ABneasaseullsunsulaeudnninidegihils

'
=

WNLDFTTE INARAIAR

'3'vmﬁﬁwuﬁiﬂumwﬁwmm?ﬁﬂmmwﬁn@;mﬂ?tyﬂ&lﬁwmmmmumﬁmﬁm
AT IINEINTAUY NAIEIALIAAART
AMEZANEAART ANIRINTINMIANENAE
Tnsdnen 2544
ISBN 974-17-0279-5

&

AUANTUBIPIRINTUN TN LT

4

i
G
e
NS
=

A FORMAL APPROACH TO PROGRAM VERIFICATION

Mr.Chatchai Koetsawat

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Computational Science
Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic Year 2001

ISBN §74-17-0279-5

Thesis Title A FORMAL APPROACH TO PROGRAM VERIFICATION

By Mr. Chatchai Koetsawat
Field of Study Computational Science
Thesis Advisor : Assistant Professor Peraphon Sophatsathit, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partiai

Fulfiflment of the Requirements for the Master 's Degree

............... b cpe F A St '; ... Deputy Dean for Administrative Affairs

{Associate Professor Pipat Karntiang, Ph.D.)Acting Dean, Faculty of Science

THESIS COMMITTEE

{Professor Chidchanok Lursinsap, Ph.D.)

[y

Member

(Assistant Professor Patanee Uddmkavamch, Ph.D.)

'8
a

dnsde inadan onnsmesadevulusunsulaeudnniadegdy (A FORMAL

APPROACH TO PROGRAM VERIFICATION). @. Wifinwn @ gaquenassiansy

A7 Nernus TANARTRY 19 w1, ISBN 974-17-0279-5.

| v
ool =4 1 as

TunszuaumandngenwaiiiaNTeteatu nsnsssauANgnseseiiunsnd

o ' dl ey d[@ Yar o o Y ! Qz:(:ﬂ(o ar :’/ 4
AMHNATIAELNIN sﬁﬂ'ﬁﬁﬂ’ﬁ'mi"ﬁ@@ﬁﬂlﬁug@ﬂﬂu@llﬂLLﬂ Aantauelag Hoare uwazudsantiuls
t ¥ .
a ar A ey

Hinedamaniuaz IUsunsumefauannInTienAtNuguaINdan1seed Hoare lun19651438
3 £ aoas QE/ tzgvf &) :
n1smsaagay e aNnUI e TUTAaE
Tuauddetuiliineuaianisnsasauraugnaesresiusunsy tae'ld Hoare triple
uaz Rule of Inference \luugulunisa¥rdanisasaseupugnsiesradilsunsy iesnn

An9tszenAnismevadaLULLL Black-Box WAz White-Box aeineiszunuuuan 31l lunszuou

=%y
N17UAIE
a LY 'd A A an _,___: B = . (‘T - <
AN AMAAYARNS NBURNRAURR. . .75 8 L. PR
. iy e Dok ol o
AL INFINITAUUN @ﬂﬂm’ﬂ‘ﬁ@@ﬂﬁﬂiﬂmlﬁ‘ﬂm....-’a.»:.’f“:'..“...;."..:}.'.‘...', ARl

. / e

SnsAnen 2544

4272242723 : MAJOR COMPUTATIONAL SCIENCE
KEY WORD: PROGRAM CORRECTNESS PROVE / HOARE TRIPLE / RULE OF INFERENCE / PROGRAM
VERIFICATION

CHATCHAI KOETSAWAT : A FORMAL APPROACH TO PROGRAM VERIEICATION.
THESIS ADVISOR : ASSIST. PROF. PERAPHON ~SOPHATSATHIT, Ph.D., 19 pp.
ISBN 974-17-0279-5.

Program verification has played an important role in today's production of reliable
software[3]. The most popular method of verification is given by Hoare. O'the.r mathematicians
and programmers also offered their method based on Hoare's principles. This thésis proposes
a different approach to program verification using Hoare notation.

in this thesis, we introduced a new method based on Hoare triple and some inference
rules as a tool for program correctness proof. The proposed approach adop_ted conventional

black-box and white-box tests [6] to carried out a systematic and rigorous program verification.

e
L i —

Department Mathematics

Field of study Computational Science.

Academic year 2007

Acknowledgments .

I am greatly indebted to Assistant Professor Dr.Peraphon Sophatsathit, my thesis
advisor, for his untiring insight and helpful advice in preparing and writing this thesis.

Furthermore, | would like to thank all my instructors for their invaluable lecture and
instructions.

| would like to express my sincere gratitude to my parents for their love, hearty
encouragement and unselfish sacrifices during my study.

' would like to thank my uncle, Chaiwat, and his wife for their kindness and support,

to Panat, my best friend, for his heip, and to Jarunee for her love and care.

CONTENTS

ABSTRACT IN THAL . oo oo, v
ABSTRACT IN ENGLISH. ...t v
ACKNOWLEDGMENTS. ...ttt ettt vi
CHAPTER 1 INTRODUCTION. -1+ oo 1
CHAPTER 2 BASIC KNOWLEDGE. ...+ttt eeeeeeese et eee e 2
CHAPTER 3 PROGRAM CORRECTNESS PROOFS. ... vveovvivereereeeereee. .5
CHAPTER 4 APPLICATION OF THE ALGORITHM. ..o v v ot oeeeeier e 15
CHAPTER 5 CONCLUSION AND FUTURE WORK.........cuoivieerrs e 17
REFERENCES.ivevoveeeeeseeereers S eaeh U N . USROS 18
BIOGRAPHY ..o v ongfliea e Bt L o e eeeer e 19

CHAPTER 1

INTRODUCTION

A common task in program verification is to show that, for a given program code S, if
a certain precondition {P} is true before the execution of § then a certain
postcondition {Q} is true after execution, provided that § terminates. Hoare
established the notation {P}S{Q} for this logical proposition, called Hoare triple.

In this thesis we will present a formal method for program verification that
uses Hoare propositions as the basic for our approach. Chapter 2 introduces
definitions of important terms logically imply, rules of inference, predicates, program
segments, and some basic mathematical theorems to be used in proving program
correctness. Chapter 3 explains basic rules of inference to deal with each type of
executable statements, namely, Assignment Rule, Concatenation Rule, Rule for
Conditions, and While Rule. Then we developed an algorithm for proving program
correctness based on all the above building blocks. Chapter 4 illustrates some
examples on how the proposed approach works, and Chapter 5 concludes the research
with a few final notes for future work.

CHAPTER 2

BASIC KNOWLEDGE

In this chapter, we introduce some basic mathematical theorems to be used in proving
program correctness. The following definitions establish the fundamental of predicate
calculus used in our theorems.

Definition 2.1 [5] For sets 4 and B, a function f from A4 to B is a unique assignment
of an element of B for each element g of 4. We write f: 4 - B to make explicit the
role of the sets 4 and B. The set 4 is called the domain of f, and B the codomain of
/- Wewrite b = f{a) to indicate that an element a of A is assigned by f to the
element & of B. When b = f{a), a is the input and b is the output for this input. The
element b is also called the image of a. The set of outputs of fis called the range of /-

This definition is a “machine” or “formula” point of view. A function may be
regarded as a kind of machine which takes the elements of the domain X, processes
them, and for each element of the domain produces exactly one element of the range.

Definition 2.2 [5] We say that the statements P,,7P,,....P, logically imply the

< pn

statement P, provided that P is true whenever P, P,,...,P, are all true. In this case,

we say that P is a valid conclusion from the hypotheses P,,P,,...,P,, denoted by
PryPagis By = P

Theorem 2.3 [5] Statements .Pl,Pz,...,P logically imply P if and only if -

n

P AP, A AP, 1satautology.

Definition 2.4 [5] A rule of inference is a way of proceeding from several
statements, P, P,,...,P, , to another statement P. It is required that these statements

P, logically imply P. We write 212205

Definition 2.5 [5] Let h,,h,,..,h, be statements (the hypotheses or premises), and
let P be a statement (the conclusion), we say that P is a consequence of the #,, or
that P may be deduced from £, , provided that there is a sequence of statements
A4,,4,,...,4, with the following properties:
1. The final statement 4, is the conclusion of P.
2. Each statement 4 ; must either
a. be one of the hypothesis #;, or
b. be a tautology, or
c. follow from some previous statements by a valid rule of inference.

The sequence 4,,4,,...,4 is called a deduction.

n

Theorem 2.6 [5] Suppose it is possible to deduce P from the hypotheses P, P, ,..., P, ,
then P, P,,..., P, logically imply P.

Definition 2.7 [5] Predicates are expressions involving variables in the universe.

Predicates take the place of the variable statements involving p, g, 7, s,...
of the propositional calculus. They, too, can take on the two values 7 and F', but
these values depend on the values of the variables that are substituted in for the
variables appearing in the predicate.

Definition 2.8 We call every statement or every group of statements that affects the
state a program segment.

Definition 2.9 A program segment expresses a partial function in the sense that for
each initial statement there is at most one final state.

We use these definitions as the fundamental building blocks to prove program
correctness. We will give the definition of concatenation, composition function,
define a notation, A(x), that represents the image of 4 at x, and show how the theorem
relates the correspondence between a computer program and these definitions.

Definition 2.10 [4] If there are two program segments 4 and B that are executed in
sequence, one typically writes 4;B , and the result is called the concatenation of 4
and B.

Definition 2.11 The final state of a code segment A4 corresponding to the initial state
x 1s the image of 4 at x, denoted by A{x).

Theorem 2.12 Concatenation is function composition.
Proof Let x be the initial state of A, B, that is, the state before 4 is executed.
By definition, the state after 4 is executed is A(x), and this is the state before B
is executed.
Since B(y) is the final state of B, given an initial state y, and since y = A(x),
this means that the final state of 4;B is B(A(x)).
- Consequently, 4;B=Bo 4. a

Remark The final state of A, B can also be written as (4,8)(x).

Theorem 7.13 A computer program is the composition function.
Proof Let 4,,4,,...,4, be n segments in a program.

First, we concatenate 4, and 4,, forming 4;4,.

Since 4,;A4, is also a program segment, we concatenate (4,;4,) and 4,
forming (4,;4,);4; and repeatedly concatenate until 'An. Thus we have
(A5 4,)3 43)5-)3 4, -

Since (((4;;4,);43)5...)0; 4, =A, 04, 10..04

This shows that a computer program is the composition function. O

Definition 2.14 [6] Black-box test is used to demonstrate that program code is
operational, that input is properly accepted and output is correctly produced and that
the integrity of external information is maintained.

Definition 2.15 [6] White-box test is predicated on close examination of procedural
detail.

Black-box test considers only input and output of the program code, whereas
white-box test, sometime called glass-box test, considers every statement in the
program code. :

CHAPTER 3

PROGRAM CORRECNESS PROOFS

The fundamental principles to correctness proof are preconditions and post-
conditions. In Chapter 2, we established definition 2.8 for the states that constitute a
program segment. To show how different program segments work correctly, one
must associate preconditions and postconditions with each program segment. In fact,
when the program is executed, the postconditions of each program segment imply the
preconditions of the next segment.. Consequently, one needs a rule of inference to
deal with each type of executable statement in program correctness proof. _

The tools required for this work are Assignment Rule, Concatenation Rule,
Rule for Conditions, and While Rule. We will explain how these rules make up a
formal method for program verification.

We will first present some basic program assertions needed for correctness
proof. '

Definition 3.1 [4] If x is a state and g(x) is either true or false, then g is called an
assertion. An assertion concerning the initial state of a program segment is called a
precondition, and an assertion regarding the final state of a program segment is

called a postcondition. We denoted {g} as an assertion g.

Definition 3.2 [1] A program segment is said to be partially correct with respect to
the precondition {P} and the postcondition {Q} if the final state of the computer

program always satisfies {Q}, provided that the computer program starts in {P} and
that it terminates.

Definition 3.3 [1] A computer program is said to be totally correct if for each state
satisfying {P} the computer program terminates with a final state satisfying {Q}

Definition 3.4 [4] If § is a program segment, {P} is the precondition of § and {Q}

is the postcondition of S, we write {P}S{Q}. The triple {P}S{Q} is called a Hoare
triple.

We introduce the empty assertion {}, which can be read as “true for all
‘possible states.”

Definition 3.5 {P}S{Q} is said to be partiaily correct is the final state of § satisfies
{Q} , provided that the initial state satisfies {P} If {P}S {Q} is partially correct and
S terminates, then {P}S{Q} is said to be totally correct. |

Consider now the correctness of a single statement, in many cases, the
postcondition for a given precondition follows immediately from the definition of the
statement in question. For instance, it is clear that { jx:=3{x=3} is correct, the

statement x =3 is exactly the statement that demands the postcondition x =3 to be
satisfied.

We will show the rules of inference which appeared in [1, 2, 4] and prove
them. We use these rules to set up a formal method for program verification. First,
we deal with precondition strengthening and postcondition weakening. We will
discuss the rules that can strengthen or weaken preconditions and postconditions
simultaneously. The following definitions explain what is meant by strengthening
and weakening assertions.

Definition 3.6 [4] If R and § are two assertions, then R is said to be stronger than § if
R = §. If R is stronger than §, then S is said to be weaker than R. '

If a program segment is correct under precondition {P}, then it remains

correct if {P} is strengthened. For instance, if a code is correct for precondition

i >0, it remains correct for precondition i > 1, which is stronger. This leads to the
following rules:

Theorem 3.7 [4] (Precondition Strengthening) Suppose that {P}S{Q} is correct

and P, = P has been proved, one is allowed to conclude that {P,}S{Q} is correct.
This leads to the following rule of inference:

=P

Proof If P, = P is true, then every state for which A is true also satisfies P.

If each initial state that satisfies P leads to a final state that satisfies (0, then
each state in which P, holds leads to a final state in which @ is true. This means that
{P1S{0!} holds. aQ

Example 3.8 Using the Hoare triple {z’ < 4}1‘ =i+ l{i < 5} to prove that
fi<3li=i+1{i<5}

Solution Clearly, (i <3)=> (i <4) is true.
Then we use the pattern given in above theorem
(i <3)=(i<4)
i <4fi=i+1{i <5}

i<3}i=i+r1{i<5}

Note: i<3,i<4,and i:=i+1 match A, P, and §, respectively. 2

Theorem 3.9 [4] (Postcondition Weakening) The principle of postcondition

weakening allows one to conclude that {P}S{Q,} once {P}S{0} and 0= Q, are
established. Formally, this can be expressed as follows:

Proof According to the definition, {P}S{O} means that the final state of S satisfies
@, provided that the 1initial state satisfies P. -

If, in addition to this, Q = Q,, then the final state must also satisfy Q;, which
translates into {P}S{Q,}. u

Example 3.10 Using Hoare triple { }max 1= b{max = 5}9 prove that
{ }max = b{max > b}

Solution Clearly, max =5 = max > b is true.
According to the principle of postcondition weakening, one finds

{ }max = b{max = b}
(max = b)=> (max > b)

{ }max := b{max > b}

Next, we will discuss 4 rules (Assignment Rule, Concatenation Rule, Rule for
Conditions with Else Clause, and While Rule) that will be used to prove program
correctness. '

We will start with Assignment Rule. Given the definition of an assignment
statement, we wiil set up the assignment rule as follows:

Definition 3.11 [4] Assignment statements are statements of the form V =F,
where V' is a variable and E is an expression. Here “:="" is the assignment operator.

We call V' the left hand side and E the right hand side of an assignment.
The effect of the assignment operator is that the right hand side is evaluated using the
initial values of the variables. The result is assigned to the left hand side to obtain the

final state. If £ is the value of the right hand side evaluated based on the initial state,
then, by definition, the postcondition of the assignment statement ¥ = £ becomes

{W=Ey=E,} | *)

This assumes that £ can be evaluated for all possible states.

Theorem 3.12 [4] (Assignment Rule) Let E be an expression and V' be an
unsubscripted variable. If C is a statement of the form V := E with postcondition

{Q}, then the precondition of C can be found by replacing all instances of ¥V in O

by £. If Q'E/ is the expression thus obtained, one has the following:

oL = Elo)

Proof Suppose that the postconditionof V' = E is Q.
Because of (*), one can add the term V = E, to the postcondition, which

yields the new postcondition {Q/\ (V =k, \“}. Since V and E_ are equal, one can
- substitute for the other yielding

oAl =E,)=0; AV =E,)

an does not contain ¥ because all instances of ¥ have been substituted by £, .
The assignment does not change any variable except 7 . Consequently, all variables
of QEVa refer to the initial state, so an can be converted to precondition. Once this is

done, the subscript &« may be dropped. This completes the proof. a

Example 3.13 Consider the statement j:=i+1. Suppose that the postcondition of
this statement is j > 0, find the precondition.

Solution According to the assignment rule, we will replace ; in the postcondition
{j >0} by i+1, which yields P as i +1> 0.

We have {i+1>0} j .= i+1 {{>0}.

So the preconditionis i+1>0. i

Some arithmetic operations are undefined for some states. For example, if £

) . 1. . ..
iS an expression, E is undefined if £ evaluates to zero. In such case, the condition

that makes the evaluation of E possible must be added to the precondition.

Example 3.1¢ Fiad the precondition of the statement x:=—, given that the
x

postcondition is x > 0.

Solution By the assignment rule, we have 1 >0 .
X

And because of division by zero is not define, we have x # 0.
Together, these two conditions imply that x > 0, that is,

fr> 0be = L{r >0} a

X

We will construct a Concatenation Rule based on definition 2.10 as follows:

Theorem 3.15 [2] (Concatenation Rule) Let C, and C, be two program segments
and C;C, be their concatenation. If {P}C1 {R} and {R}C,{0} are correct, we
conclude that {P}C G, {Q} Hence,

Proof From definition 2.10, concatenation means that the program segments are
executed in sequence such that the final state of C, becomes the initial state of C,,
and assertion R that holds for the final state of C, must be true for the initial state of
C,.

And because of {P}Cl iR} and {’R}C2 {Q} are both correct, one is allowed to
conclude that {P}C,;C,{0}. This completes the proof of the concatenation rule. U

Example 3.16 Prove that the following code 1s correct.

{}c:=a+b;c;:_Jc:a+b!

C
2| 2f

Solution We start with assignment rule, the postcondition of the second statement is

g [a+b) . r c a+b) : :
given as {c = 5 ¢ » S0 we can derive its precondition to P = Tf which will be
J e
the postcondition of the first statement.
To find the precondition of the first statement, we use the assignment rule to

{
0btain{a+b:a+blf.
L 2 2

This reduces to an empty assertion. So, we can conclude that

10

The Concatenation Rule can be generalized as follows:

Theorem 3.17 [2] (Modified Concatenation Rule) Let C, and C, be two program
segments and C,;C, be their concatenation. If {P}C,{R} and {sic, {0} are correct,
and if R = 5, we conclude that {P}C1 ;C, {Q} Hence,

{Pic.{r}
{sic,{o}
R=3S5

Proof Refer to theorem 3.7, {R}C, {0} can be obtained from {S}C, {0}

And from theorem 3.15, we can conclude that {P}C,;C, {Q}
This completes the proof of modified concatenation rule. O

We can use Concatenation Rule and Modified Concatenation Rule for more
than two program segments. This is shown in the example below.

Example 3.18 Given three program segments:

s=1
S=8+r;
S=8+rxr

2

St immst

Find their precondition, if the postcondition is {s =1+r4r

Solution We start with the last statement, its postconditon is {s =1l+r+ rz} . By

assignment rule, we can find the precondition is §\s+r2 =l+r+r2}, one can

simplify this expression to {s=1+r} and this will be the postcondition of the
previous statement.

According to the assignment rule, we can find the precondition of second
statement is {s+7=1+r} or {s=1} and this will be the postcondition of the first
statement.

And by assignment statement, the precondition of first statement is {1 = 1} or

{ } and this is the precondition of the compound statement. Heuce,

{}s:=1;s:zs+r;s::s+rxr{s=E+r+r2}]

Any assertion that is at the same time a precondition and a postcondition of a
program segment is called an invariant. This will be further discussed when we
analyze loops.

11

Now we will consider if — statement. If C| and C, are two program segments
and if B is some condition, then the statement

if BthenC, else C,

1s executed as follows: if B i1s true, C; is executed and if B is false, C, is executed.
We will derive a rule to prove that an if — statement with precondition {P} and
postcondition {Q} is correct.

Theorem 3.19 [2] (Rule for Conditions) If C, and C, are two program segment
and if B is a logical expression, then one has

P A BICI{O)
P A=BIC, {0}

{P}if Bthen C, else C, {O}
8 1 2

Proof If the initial state satisfies B in addition to {P}, then C, is executed and the
proof amounts to a demonstration that {P A B}C,{0} is correct.

Similarly, if the initial state satisfies =B, then C, is executed and this implies
that {P A —BJC, {Q} is correct.

We conclude that {P} if BthenC, else C, {Q} is correct. d

Example 3.20 Prove that { }if a>bthenm=aelse m:=b{{m=>a)r(m>b)} is
correct.

Solution According to the Rule for Conditions, we must prove that

; {a>bm=a{m=a)r(m=>0b)
{~(a>b)m=b{m=a)r(m>b)}

We will prove the first statement. By the Assignment Rule, we will replace m
in the postcondition by a, so we have the precondition {(a > a)a(a>5)} or {a > 5;.
Since a > b implies a > b, by precondition strengthening
{a > bym = a{(m > a)(m>Db)

is correct.

Similarly, we can prove that {—~(a > blm = b{(m>a)a(m> b)} is correct.

12

Hence,

{a>bm=alm=>a)r(m> b)}
{ﬂ(a > b)}m = b{(m > a)/\ (m > b)}

)
{ Vif a>bthenm:=aelsem:=b{m>a)r(m=>b)}
In [1], While Rule is stated as follows:
P=1
{I AB}S{I}
(Ir-B)=Q (%)

{P} while B do § {0}

. Here, I denotes the invariant assertion. The condition P = [/ states that the
invariant / is true when we enter the loop and the condition {7 A B}S{I} conveys that
if I is true before executing the loop body S, and if the execution of S terminates, /
will be true afterwards. Then the condition {(/ A—B)=> O ensures that if control ever
exits from the loop, then O will be true. '

We did not use this rule in our method because this rule adheres to
conventional restrictive while construct. Our approach to the While Rule is to
examine a while loop as a concatenation of sequential statements executing a pre-

defined number of repetitions. As a consequence, loop correctness proof can be
carried out in similar manner as the previous proofs, '

Theorem 3.21 For any positive integer n, an » times while loop is equivalent to a
sequential program that is set up by concatenating statements sequentially » times.

Proof Consider Hoare triple:
{P} while B do S {0}

From (**), we have the condition P = I, {I A B}S{I}, and (I A=B)= Q.

Let S, be a statement inside the loop executing i times.

The first time the loop is executed, we have {/ A B}S, {I}.

Since B 1s true, we have {I /\-B}Sl. {I } until B become false, at that point, we
have (I A=B)= Q o

ok
(U]

From Concatenation Rule we have

P=1
{1~ Bis {1}
{1 A BYS, {1}

1 A BT}
(IAr=B)=Q

This completes the proof. a

From this theorem it is straightforward to prove a while loop as shown with
the help of the Concatenation Rule. We can construct a program correctness proof

algorithm based on Hoare triple, {P}S{0}, meaning that if the precondition {P} is
true on the initial state and the program segment S terminates then the postcondition
{0} will be true at the final state.

Let p stand for the proposition “the precondition %P} is true at the nitial
state”, g for the proposition “the program segmenti S terminates”, and » for the
proposition “the postcondition {Q} is true at the final state”. The Hoare triple takes
the form (p A g) — r which is equivalent to — — (—p v —q). This means that if the

postcondition {Q} is false at the final state then the precondition {P} is false at the
initial state or the program segment S does not terminate. This principle 1is
implemented as the algorithm shown below.

Algorithm for program correctness proof

Step 1 Check each program segment if it terminates (to ensure totally correct). If the
program code does not have a loop, it will terminate, otherwise check the
termination conditions of the loop (see algorithm supplement).

Step 2 Find the preconditions and the postconditions of the program code. (to ensure
partially correct).

Step 3 (Black-box test) Compare the preconditions with the input specification and

. the postconditions with the output specification. If it is true the program code
is correct and the program will end, otherwise go to step 6.
Step 4 Divide the program code into program segments according to basic program
constructs, namely, sequence, selection, and repetition. If the program code
contains library or procedure calls, we will consider them as separate program
code.
Step 5 Use the rule of inference to prove every program segment as follows:
Sequence : Theorem 3.12, 3.15, 3.17
Selection : Theorem 3.19
Repetition : Theorem 3.21

Step 6 Locate the incorrect statements.

14

Algorithm Supplement Additional precautionary steps for loop construct are

furnished as follows: ,

1. Take into account the restrictions on global variables for the preconditions and the
postconditions of the loop. The side-effect of global variables may disturb the
intrigrity of loop invariant. '

2. Loop termination check rests upon the exit condition of the loop (and each
decomposed sequential equivalent code segment) i®#, where i and n denote ioop
index and loop repetitious control, respectively, and # is a compare operator. The
variable i produces a sequence for checking loop termination. If this sequence is
finite, the loop will terminate. If it is infinite, the loop will never terminate. The
procedures proceed as follows:

Casel: If the values of both i and » remain unchange inside the loop,
the loop is never entered if i @ » is false, or it never terminates if i ® n
is true.

Case 2: If the value of i changes but »remains unchange inside the
loop and the value of i converge to #, the loop will terminate.

Case 3: If the value of i remains unchange but » changes inside the
loop and the value of »n converge to i, the loop will terminate. _
Case 4: Ifboth / and »n change inside the loop, the result may be
undefined, depending on the following behavior:

4.1 if the rate of change of 7 is langer than that of » by a factor
of m, m 2 1, and the value of i converge to » or the value
of n converge to i, the loop will terminate; or

4.2 if the rate of change of 7 is not the case as in 4.1, the loop
may not terminate and the behavior is undefined.

3. We do not consider parallel computing.

We will demonstrate how this algorithm works in the next Chapter.

CHAPTER 4

APPLICATION OF THE ALGORITHM

In this Chapter, we will apply our proposed algorithm to demonstrate how it works
with some sample code. We selected a good representative yet straightforward ged
(greatest common divisor) problem. Ged problem is a basic program that most
beginners must go through.

The greatest common divisor ged of two nonnegative integers x and y' is the
largest integer that can divide both x and y. We write ged(x,y) for ged of x and y.
For example, gcd(6,3) = 3, ged(12,8) = 4. Ifxand y are both zero, the ged is
undefined. The following examples demonstrate program correctness proof using the
proposed algorithm.

Example 4.1 Prove that the sample code is correct.

int gcd(x, y)
lmE g 3, s

[
1

| e
while (y != 0) {
bl B AR e
X = Vy;
y = &7
}
zZ = X;
return z;

1
i

The input specification x and y are both integers, and the output specification is
z =ged(x,y).

Proof Applying our algorithm to this problem as follows:

Checke termination.

Due to while loop in this code, this code may or may not terminate.

Consider the exit condition of while loop, y /= 0, y changes inside the loop
and may not be equal to zero. Thus, we may have an infinite sequence. This means
that the program code may not terminate, so the exit condition is the error of this
program code. L

Example 4.2 This is a favorite problem statement for finding the gcd of x and y.

[1] “Until x is zero, repeat the follow process: if y is greater than or equal to
x , replace it by their difference otherwise interchange the two numbers and continue.
When x becomes zero, the answer is y.”

Here is the solution created for this problem statement:

int ged(x, y)
int r, x, vy, z:
{ .
while (x!= 0)
{

if vy 2 x then y:= y-x else

r 1= X;
X 1= y;
y 1= r;

}
zZ = Y;
return z;

}

Prove this code is correct.

Proof Applying our algorithm to this problem as follows:

Step 1 Check termination,

Due to while loop in this code, this code may or may not terminate.

Consider the exit condition of while loop, x /= 0, x changes inside the loop
and creates a sequence that converges to zero. Thus, this sequence is finite and the
loop will terminate.

Step 2 Find the precondition and the postcondition of the program code.

We set the postcondition according to the program output specification. Thus,
the postcondition becomes {z = ged(x,y)} or{z = max{u : u/x A uly]} or
{z = max[u : x = uxm A y = uxn}}. The precondition can be found using the rule of
inference as follows:

The code is a concatenation of an assignment statement and a while loop
statement that encompasses an if — statement.

First, find the precondition of the assignment statement z = y. According to
the Assignment Rule, we have {z = max[u : x = uxm A y = uxn]} the precondition
whicle becomes the postcondition of the previous statement (the while statement).

_ “Next, find the precondition of the while statement.

We apply theorem 3.21 to this while loop and transform the while loop to a
series of concatenation of if — statements as follows:

' if y2x then y:=y—xelser:=x;x:=y; y:=r
if y>x then y:=y—xelser:=x; x:=y;y:=r

if y2x then y:=y—xelser:=x,x:=y;y:=r

According to the Rule for Conditions, we have {x>0 A y>0 A (x=0 v y#0)} the
precondition which 1s the precondition of the program.

Step 3 Compare the precondition and the postcondition with input
specification and output specification of the program. The precondition satisfies the
input specification, where x and y are both integer not being zero simultaneously. The
postcondition satisfies the output specification {z = max[u : x = uxm Ay = uxn]}
while means z is the ged of x and y.

We conclude that this code is correct, provided that the input is correct. Q

CHAPTER 5

CONCLUSION AND FUTURE WORK

The proposed approach presented in this thesis introduces the following ideas
for program correctness proof:

- First we use black-box test as a preliminary check that consumes very little
time to prove program correctness. _

Second we consider loop statement as concatenation of statements that

simplifies the proof.
- Third we check termination by simply checking if program contains loops. If
it does not have loop, the program will terminate. Otherwise, we consider only the
exit condition. This is considerably less time consuming than conventional
approaches.

And last, we use white-box test for any program constructs that could result in
normal or error statement to warrant program termination.

The shortcomings of the proposed approach are that users must be well-
prepared and equipped with mathematics, hence unpoppular for average users and
programmers. In addition, preconditions and postconditions sometimes are hard to
derive which is an obstacle for program correctness proof.

We envision, as pointed out by [1], that correctness proof depends primilarily
on formal and rigorous program specifications and fundamental of theoretical
programming as follows:

1. We can never be sure that the specifications are correct,

2. No verification system can verify every correct program, and

3. We can never be certain that a verification system is correct.

The proposed approach will be more convenient to use with support from
efficient precondition and postcondition instrumentation.

REFERENCES

[1] Manna, Z. and Waldinger, R. The logic of computer programming.
IEEE Transactions on software engineering Vol. SE-4, No. 3, May 1978 :
199-229.

[2] Manna, Z. Mathematical Theory of Computation. New York : McGraw-Hill Inc., 1974.

[3] Misra, J. Some aspects of the verification of loop computations.

|EEE Transactions on software engineering Vol. SE-4, No. 6, November 1978 ;

478-486.

{4] Grassmann, W.K. and Tremblay, J.P. Logic and Discrete Mathematics : A computer

science perspective. New Jersey : Prentice- Hall, Inc., 1996.

[5] Hausner, M. Discrete Mathematics. Florida : Saunders College Publishing, 1992.

[6] Pressman, R.S. Software Engineer : Practioner’s approach. New York :

McGraw-Hill Inc., 1882.

Name
Date of birth
Place of birth

: E_d:uCation

BIOGRAPHY

Chatchai Koetsawat

September 9, 1977

Samutsongkhram

Bachelor Degree of Science (Mathematics)

Chiangmai University , 1999.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Content
	Chapter 1 Introduction
	Chapter 2 Basic Knowledge
	Chapter 3 Program Correctness Proofs
	Chapter 4 Application of the Algorithm
	Chapter 5 Conclusion and Future Work
	References
	Vita

