving left-hand and right-hand punching straight.

Figure 12: Create motion 3 (punch).

17

Result graph after collect data of punch motion.

Figure 13: Motion 3 graph result (punch).

4. Uppercut is moving left-hand and right-hand as uppercut

Figure 14: Create motion 4 (uppercut).

18

Result graph after collect data of uppercut motion.

Figure 15: Motion 4 graph result (uppercut).

5. Square is moving left-hand and right-hand for each half square.

Figure 16: Create motion 5 (square).

19

Result graph after collect data of square motion.

Figure 17: Motion 5 graph result (square).

6. Triangle is moving left-hand and right-hand for each half triangle.

Figure 18: Create motion 6 (triangle).

20

Result graph after collect data of triangle motion.

Figure 19: Motion 6 graph result (triangle).

7. Flipped Triangle is moving left-hand and right-hand for each half
flipped triangle.

Figure 20: Create motion 7 (flipped triangle).

21

Result graph after collect data of flip triangle motion.

Figure 21: Motion 7 graph result (triangle).

22

3.2 Data Preprocessing

Microsoft Kinect can track a human skeleton and provide each joint
position (or a vector) in 3D space. However, before performing DTW we convert every
joint position into an angle as depicted in Figure xx. The origin point (0,0,0) is fixed at
the chest, and the joint is located at position on a hand as vector A. To convert vector A

to an angle (ѳ), we need a reference vector. Vector B acts as the reference vector. It is
fixed as a vector from chest to head. The angle between two vectors is calculated by

where is the dot product of vector A and B. is the length of
vector A [7].

Figure 22: Conversion from a position (a vector) to an angle.

It is important to note that we use multiple joints. All joints are
concatenated to make a single long sequence in one dimension (see Figure 15).

23

Figure 23: A concatenation of multiple joints.

3.3 DTW package in R Statistics

R statistics is a programming environment for statistics. It allows users to
write a package and share among the community. A package can be later added after
the first installation. The dtw package [6] is a package that implements dynamic time
warping. In this thesis, we use the dtw package with R statistics for aligning motions.

3.4 Hardware and Software Settings

Hardware setting is as follows.
- Computer with a dual-core, 2.66-GHz or faster processor.
- 32 bit (x86) or 64 bit (x64) processor.
- Dedicated USB 2.0 bus.

- Windows 7–compatible graphics card that supports
Microsoft DirectX 9.0c capabilities.

- 2 GB of RAM.
- A retail Kinect for Xbox 360 sensor which includes

special USB/power cabling.

Software setting is as follows.
 - Microsoft Windows 7.

- Microsoft Visual Studio 2010 Express.
- Microsoft .NET Framework 4.0.
- For C++ SkeletalViewer samples :

- Microsoft DirectX® SDK - June 2010 or later version

http://www.xbox.com/en-US/Xbox360/Accessories/Kinect/kinectforxbox360
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=3021d52b-514e-41d3-ad02-438a3ba730ba

24

- Runtime for Microsoft DirectX 9
- For Speech sample (x86 only) :

- Microsoft Speech Platform - Server Runtime, version 10.2
- Microsoft Speech Platform - Software Development Kit, version

10.2

25

CHAPTER IV

Experimental Results and Discussion

We used 7 hand motions that are single circle, double circle, punch,
uppercut, square, triangle, and flipped triangle. Each motion took 5 seconds. Kinect
made sampling at every 0.2 seconds. Only four joints, left/right hands and left/right
wrists, were captured and used. The motions of all joints were concatenated to make a
long motion of a single joint in 3D. Note that we used a package in R Statistics to
perform DTW [6]. The distance comparisons are shown in Table 3–30. There were 3 sets
of testing data. The comparisons between testing and training data of the 7 motions,
single circle, double circle, punch, uppercut, square, triangle, flipped triangle, are
shown in Figures 24-30, 31-37, 38-44, 45-51, 52-58, 59-65, 66-72, respectively.
Table 3-9 training data and testing data is same person. Table 10-30 training data and
testing data is different person but speed of motions different by time which Table 10-16
speed of time per motion took 3 seconds (Faster than normal time 40%). Table 17-23
speed of time per motion took 5 seconds (Normal time) and Table 24-30 speed of time
per motion took 7 seconds (Slower than normal time 40%). Our selected 7 motions are
considerably easy. Using only 4 joints are sufficient for perfect classification. If the
motions are more similar and more difficult to classify, we can use more joints to improve
the prediction accuracy. However, this requires more computational time and memory.

The experiment result shortest distance calculated by DTW on Table 3-9
in 7 motion and 3 sets of data which calculate to percentage are follows as

Single circle motion is 100% accuracy.
Double circle motion is 100% accuracy.
Punch motion is 100% accuracy.
Uppercut motion is 100% accuracy.
Square motion is 100% accuracy.
Triangle motion is 100% accuracy.
Flip triangle motion is 100% accuracy.

26

The experiment result shortest distance calculated by DTW on Table 10-
16 in 7 motion and 3 sets (3 seconds) of data which calculate to percentage are follows
as

Single circle motion is 100% accuracy.
Double circle motion is 0% accuracy.
Punch motion is 100% accuracy.
Uppercut motion is 0% accuracy.
Square motion is 0% accuracy.
Triangle motion is 0% accuracy.
Flip triangle motion is 0% accuracy.

The experiment result shortest distance calculated by DTW on Table 17-

23 in 7 motion and 3 sets (5 seconds) of data which calculate to percentage are follows
as

Single circle motion is 33.33% accuracy.
Double circle motion is 0% accuracy.
Punch motion is 100% accuracy.
Uppercut motion is 0% accuracy.
Square motion is 0% accuracy.
Triangle motion is 0% accuracy.
Flip triangle motion is 0% accuracy.

The experiment result shortest distance calculated by DTW on Table 24-

30 in 7 motion and 3 sets (7 seconds) of data which calculate to percentage are follows
as

Single circle motion is 100% accuracy.
Double circle motion is 0% accuracy.
Punch motion is 100% accuracy.
Uppercut motion is 0% accuracy.
Square motion is 0% accuracy.

27

Triangle motion is 0% accuracy.
Flip triangle motion is 66.66% accuracy.

From experiment result found that if training data and testing data is

same person the DTW distance between training data and testing data is 100%
accuracy which mean Microsoft Kinect can classify motion of same person with high
accuracy but in case of training data and testing data is different person the DTW
distance between training data and testing data quite low accuracy for all testing data
as 3 seconds, 5 seconds and 7 seconds. Because of each people when create motion
the angle between shoulder center and hands is not exactly match but that motions
match when training data and testing data is same person. The motion design is one
factor from experiment result we found that we get high accuracy about 100 % if that
motion obvious different when compare all motion as punch motion is exactly different
because this motion we put hand straight in z axis but another motion except uppercut
we create motion in X and Y axis. We use time or speed for testing this effect factor that
mean from experiment result if we took time 3 seconds, 5 seconds and 7 seconds we
get same result which mean if we create motion lower or faster than normal speed time
is not effect. Limitation frame rate of Microsoft kinect is 30 fps. For our experiment result
when we compare testing data and 7 training data it take time 0.06 seconds which
mean it possible to apply it into real-time classification.

28

Table 3: Distance between single circle and all motions (5 second, Same person).
Motion single circle 1 single circle 2 single circle 3

Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

22.82
116.82
573.52
319.03
86.50
94.99
121.23

30.18
130.24
562.97
293.71
121.45
98.12
102.19

37.87
135.19
543.89
294.20
114.02
89.50
102.36

Table 4: Distance between double circle and all motions (5 second, Same person).

Motion double circle 1 double circle 2 double circle 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

139.09
71.38
302.68
303.04
127.81
109.69
111.54

104.70
56.08
340.93
319.28
108.32
96.42
119.73

136.50
58.22
324.28
312.05
133.46
92.98
112.60

Table 5: Distance between punch and all motions (5 second, Same person).

Motion punch 1 punch 2 punch 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

555.28
355.92
23.83
623.85
362.74
405.06
344.75

580.19
355.32
43.58
678.36
352.18
421.38
362.69

638.53
387.23
45.65
687.97
389.30
461.37
405.96

29

Table 6: Distance between uppercut and all motions (5 second, Same person).

Motion uppercut 1 uppercut 2 uppercut 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

266.0061
302.6803
568.2701
40.68694
395.6499
261.2207
289.5794

296.4954
312.4756
583.3942
37.05502
419.1425
273.2485
303.8263

286.1613
305.813

584.8413
39.51109
420.8889
263.5611
296.7424

Table 7: Distance between square and all motions (5 second, Same person).

Motion square 1 square 2 square 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

109.37
106.15
345.80
404.15
41.54
84.99
135.96

106.30
100.27
366.37
354.50
71.26
88.80
89.40

125.38
111.24
300.12
380.46
73.27
101.13
80.45

Table 8: Distance between triangle and all motions(5 second, Same person).

Motion triangle 1 triangle 2 triangle 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

151.22
110.75
420.14
248.39
128.07
53.65
118.12

124.42
99.41
386.48
291.92
92.49
38.28
98.45

118.94
108.48
425.31
282.23
91.78
44.64
149.46

30

Table 9: Distance between flipped triangle and all motions (5 second, Same person).

Motion flipped triangle 1 flipped triangle 2 flipped triangle 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

115.98
119.42
370.51
308.94
141.48
75.80
43.45

97.09
106.09
319.90
308.47
140.18
90.00
64.04

123.43
117.64
327.56
335.41
140.55
78.43
47.21

Table 10: Distance between single circle and all motions (3 second, Different person).

Motion single circle 1 single circle 2 single circle 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

63.1825
140.0015
745.9567
248.6411
131.4654
111.9596
158.5008

75.13378
139.9863
791.2767
214.3431
139.9745
115.839
172.3951

67.68357
142.3737
734.7362
281.1272
133.5479
126.0699
154.793

Table 11: Distance between double circle and all motions (3 second, Different person).

Motion double circle 1 double circle 2 double circle 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

248.4165
179.5142
151.0152
402.2295
203.9557
216.2502
152.4356

334.021
228.0738
120.0236
483.2464
265.6719
297.7666
225.8447

323.4314
216.2465
134.7403
477.0397
235.5938
277.7871
217.7852

31

Table 12: Distance between punch and all motions (3 second, Different person).
Motion punch 1 punch 2 punch 3

Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

785.1262
454.5492
95.02768
811.8651
487.5224
574.7097
529.2443

823.2079
472.9718
119.5035
869.4484
500.8535
633.5628
582.9009

847.123
488.5364
139.5025
876.0832
518.8458
632.2691
586.9631

Table 13: Distance between uppercut and all motions (3 second, Different person).

Motion uppercut 1 uppercut 2 uppercut 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

289.2356
215.8495
220.5469
304.3604
275.8475
244.8642
198.365

273.5448
209.2324
250.1815
285.373
291.2188
228.8085
187.6609

306.8781
223.5388
253.1822
312.6031
316.0315
255.7556
219.6698

Table 14: Distance between square and all motions (3 second, Different person).

Motion square 1 square 2 square 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

231.2428
191.9223
284.118
451.5207
182.5274
197.744
153.9399

260.0015
202.351
253.5995
453.9365
233.5424
233.0654
160.7385

243.8976
197.7768
174.7768
456.4066
124.1732
196.2378
159.8817

32

Table 15: Distance between triangle and all motions (3 second, Different person).
Motion triangle 1 triangle 2 triangle 3

Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

288.7202
200.3394
184.2592
434.0935
291.8818
260.2956
182.4728

301.1303
225.8955
169.3781
440.6879
283.1006
282.127
209.8127

353.8113
240.0221
137.1649
484.315

307.2816
314.8955
235.6846

Table 16: Distance between flipped triangle and all motions (3 second,Different person).

Motion flipped triangle 1 flipped triangle 2 flipped triangle 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

284.5206
236.4622
179.1788
469.9093
233.9833
283.5484
205.5611

278.0881
229.9971
150.3732
432.6101
236.5244
259.9949
193.1131

310.0206
246.7782
120.0563
455.5352
234.2143
269.462
193.0224

Table 17: Distance between single circle and all motions (5 second, Different person).

Motion single circle 1 single circle 2 single circle 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

169.1236
157.2792
676.6313
263.5549
170.0367
96.11312
270.6557

903.907
926.8332
1299.028
1138.58
894.2409
896.1153
986.6927

53.88558
100.3823
496.5608
319.5181
77.75343
69.1365

138.1054

33

Table 18: Distance between double circle and all motions (5 second, Different person).
Motion double circle 1 double circle 2 double circle 3

Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

306.0835
219.807
116.2359
466.5351
240.9471
264.3847
208.9145

349.0278
263.9433
108.1635
505.3315
286.6839
308.2048
236.9135

360.6802
249.7921
122.953

523.2142
282.8699
316.6774
241.2958

Table 19: Distance between punch and all motions (5 second, Different person).

Motion punch 1 punch 2 punch 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

851.4593
489.7886
138.0491
903.0177
513.6176
673.6393
620.0974

830.7391
467.2804
123.6916
860.9201
496.6002
612.4233
565.9371

859.2242
501.1594
144.8386
909.1013
515.6709
653.6568
605.3423

Table 20: Distance between uppercut and all motions (5 second, Different person).

Motion uppercut 1 uppercut 2 uppercut 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

297.157
214.8032
199.1294
283.7839
321.6662
238.1901
195.2346

258.9866
200.0155
339.4111
254.605
311.5313
224.7579
195.6021

272.9775
208.4254
284.4967
293.7186
304.5667
238.5452
193.9958

34

 Table 21: Distance between square and all motions. (5 second, Different person).
Motion square 1 square 2 square 3

Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

382.6946
300.2474
121.1579
490.549
316.5989
341.6381
263.7201

304.2229
222.402
142.8985
453.6267
228.8385
250.358
183.8246

378.1139
251.1924
159.7363
506.3023
263.9968
316.1246
240.9267

Table 22: Distance between triangle and all motions (5 second, Different person).

Motion triangle 1 triangle 2 triangle 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

320.4693
234.3002
155.2944
464.8914
291.2587
301.2768
215.0526

341.7221
235.0024
146.776
487.0837
284.1939
297.7861
219.1752

347.0053
270.9202
164.1104
508.8997
283.6165
332.1153
238.8787

Table 23: Distance between flipped triangle and all motions (5 second,Different person).

Motion flipped triangle 1 flipped triangle 2 flipped triangle 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

211.2922
191.1605
141.5053
416.905
146.122
190.2172
146.2745

296.2642
220.9871
129.7746
440.0948
252.658
270.5448
186.2351

279.6044
217.7545

141.96
439.2592
228.0351
255.5935
197.3934

35

Table 24: Distance between single circle and all motions (7 second, Different person).
Motion single circle 1 single circle 2 single circle 3

Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

59.55835
98.56117
483.6165
340.5708
58.77436
69.47353
136.7533

46.7201
101.6987
657.5064
288.4517
83.76494
79.1794
138.5899

81.12584
102.1031
551.0083
340.3048
79.27671
75.48375
179.376

Table 25: Distance between double circle and all motions (7 second, Different person).

Motion double circle 1 double circle 2 double circle 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

297.7628
215.3364
151.8136
458.4818
253.0231
271.0121
203.5128

436.7178
283.6532
84.81741
572.5638
330.8115
370.3806
287.1103

336.2677
244.4594
121.1409
495.2736
269.9887
303.3176
234.4536

Table 26: Distance between punch and all motions (7 second, Different person).

Motion punch 1 punch 2 punch 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

853.73
492.7633
146.351
876.2061
497.9242
617.9837
572.1037

876.9166
500.2369
155.5381
908.0451
522.7735
653.327
606.5702

848.4991
500.0021
135.5828
901.2269
513.7667
659.2124
609.9361

36

Table 27: Distance between uppercut and all motions (7 second, Different person).
Motion uppercut 1 uppercut 2 uppercut 3

Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

267.4166
200.3257
281.0305
283.2797

306.27
233.1715
192.8761

294.6803
214.269
272.0014
283.1637
304.1844
238.3669
212.3197

309.2231
215.6425
233.2621
291.9469
326.2344
248.9966
214.9102

Table 28: Distance between square and all motions (7 second, Different person).

Motion square 1 square 2 square 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

305.2549
246.3002
142.1824
432.8953
308.0164
283.5769
202.8793

310.3512
250.7748
155.2368
462.5397
292.13

285.708
198.2111

364.2004
274.1393
102.0627
499.7441
316.0406
321.7515
238.2851

Table 29: Distance between triangle and all motions (7 second).

Motion triangle 1 triangle 2 triangle 3
Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

290.3961
215.1986
178.7141
433.2571
282.0362
268.3537
175.258

326.7297
229.5293
149.7618
463.9497
276.6556
290.9938
193.8265

266.7305
216.9718
176.6703
428.1234
268.4405
275.8978
180.4297

37

Table 30: Distance between flipped triangle and all motions (7 second,Different person).
Motion flipped triangle 1 flipped triangle 2 flipped triangle 3

Single circle
Double circle

Punch
Uppercut
Square
Triangle

Flipped Triangle

247.5173
224.3576
172.0207
418.7265
186.7701
230.5567
158.8975

140.6126
155.3427
156.7648
367.5061
86.22161
133.9988
130.8868

210.6067
189.808

194.6483
416.4825
140.5593
185.8134
129.9134

38

Figure 24: A comparison between single circle and single circle.

Figure 25: A comparison between single circle and double circle.

Figure 26: A comparison between single circle and punch.

39

Figure 27: A comparison between single circle and uppercut.

Figure 28: A comparison between single circle and square.

Figure 29: A comparison between single circle and triangle.

40

Figure 30: A comparison between single circle and flipped triangle.

Figure 31: A comparison between double circle and single circle.

Figure 32: A comparison between double circle and double circle.

41

Figure 33: A comparison between double circle and punch.

Figure 34: A comparison between double circle and uppercut.

Figure 35: A comparison between double circle and square.

42

Figure 36: A comparison between double circle and triangle.

Figure 37: A comparison between double circle and flipped triangle.

Figure 38: A comparison between punch and single circle.

43

Figure 39: A comparison between punch and double circle.

Figure 40: A comparison between punch and punch.

Figure 41: A comparison between punch and uppercut.

44

Figure 42: A comparison between punch and square.

Figure 43: A comparison between punch and triangle.

Figure 44: A comparison between punch and flipped triangle.

45

Figure 45: A comparison between uppercut and single circle.

Figure 46: A comparison between uppercut and double circle.

Figure 47: A comparison between uppercut and punch.

46

Figure 48: A comparison between uppercut and uppercut.

Figure 49: A comparison between uppercut and square.

Figure 50: A comparison between uppercut and triangle.

47

Figure 51: A comparison between uppercut and flipped triangle.

Figure 52: A comparison between square and single circle.

Figure 53: A comparison between square and double circle.

48

Figure 54: A comparison between square and punch.

Figure 55: A comparison between square and uppercut.

Figure 56: A comparison between square and square.

49

Figure 57: A comparison between square and triangle.

Figure 58: A comparison between square and flipped triangle.

Figure 58: A comparison between triangle and single circle.

50

Figure 60: A comparison between triangle and double circle.

Figure 61: A comparison between triangle and punch.

Figure 62: A comparison between triangle and uppercut.

51

Figure 63: A comparison between triangle and square.

Figure 64: A comparison between triangle and triangle.

Figure 65: A comparison between triangle and flipped triangle.

52

Figure 66: A comparison between flipped triangle and single circle.

Figure 67: A comparison between flipped triangle and double circle.

Figure 68: A comparison between flipped triangle and punch.

53

Figure 69: A comparison between flipped triangle and uppercut.

Figure 70: A comparison between flipped triangle and square.

Figure 71: A comparison between flipped triangle and triangle.

54

Figure 72: A comparison between flipped triangle and flipped triangle.

55

CHAPTER V

Conclusion

We have shown an easy but efficient method for motion classification.
Microsoft Kinect gives joint positions in 3D which are precise enough for performing
DTW. The experimental results show that the classification among the 7 motions is 100%
accurate in 3 test sets that training data and testing data is same person but if we use
different person we get lower accuracy also. For trajectory of dynamic time warping
graph between training data and testing data from experimental we found that if training
data and testing data is same motion the dynamic time warping trajectory graph quite
close when compare it with different training data and testing data and dynamic time
warping distance value is shortest too. For all joints which Microsoft Kinect sensor can
tracking if we using more joints in experimental part to calculate the result get efficiency
more too but some joints is not good for calculating when we using the angle value
which using shoulder center joint for reference such as if we using shoulder left and
shoulder right the angle value between this two joints with shoulder center joint the angle
value quite not change so angle method work with joints that it free move.

My paper public in the 6th International Conference on Computer
Sciences and Convergence Information Technology (ICCIT) at Jeju island, Korea (2012).

56

 References

[1] L. Wang, L. Cheng, G. Zhao, Machine Learning for Human Motion
 Analysis Theory and Practice. 1st Edition : Medical Information Science

Reference, 2009.
[2] L. Wang, L. Cheng, G. Zhao, M. Pietikainen,

 Machine Learning for Vision-based Motion Analysis. 1st Edition : Springer,
 2010.

[3] Kinect for Windows SDK Beta Programming Guide. Beta 1 Draft Version
 1.0a – June 24, 2011.

[4] Kinect for Windows SDK Beta, Skeletal Viewer Walkthrough : C++ and C#.
 Beta 1 Draft Version 1.0a – June 24, 2011.

[5] M. Müller, Information Retrieval for Music and Motion. Springer (2007).
[6] T. Giorgino, Computing and Visualizing Dynamic Time Warping Alignments
 in R: The dtw Package. Journal of Statistical Software. 31 : (2009) : 1-24.
[7] M. Corral, Vector Calculus. Schoolcraft College, 16, 2008.

57

Biography

 Mr. Chitphon Waithayanon was born in 1986. He graduate from Kasetsart
University which major is Computer Science in 2008.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I ntroduction
	1.1 Objectives
	1.2 Scope of the Work
	1.3 Problem Formulation
	1.4 Expected Outcomes

	Chapter II Theoretical Background
	2.1 Motion Classification
	2.2 Dynamic Time Warping
	2.3 Microsoft Kinect

	Chapter III Materials and Methods
	3.1 Training Data and Testing Data
	3.2 Data Preprocessing
	3.3 DTW package in R Statistics
	3.4 Hardware and Software Settings

	Chapter IV Experimental Results and Discussion
	Chapter V Conclusion
	References
	Vita

