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CHAPTER I
INTRODUCTION

1.1 Motivation and Problem Description

Current progress in digital data acquisition and storage technology has 

initiated the growth of huge data collections [1]. This emerges in all areas, from the 

regular activities (such as supermarket transaction data, credit card usage records [2], 

telephone call marketing, and government statistics) to the more exotic applications 

(such as images of astronomical bodies [3], molecular databases [4], and medical 

records). The interest on extracting useful information from these data is increasing. 

The discipline concerned with this task is known as data mining.

Data mining is the analysis of (often large) observational data sets to discover 

unsuspected relationships and to summarize the data in novel ways that are both 

understandable and useful to the data owner. The relationships and summaries derived 

through data mining progresses are often referred to as models or patterns. The 

examples include linear equations, rules, clusters, graphs, tree structures, and 

recurrent patterns in time series. 

Data mining is often fit in the broader context of knowledge discovery in 

databases, or KDD [5]. The KDD process involves several stages: selecting the target

data, preprocessing the data, transforming, performing data mining to extract patterns 

and relationships, and then interpreting and assessing the discovered structures. The 

most time-consuming stage in KDD is data pre-processing [6] or data preparation. 

Since real world data contain some difficulties such as missing values, errors and 

outliers, unequal range of data values, and the mixture of numerical and nominal 

values, the data analyst needs to find the suitable data preparation and help choosing 

an effective data mining model to apply. 

The data normalization [7], as we discuss in this thesis, is a part of data 

preparation which is used to transform numerical data values into a user-defined 

range.(usually 0-1) [2] There are evidences that this method help improving the 
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accuracy and efficiency on mining algorithms such as the neural network, nearest 

neighbor and clustering algorithms. Such methods provide better results if data to be 

analyzed are scaled to some specific ranges. In the neural network for classification 

mining [8], normalizing the input values for each attribute measured in the training 

samples helps speeding up the learning phase. For distance-based methods, 

normalization helps prevent attributes with initially large ranges from outweighing 

attributes with initially smaller ranges. There are three well-known methods for data 

normalization include min-max normalization, z-score normalization, and 

normalization by decimal scaling.

The other scaling technique is called the user-defined scaling. Some datasets 

and mining algorithms will achieve a better accuracy and running time if the right 

user-defined scale is used. However, the effort and time to determine the appropriate 

scaling are tremendous even for a few attributes. This leads to our main motivation 

which is to find the alternative method to have machine automatically determine the 

suitable scale for a dataset with a specific mining algorithm.

After data preparation process is done, the effective data mining model is 

guided by various factors such as the objective of the problem, the characteristic of 

results. In data mining, there are many types of models and patterns offered such as 

linear equations, rules, clusters in the form of their representatives, graphs, tree 

structures, and recurrent patterns in time series which have different strategies, 

methods and techniques to achieve the desired and effective results. This requires 

machine learning knowledge [9] to develop algorithms which allow computers 

automatically derive these models and patterns.  

Machine learning algorithms can be categorized in various forms based on 

desired outcomes. Common forms are supervised learning and unsupervised learning. 

Supervised learning is a machine learning technique for learning a model or pattern 

from training data. The training data consist of pairs of input vectors or data points 

and the desired output. The task is to predict the outcome for any valid data points 

after trained by training examples. On the other hand, unsupervised learning is a 

machine learning technique that determines or builds the representatives of input that 
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can be used to group a new input or represent the inputs to other machines. Unlike 

supervised learning, unsupervised learning does not require the pre-defined outputs of 

training set nor rewards from environments. Two very simple classic examples of 

unsupervised learning are clustering and dimensionality reduction [10]. 

Clustering [11] is one of unsupervised learning techniques which groups a set 

of physical or abstract data points into classes of similar points. The similarity used to 

dictate which cluster each data point belongs to can be any of defined distance metric 

or the density of data points in a defined area. It has been widely used in numerous 

applications, including pattern recognition [12], data analysis [13], image processing 

[14], and market research [15]. In general, clustering methods can be classified into 

the following categories [16]; partitioning methods, hierarchical methods, density-

based methods, grid-based methods and model-based methods. However, the simplest 

and well-known clustering algorithm is K-means clustering algorithm.

K-means clustering is an example of a unique partitioning method, where each 

data point is assigned to only one cluster. The objective that this method tries to 

achieve is to minimize total intra-cluster variance in term of the squared error function

2

1
( ( , ))

i

k

i
i X S

V d X C
 



where X is a data point, Si is the set of data points in the cluster i with Ci as its 

centroid. k is the number of cluster, d is the distance function and V is called the total 

intra-cluster variance.

In many applications including this thesis, the Lloyd’s algorithm is adopted 

for K-means instead of minimizing total intra-cluster variance. The Lloyd’s algorithm 

starts from randomly selecting k centroids or cluster centers. All data points are 

assigned to their closest centroids according to the distance metric. The new centroid 

for each cluster is calculated by the average values of data points in that cluster. Then 

all data points are re-assigned to their closest centroids again. The whole process is 

repeated until there is no change on assigning data points into clusters. The advantage 

of this method is its simplicity and effectiveness. However, the solution is guaranteed 
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only a local minimum and can be found if the mean of a cluster is defined. This may 

not be the case when data points have categorical attributes. The necessity for users to 

specify the number of clusters, in advance can also be considered as a disadvantage. 

Moreover, the K-means method is not suitable for discovering clusters with non-

convex shapes [17]. It is sensitive to noise data points which can influence the 

average value despite of a small number of data points.

There are some factors that affect the results of clustering. The selection of 

initial data points plays a big role on the final solution as well as the defined distance 

metric [18]. The convergence of an algorithm can only be applied if the initial starting 

point is chosen wisely. Different distance metric also causes the different results for 

selecting centroids and clustering. To create a new and different distance metric, 

researcher adapted by adding scaling or weight vector to modify values in each 

attribute. 

Even though clustering is considered as an unsupervised learning method, 

there are many researchers that tried to combine the concept of supervised learning 

into clustering such as constraint clustering [19] which is clustering with the 

conditions, semi-supervised clustering [20] which uses initial labeled data for seeding 

and weighting the clustering of unlabeled data and supervised clustering. Supervised 

clustering is a combined concept of supervised learning and clustering. The idea is to 

identify factors that affect clustering and to find the right configuration for clustering 

based on the training set which contains input vectors and desired output set. Al-Harbi 

and Rayward-Smith [21] suggested the multiplication of a weight vector, we called 

scaling vector, to the distance metrics and optimize the matrix as multivariate 

optimization looking for the optimal solution that gives the best clustering according 

to the given training set. To evaluate the goodness in this supervised clustering, the 

information about desired outputs or target classes is included and used as the 

measure.   

There are several benefits of supervised clustering reported by Eick and Zeidat 

[22]. First, supervised clustering can be applied to create summary and background 

knowledge. The settings of clustering on each data can be presented and interpreted as 
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the information. Next benefit is to be used as the automatically buildimg tool which 

modifies the data value in data-preprocessing process. Then, the accuracy of the 

modified dataset will be improved for the distance-based classifiers such as Nearest 

Neighbor. Moreover, the supervised clustering might be used to directly enhance the 

performance of simple classifiers such as Naïve Bayes.  

The knowledge of optimization techniques is required in order to find the 

optimal scaling vector. Even though Al-Harbi and Rayward-Smith introduced 

simulated annealing for solving this optimization problem, we use the unconstrained 

optimization techniques [23] due to the absence of any restrictions. With each scaling 

vector, the goodness of each clustering is measured by its misclassification error. 

Unconstrained optimization proceeds by optimizing along the direction that 

minimizes misclassification error.

There are many different kinds of unconstrained optimization [23]. Since the 

misclassification error of clustering cannot be post as the continuous function, this 

function to optimize uses a derivative-free method. This excludes using a very 

popular method such as Newton method while the techniques using a direct search are 

more suitable for this problem. Direct search techniques look for the optimal solution 

along the given direction via some simple line search methods. For multivariate 

problems, the simplest direct search is called Cyclic coordinate.

Cyclic coordinate is a basic technique for multivariate unconstrained 

optimization. The aim is to optimize the value of multivariate function via the 

standard coordinate direction. This transform multivariate optimization problem into a 

series of univariate optimization problems. Another multivariate unconstrained 

optimization is Hooke and Jeeves method which improves cyclic coordinate by 

adding a search direction in order to avoid a premature termination that might occurs 

on coordinate directions.      

These techniques use the concept of transforming a multivariate problem to a 

series of univariate problems which require a line search method. The widely known 

line search method is golden section line search which use the golden ratio (around 
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0.618) to reduce the interval of uncertainty (interval that contains optimal value) of 

the search.   

So, the contribution of this thesis is to introduce automatic attribute-scaling 

algorithm based on the knowledge of supervised clustering. Supervised clustering is 

used to automatically find a scaling vector which is trained and searched for the 

optimal solution via techniques of unconstrained optimization; cyclic coordinate and 

Hooke and Jeeves method based on the golden section line search.

This thesis is divided into 5 chapters. The next chapter presents background 

knowledge and related researches required for this thesis. Then the details and process 

of the works are discussed in chapter 3. The experiments and results are described in 

chapter 4. And finally, chapter 5 draws conclusion and suggests possible future work 

and improvement. 



CHAPTER II
BACKGROUND KNOWLEDGE

2.1 Data Mining Concept

Knowledge discovery in databases (KDD) is the non-trivial process of 

identifying valid, novel, and potentially useful patterns in data. In this context, data 

mining is a step in the KDD process that centers on the automated discovery of new 

facts and relationships in data [1]. 

Data are usually collected from various sources and stored in a data warehouse 

and may include the different data scheme. A good data preparation is required to 

shape up the selected data for the effective model used for data mining. Data 

preparation is considered as a time consuming step of the KDD process, requiring 

most time and resources to be completed.   There are many types of data preparation 

processes which depend on data and selected data mining models. 

2.1.1 Data Normalization

For a raw data in a practical situation, data integration and transformation are 

required to help the mining process on dealing with the data values. Data 

transformation such as normalization can improve an accuracy and efficiency of 

mining algorithms involving neural networks, nearest neighbor, and clustering 

classifiers. Such methods will provide a better result if the data to be analyzed has 

been normalized, see [7]. For empirical study, using the neural network back 

propagation algorithm for classification mining [24] with normalized attributes will 

help speed up the learning phase. For distanced-based methods, normalization helps 

prevent attributes with initially large ranges from outweighing attributes with other 

smaller ranges [7]. There are many methods for data normalization including min-

max normalization, z-score normalization, and normalization by decimal scaling.

Min-max normalization performs a linear transformation on the original data. 

Suppose that a and b are the minimum and the maximum values for attribute A. Min-

max normalization maps a value v of A to v  in the range [c, d] by computing:
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( )v av d c c
b a
       

In z-score normalization, the values of an attribute A are normalized based on 

the mean and standard deviation of A. A value v of A is normalized to v by 

computing:

A

A

v xv

 

where Ax  and A are the mean and the standard deviation of attribute A,

respectively. This method of normalization is useful when the actual minimum and 

maximum of attribute A are unknown.

Normalization by a decimal scaling deals with changing the decimal place of 

values of attribute A. The number of selected decimal places depends on the 

maximum absolute value of A. A value v of A is normalized to v by computing:

10 j

vv 

where j is the smallest integer such that Max(| v |)  1

Normalization changes the original data and it is necessary to save the 

normalization parameters (the mean and the standard deviation if using the z-score 

normalization, the minimum and the maximum values if using the min-max 

normalization and the power index of 10 if using the decimal scaling normalization) 

so that future data can be normalized in the same manner.

2.1.2 K-means Clustering

Clustering problems arise in many different applications, such as data mining 

and knowledge discovery, data compression, vector quantization, pattern recognition 

and pattern classification. The notion of a good cluster depends on the application and 

there are many methods for finding clusters subject to various criteria, both ad hoc 
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and systematic. These include approaches based on splitting and merging such as 

ISODATA[10], randomized approaches such as CLARA [25], CLARANS [26], 

methods based on neural networks, and methods designed to scale to large databases, 

including DBSCAN, BIRCH, and ScaleKM [27, 28].

Among clustering formulations that are based on minimizing various objective 

functions, the most widely used and studied is K-means clustering. Invented in 1956, 

the K-means algorithm starts by given a set of data points in real n-dimensional space, 
nก , and an integer k. The problem is to determine a set of k points in nก  called 

centers or centroids, that minimize the mean squared distance from each data point to 

its nearest center. This measure is often called the squared-error distortion 

2

1
( ( , ))

i

k

i
i X S

V d X C
 



where X is a data point, Si is the set of data points in the cluster i with Ci as its

centroid. k is the number of cluster, d is the distance function and V is called the total 

intra-cluster variance.

This type of clustering falls into the general category of variance based 

clustering. Clustering based on K-means is closely related to a number of other 

clustering and location problems. These include the Euclidean K-medians, the multi-

source Weber problem [29], in which the objective is to minimize the sum of 

distances to the nearest center and the geometric K-center problem in which the 

objective is to minimize the maximum distance from every point to its closest center.

There are no efficient solutions known to these problems and some 

formulations are NP-hard [30]. An asymptotically efficient approximation for the K-

means clustering problem has been presented by Matousek [31], but the large constant

factors found in his work makes his method to be impractical in the real situation. 

One of the most popular heuristics for solving the K-means problem is based 

on a simple iterative scheme for finding a locally minimal solution. This algorithm is 
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often called the K-means algorithm. There are a number of variants to this algorithm. 

One of the popular algorithms is a generalized Lloyd's algorithm [32].

Lloyd's algorithm is based on the simple observation that the optimal 

placement of a center is at the centroid of their associated clusters. Given any set of k

centers of Z, for each center z  Z, let N(z) denote its neighborhood, that is, the set of 

data points for which z is the nearest neighbor. Each stage of Lloyd's algorithm moves 

every center point z to the centroid of N(z) and then updates N(z) by re-computing the 

distance from each point to its nearest center. These steps are repeated until a 

convergent condition is met which normally is to measure unchanges of assigning 

data points into groups. Here is the step in Lloyd’s algorithm.

Initialization Step: Select the k representatives as the starting points. Calculate the 

distance between each data points to all representatives. Assign data points to the 

clusters which the distance between itself and the group representative is the least.

Main Step:

1. Calculate the mean value of the members in the same clusters. Use this value 

as the new representative of each cluster.

2. Calculate the distance from all data points to these new representatives. 

3. Check every data points whether it belongs to the same representative. If yes, 

done. Otherwise change its group to the new one. Back to step 1. 



11

Fig.2.1 Flow diagram of the K-means clustering by Lloyd’s algorithm

For data points in a general position (in particular, if no data point is 

equidistant from two centers), the algorithm eventually converges to a point that is a 

local minimum for the distortion. However, the result is not necessarily a global 

minimum. Bradley et al. [18] have shown how to scale K-means clustering to very 

large data sets through sampling and pruning. Note that Lloyd's algorithm does not 

specify the initial placement of centers.

Because of its simplicity and flexibility, Lloyd's algorithm is very popular in 

statistical analysis. However, a straightforward implementation of Lloyd's algorithm 

can be quite slow due to the cost of computing nearest neighbors.

In summary, K-means algorithm has the following important properties.

a) It works only on numerical values;

b) It usually uses the Euclidean metric and hence, the centroid of each cluster 

is the mean of the points in that cluster;
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c) It is efficient in processing large data sets. The computational complexity 

of the algorithm is O(nkt), where n is the total number of data points, k is 

the number of clusters and t is the number of iterations. In clustering large 

data sets the K-means algorithm is much faster than hierarchical clustering 

algorithms, whose computational complexity is generally O(n2);

d) It terminates at a local minimum.

In this thesis, we are interested in supervised K-means clustering, which uses 

side information of datasets about the output field or the pre-defined target class to 

help algorithm groups similar data points in the same cluster. The aim is to generate a 

cluster that has a strong tendency to partition data points into the same class. Any new 

data point assigned to a cluster is assumed to have the same class as the majority of 

data points in that cluster. The target class itself is used to aid and bias the 

constructing of a suitable metric defined on other attributes.

The idea of using supervised learning together with clustering algorithms has 

appeared quite recently. In [33], for example, the authors explored the use of a small 

amount of labeled data to aid and bias the clustering of unlabelled data. This paper 

also introduced a semi-supervised variant of k-means that uses initial labeled data for 

seeding. These seeds were kept unchanged throughout the algorithm. The authors 

claimed to improve the objective function (i.e maximizing the within-cluster

similarity) that was used in the K-means algorithm. Cohn et al. [34] allowed the user 

to iteratively provide feedback (which may also be called supervision) to a clustering 

algorithm. The feedback was incorporated in the form of constraints which the 

clustering algorithm attempted to satisfy in future iterations. These constraints guided

the clustering to become more relevant and useful. This algorithm attempted to give 

the user a way to interact with the data, however this required much human effort and 

may be impractical with high-dimensional data sets. Similarly, Wagstaff and Rogers 

[19] developed another variant of the k-means algorithm which incorporated

background knowledge in the form of instance-level constraints. These instance-level 

constraints presented a priori knowledge about which data points should be grouped 

together. The variant algorithm added an if-statement to the updating cluster 

assignments. This conditional statement ensured that none of the specific constraints 
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were violated when the K-means algorithm attempted to assign each data point to its 

closest cluster. However, the major drawback of this algorithm was that the user 

needed to construct these constraints manually. Demiriz and Bennett [20] proposed a 

genetic cluster algorithm that used labeled data in addition to unlabelled data in the 

training data set, and the aim of using labeled data was to cluster the unlabelled data. 

This algorithm synergized the benefits of supervised and unsupervised learning 

methods. The proposed algorithm used varying values of k (7, 11 and 15, for small, 

medium and large data sets respectively). A similar technique had been proposed by 

Jourdan [35], though in this case the authors extended the algorithm in order to deal 

with categorical data. Al-Harbi and Rayward-Smith [21] introduced another concept 

of the supervised K-means algorithm which had slightly different techniques from the 

above algorithms. They adapted the traditional k-means algorithm to be used as a 

classification technique in order to predict the class label of unlabelled data. The 

Euclidean metric and the objective function of the traditional K-means algorithm were

modified by the multiplication of a weight metric. In order to achieve this, all data in 

the training data set must be labeled and the value of k was predetermined. Moreover, 

they introduced the measure which is also used on this thesis and their searching

algorithm was based on simulated annealing.

2.1.3 Distance function 

The performance of distanced-based clustering, especially K-means clustering 

depend critically on a metric or distance function over the input space. Metrics should 

reflect reasonably well the important relationships between each data points and 

attributes. The distance is a numerical description of how far between data points. In a 

mathematical term, a metric or distance function is a function which defines a 

distance between elements of a set. 

A metric D on a set X is a function mapping X into the set of real values. For 

all x, y, z in X, this function is required to satisfy the following conditions:

1. ( , ) 0D x y 
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2. ( , ) 0D x y x y  

3. ( , ) ( , )D x y D y x

4. ( , ) ( , ) ( , )D x z D x y D y z   “Triangle Inequality”

2.1.3.1 Minkowski Distance

In the Euclidean space �n, the distance between two points is usually given by 

the Euclidean distance (2-norm distance). 

For a point X (x1, x2, ...,xn) and a point Y (y1, y2, ...,yn), the Minkowski 

distance D of order p (p-norm distance) is defined as:

1

1
( , )

n pp
p i i

i
D X Y x y



 
  
 


and other norms are

1-norm distance (taxicab norm or Manhattan distance)

2-norm distance (Euclidean distance)
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n

i i
i

D X Y x y


 
  
 
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∞-norm distance (Chebyshev distance)

1

1
( , ) lim

n pp
i ip i

D X Y x y 


 
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 
  
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x y

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D X Y x y


 
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2.1.4 Attribute-scaling space

From Euclidean distance function
1
22

1
( , ) ( ( ) )

n

i i
i

D X Y x y


  , this thesis will 

modify the function by multiplying a coefficient to each dimension. We define the 

collection of these multipliers as the attribute-scaling vector. Note that, the original 

Euclidean distance function for n-dimension space has an attribute-scaling vector as 

the vector that contains every element equal to one. 

The value of each element in this vector can be interpreted as the influence of 

each attribute to the performance of the clustering. The attribute which has the largest

value relatively to the others is the most important attribute for clustering process. The 

vector which is the multiple of another vector gives the same results after the 

clustering is applied. 

Fig.2.2 Illustration of data transformation applying scaling vectors to data for 

clustering, where di,j is the element of ith data point in jth attribute. 

Al-Harbi and Rayward-Smith used the similar notation with a different name 

called ‘weight metric’. They also explained that natural clustering regards all fields to 
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be equally important when determining the best partitions for a data set. However, 

when there were a priori hypotheses about the output of a clustering algorithm, then 

this natural assumption was violated; the clusters were needed based upon these 

hypotheses.

Our aim for scaling vector is to help the algorithm to partition the data into its 

different class labels based on assumption that all data points within a close proximity 

will be in the same class. Consequently, when measuring the distances between 

attributes, it may be necessary to assign greater significance to one attribute over 

another. This can be achieved by assigning greater weight to those attribute values

which have a more significant relationship with a class label. 

2.1.5 Misclassification Error

As previously mentioned, this thesis focuses on supervising K-means 

algorithm by adjusting a scaling vector to find the proper metric and eventually the 

proper clustering for data. To determine a suitable vector for K-means clustering, it 

requires a measure to evaluate and judge its result. In this work, we use the standard 

measure for classification techniques, called the misclassification error. 

The misclassification error is the error introduced under the assumption that 

after perfect clustering, the data points which are contained in the same cluster should 

have the same target class. However in practice, each cluster will contain some data 

points from other classes. So we define these misclassified data points as the error. 

We denote the error in term of function as 

 
1

K

i d i
i

S

d C t TC
Error

m


 



where the data point d with the target class td is on the cluster Ci. For each 

cluster i, it contains TCi as the target class of each cluster which is the most common 

class of data points in their respective cluster. This dataset contains m data points. We 

also define the cardinality| A | as the number of member in a set A.

We illustrate the concept as in the figure 2.3 : 
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Fig.2.3 The calculation of misclassification error

In this thesis we will supervises the K-means algorithm by adjusting the 

attribute-scaling vectors. With the dataset of n-dimension input space, the most trivial 

algortihm for finding a solution is to use a brute-force search which enumerates every 

single possible candidate for solution looking for the minimum misclassification 

error. It guarantees a global solution but consumes enormous time and efforts. 

Another trivial one is a random search which spends less resource but give 

unpredictable performance. This work applies a concept of optimization to find an 

optimal scaling vector as the heuristic local search.

2.2 Optimization Concept

Optimization is a study of problems in which one seeks the optimal solution of 

the problem [18]. It is one of major fields in applied mathematics containing many 

subfields divided by characteristics of problems. The important characteristics which 

require different approaches on finding solution include types of function which is 

needed to optimize, types of solutions and their dimensions, the number and 
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description of conditions given in the problems. For choosing a suitable method for 

each problem, we have to identify these characteristics.

Unconstrained optimization is the optimization that deals with the problem of 

minimizing or maximizing a function in the absence of any restrictions. With the 

techniques of unconstrained optimization, only some side restrictions are still 

required. Most methods proceed by finding direction and minimizing along this 

direction by the procedures called the line search.

In this thesis, we focus on two elements of unconstrained optimizations. Since 

the objective of this work is to find the attribute-scaling vector that provides the 

minimum misclassification error, the problems will be considered as the multivariate 

minimization problems. These misclassification errors required the optimization 

methods that do not involve derivatives. These methods are called the direct method. 

For this work, we will adapt one of the simple direct methods, cyclic coordinate. It is 

the method which minimizes the function value along each of the coordinate 

directions for finding optimal solutions. In order to minimize on each direction, 

golden section line search will be applied for this propose. In next two sections, we 

will go through the details of these two techniques.

2.2.1 The Golden section line search

One-dimensional search is the key of many algorithms for solving non-linear 

programming problems [23]. To minimize the function with one variable, one of the 

popular approaches is to set the derivative of the function equal to 0 or to determine 

the critical point. Note that it becomes impossible if the function is not differentiable. 

Some which are differentiable may become unstable when searching near the critical 

point. Furthermore, this provides only the candidates that could be just the local 

optimal or the saddle points. So for these reasons, this approach will be avoided and 

the numerical techniques will be used instead.  

In order to minimize a univariate function over a closed and bounded interval 

without using derivatives, the concept of sequential line search will be used to find the 

interval that the local minimum point is contained. This kind of method uses the 

values of the function at the previous iterations to determine the succeeding points 
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and continuously reduce the length of the interval which contains local optimal point 

until we reach the acceptable length.   

The interval of uncertainty

Consider the line search problem to minimize θ(λ) subject to a ≤ λ ≤ b [23]. 

Since the exact location of the minimum is unknown, this interval is called the 

interval of uncertainty. During the search procedure if we can exclude portions that do 

not contain minimum, then the interval of uncertainty is reduced. 

The following theorem shows that if the function θ is strictly quasi-convex

[18], then the interval of uncertainty can be reduced by evaluating θ at two points 

within the interval.

Theorem 1 Let θ : �→ � be strictly quasi-convex over the interval [a, b] be such that λ

< μ. If θ(λ) ≥ θ(μ), then θ(z) ≥ θ(μ) for all [ , )z a   If θ(λ) < θ(μ), then θ(z) ≥ θ(λ) for 

all ( , ]z b .

From the above theorem, under strict quasi-convexity if θ(λ) ≥ θ(μ), the new 

interval of uncertainty is [λ, b]. On the other hand, if θ(λ) < θ(μ), then the new interval 

of uncertainty is [a,  μ]. 

Now we present the golden section method which is one of the procedures for 

minimizing a strictly quasi-convex function over a closed and bounded interval by 

iteratively reducing the interval of uncertainty. The golden section line search is 

classified as the sequential search; the search that utilizes the information generated at 

the previous iterations. Normally the interval of uncertainty of the line search has the 

reduction ratio that can be calculated by the ratio of the length of the interval of 

uncertainty after v observations and the length before taking the observations. The 

golden section gives the effective number of reduction ratio at (0.618)v-1.

At an iteration k of the golden section method, let the interval of uncertainty be 

[ak, bk]. By theorem 1, the new interval of uncertainty [ak+1, bk+1] is given by [k , bk] 
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if f(k) ≥ f(k) and by [ak , k] if f(k)   f(k). The points k and k are selected such 

that

1. The length of the new interval of uncertainty bk+1 - ak+1does not depend upon 

the outcome of the kth iteration. Therefore, we want k – ak = bk – k. Thus, if k is of 

the form

k = ak + (1 – α)(bk – ak )                      (1)

where (0,1)  , then k must be of the form

k = ak +α(bk – ak )                                (2)

so that 

(bk+1 – ak+1 ) = α(bk – ak )

2. As k+1 and k+1 are selected for the purpose of a new iteration, either k+1

coincides with k or k+1 coincides with k. If this can be realized, then during 

iteration k + 1, only one extra observation is needed. To illustration, consider the 

figure 2.4 and the following two cases.

Fig.2.4 The reduction of interval in golden section line search

ka k k kb

1ka  1k  1k  1kb 

Case1 ( ) ( )k kf f 

Case2 ( ) ( )k kf f 
1ka  1k  1k  1kb 
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Case 1:  f(k) ≥ f(k)

In this case, ak+1 = k and bk+1 = bk. To satisfy k+1 = k, and applying (1) with k

replaced by k + 1, we get

1 1 1 1(1 )( ) (1 )( )k k k k k k k ka b a b                

Substituting the expressions of k and k from (1) and (2) into the above equation, we 

get 2 1 0    .

Case 2: f(k)   f(k).

In this case, ak+1 = ak and bk+1 = μk. To satisfy k+1 = k, and applying (2) with k

replaced by k + 1, we get

1 1 1 1( ) ( )k k k k k k k ka b a a a             

The above also gives 2 1 0    . The positive root of this equation is 

approximately equal to 0.618 which is in the interval (0, 1). To summarize, if at 

iteration k, μk and k are chosen according to (1) and (2), where α = 0.618, then the 

interval of uncertainty is reduced by the factor of 0.618. At the first iteration, it 

requires two observations at μ1 and 1 but at other subsequent iterations, requires only 

one function evaluation.

Summary of the golden section method

This is a summary of the golden section method for minimizing a strictly 

quasi-convex function over the interval [a1, b1].

Initialization Step

Choose an acceptable final length of uncertainty l > 0. Let [a1, b1] be the initial 

interval of uncertainty, let 1 = a1 + (1 – α)(b1 – a1) and 1 = a1 +α(b1 – a1), where    
α = 0.618. Evaluate f(λ1) and  f(μ1), let k = 1, and go to the main step.
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Main Step 

1. If bk – ak < l, stop; the optimal solution lies in the interval [ak, bk]. 

Otherwise, if f(k) ≥ f(k), go to step 2; and if f(k)   f(k) go to step 3.

2. Let ak+1 = k and bk+1 = bk. Furthermore, let k+1 = k, and let k+1 = ak+1

+ α(bk+1 – ak+1 ). Evaluate f(μk+1) and go to step 4.

3. Let ak+1 = ak and bk+1 = μk. Furthermore, let k+1 = k and let k+1 = ak+1
  

+ (1 – α)(bk+1 – ak+1). Evaluate f(k+1) and go to step 4.

4. Replace k by k + 1 and go to step 1.     

2.2.2 The cyclic coordinate method

When we consider the problem of minimizing a function f of multivariable 

without using derivatives [23], the straight forward concept to evaluate is given a 

vector X and determines a suitable direction D. And then f is minimized from X along

the direction D by a line search method. For the purpose of simplicity, we will assume 

the existence of a minimum point ρ.

Cyclic coordinate method uses the coordinate axes Dj = (d1,d2,…,dn) which dj

equal to 1 at index j, while the rest is zero. More specifically, the method searches 

along one direction (one attribute) while the other ones are fixed. The method is 

illustrated schematically in figure 2.5.
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Fig.2.5 The search pattern of the cyclic coordinate method.

Summary of the cyclic coordinate method

We summarize below the cyclic coordinate method for minimizing a function 

of several variables without using any derivative information. In order to terminate 

the process, we use || Xk+1- Xk||    but any other criteria can also be used.

Initialization step

Choose a scalar 0   as a termination criterion for the algorithm. Let D1, 

…, Dn be the coordinate directions. Choose an initial point X1, let Y1 = X1, let k = j = 1 

and go to the main step.

Main step 

1. Let ρj
* be an optimal solution to the problem to minimize f(Yj + ρjDj) subject 

to ρj in the closed interval and let Yj+1 = Yj + ρj
*Dj. If j < n, replace j by j + 1, and 

repeat step 1. Otherwise, if j = n, go to step 2. 

2. Let Xk+1 = Yn+1. If || Xk+1- Xk||   then stop. Otherwise, let Y1 = Xk+1 ,          

let j = 1, replace k with k + 1 , and repeat step 1.
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Sometimes cyclic coordinate method can stall at a non-optimal point. 

Searching along any coordinate axes may leads to no improvement of the function 

and results in premature termination. The reason behind this is the presence of a 

valley caused by the non-differentiability of f . However, it can possibly overcome by 

searching along the direction Xk+1 – Xk.  

A search along the direction Xk+1 – Xk is frequently used in applying the cyclic 

coordinate. This modification frequently accelerates convergence, particularly when 

the sequence of points generated zigzags along a valley. Such a step is usually 

referred to as an acceleration step, or a pattern search step.  

2.2.3 The method of Hooke and Jeeves

The method of Hooke and Jeeves [23] performs two types of search –

exploratory search and pattern search. Given X1, an exploratory search along the 

coordinate directions produces the point X2. Now a pattern search along the direction 

X2 – X1 leads to the point Y, Another exploratory search starting from Y give the point 

X3. The next pattern search is along the direction X3 – X2, yielding the new point. The 

process is then repeated, see figure 2.6.
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Fig.2.6 The search pattern of Hooke and Jeeves method.

Summary of the method of Hooke and Jeeves 

Initialization step

Choose a scalar  > 0 as a termination criterion for the algorithm. Let D1, …, 

Dn be the coordinate directions. Choose an initial point X1, let Y1 = X1, let k = j = 1 and 

go to the main step.

Main step 

1. Let ρj
* be an optimal solution to the problem to minimize f(Yj + ρjDj) 

subject to ρj in the closed interval and let Yj+1 = Yj + ρj
*Dj. If j < n, replace j by j + 1, 

and repeat step 1. Otherwise, if j = n, let Xk+1 = Yn+1. If || Xk+1- Xk ||   , then stop; 

Otherwise, go to step 2. 

2. Let D = Xk+1 – Xk and let * be an optimal solution to the problem to 

minimize f(Yn+1+ D) subject to  in the closed interval. Let Y1 = Xk+1 + *D, let j = 

1, replace k with k + 1, and repeat step 1.
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Combining these two concepts, we construct the supervised K-means 

algorithm with the attribute-scaling vector and minimize the misclassification error 

from the K-means clustering with the cyclic coordinate method and Hooke and Jeeves 

method to find the optimal vector that give the minimum error. The detail of the work 

is described in next chapter. 



CHAPTER III
K-MEANS SCALING ALGORITHM 

CONTROLLED BY MISCLASSIFICATION 
ERROR OF ALL CLUSTERS

In this chapter, we introduce the detail of the thesis work. This work is the 

combination of data mining and optimization. It is divided in two parts; applying 

attribute-scaling vector to K-means algorithm and the optimization of 

misclassification error. The fitness of an attribute-scaling vector is obtained by first 

running the K-means algorithm with the corresponding weighted Euclidean metric. 

The algorithm iteratively creates clusters as it groups together data points which have 

the same class label. After clustering, each member of a cluster is compared with its 

class label or target class.

3.1 Applying attribute-scaling vector to K-means algorithm

For K-means algorithm, we need to define the distance function used for the 

process. This work adjusts the standard Euclidean distance using a weight vector. 

Some attributes that we weight more than the others easily affect the closeness of each 

component and lead to the different clustering results. With this effect, we determine

the weight on each element of the distance function that gives the best classification 

result. This weight is considered as the multidimensional vector lying on the attribute-

scaling space.

The standard Euclidean distance from the previous chapter is represented as

the vector of one, while the standard data normalizations can also be written as the 

vectors in this attribute-scaling space as we show on the table 3.1
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The type of 

scaling or 

distance function
The formula The attribute-scaling vector

The Euclidean 

distance function
2

1
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i i
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normalization
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d cd c d c
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normalization
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v xv

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Table 3.1 Distance function and its attribute-scaling vector formula

These vectors belong to the attribute-scaling space. We aim to find the vector 

that gives the best results. The results we consider as the best will be determined by 

the misclassification error.

In Euclidean space nก , We use D = (d1, d2, …,  dn) to represent a data point in

a dataset with m data points and define the attribute-scaling vector S = (s1, s2, …,  sn). 

For each D, it has a target class tD for a data point D, and there is T as a set of target 

classes for this dataset. For any the attribute-scaling vector S, define the modified 

metric as 

2 2

1

( , ) ( )
n

S i i i
i

p q s p q


 

We called S  an attribute-scaling metric.

From definitions, we apply K-means algorithm based on the attribute-scaling

metric. After each cluster has been assign the class, we measure the misclassification 

error by 

 
1

K

i d i
i

S

d C t TC
Error

m


 



1 2

1 1 1, ,...,
n  

 
 
 
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where the data point d with the target class td is on the cluster Ci. For each 

cluster i, it contains TCi as the target class of each cluster which is the most common 

class of data points in their respective cluster. This dataset contains m data points. We 

also define the cardinality| A | as the number of members in a set A.

The error can equal to zero if every data points in the same cluster is in the 

same class, while the maximum error never reaches to one. For each attribute-scaling 

vector, this generates one value of misclassification error. In this thesis we will treat 

this as the function to minimize.

3.2 The optimization of attribute-scaling vector

To determine the vector S, we measure the misclassification error occurring 

from K-means algorithm as the objective function.

Since the attribute-scaling vector is multi-dimensional, the techniques of 

multivariate optimization are adopted to find the solution. As mentioned before, we 

treat the misclassification error from the scaled K-means algorithm as the function 

from the attribute-scaling space. So the derivative of this function becomes impossible 

to gather. These obstacles lead us to choose direct method for the unconstrained

optimization. In this thesis, we show results from two techniques, the cyclic 

coordinate method and the Hooke and Jeeves method.

3.2.1 The cyclic coordinate method

The cyclic coordinate is the simplest direct method. It minimizes the function 

value along the standard coordinate directions for finding optimal solutions. To look 

for each coordinate direction, it will transform the multivariate optimization to 

univariate optimization which can be solved by the line search. 

Generally, the effective of the line search is based on the reduction rate of its 

uncertainty interval. The higher the reduction rate is, the quicker the line search leads 

to the optimal solution. The golden section line search is one of the effective line 

searches due to its reasonable reduction ratio which is around 0.618v-1 where v is the 

number of function evaluation. Moreover, for each search iteration, it requires only 
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one function calculation. With both advantages, the golden section line search is

chosen.

The controlled factors that we used are the number of clusters used for K-

means, the searching ranges of each dimension and the terminal threshold of the 

optimization. In this work we varied the number of the clusters to investigate the 

effect of the number of the clusters with respect to the algorithm, while other 

configurations will be discussed later in chapter 4.

Algorithm

Input: Dataset, the number of clusters

Output: The local minimum scaling vector

Initial Step

1. Define function to minimize f, the value of f at the vector S or f(S) is the 

misclassification error from K-means clustering algorithm with Euclidean 

distance.   

   22

1
,

n

S i i i
i=

D X Y = s x y

2. Start with initial S0, defined by giving si equal to the reciprocal of the 

range of the ith attribute for i = 1, ..., n (the number of attributes)

3. Let d1, d2,…dn be the coordinate directions, j be the index of direction 

starting from 1 and k be the index of iteration, then go to main step

Main Step

4. Let j
* be the optimal solution to minimize f(Sk-1 +jdj) in the defined 

range (in this work, we use [0, 10]). To find the optimal solution for each j, 

we use golden section line section along the direction dj until j equal to n. 

After that go to step 5.

5. For j = 1, 2, …, n, choose the vector  Sk-1 +j
*dj that give the minimum

f(Sk-1 +jdj) as Sk . 

6. If f(Sk) > f(Sk-1), then stop. Otherwise, let j = 1, update k and repeat step 4. 

Our solution will be the vector Sk-1.
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3.2.2 The method of Hooke and Jeeves

The drawback of searching along only coordinate directions which 

occasionally occur when we deal with a non-differentiable function is that the search 

can be terminated prematurely due to a valley of the function. In order to overcome 

this difficulty, Hooke and Jeeves method suggested the addition of a pattern search 

Xk+1 – Xk. With this modification, the method often accelerates its convergence.

In this thesis, we apply the method of Hooke and Jeeves hoping to improve the 

result we achieve from the cyclic coordinate method. With the assumption that our 

supervised K-means algorithm may have some valleys on the attribute spaces, this 

method will avoid these obstacles and find the better optimal solution.

For this method, the algorithm is slightly changed; another pattern search will 

be added while other codes will stay the same.   

Algorithm

Input: Dataset, the number of clusters

Output: The local minimum scaling vector

Initial Step

1. Define function to minimize f, the value of f at the vector S or f(S) is the 

misclassification error from K-means clustering algorithm with distance 

measure  

   22

1
,

n

S i i i
i=

D X Y = s x y

2. Start with initial S0, defined by giving si equal to the reciprocal of the 

range of the ith attribute for i = 1, ..., n (the number of attributes)

3. Let d1, d2,…dn be the coordinate directions, j be the index of direction 

starting from 1 and k be the index of iteration, then go to main step
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Main Step

4. Let j
* be the optimal solution to minimize f(Sk-1+jdj) in the defined range 

(in this work, we use [0, 10]). To find the optimal solution for each j, we 

use golden section line section along the direction dj until j equal to n. 

After that, go to step 5.

5. For j = 1, 2,…, n choose the vector  Sk-1 +j
*dj that give the minimum    

f(Sk-1 +jdj) as Sk . 

6. Let ds be the direction of the pattern search Sk - Sk-1, minimize f(Sk + ds). 

If f(Sk) > f(Sk-1), then stop. Otherwise, let j = 1, update k and repeat step 4. 

Our solution will be the vector Sk-1.

We perform the experiments to test algorithms with the real world datasets. In 

the next chapter, we will introduce the datasets using for our experiments, then 

analyze the result from experiments that we have found.



CHAPTER IV
EXPERIMENTS AND RESULT

We use MATLAB 7.0 as a tool to implement thanks to the existing K-means 

algorithm on its statistic toolbox. It becomes easier to apply the attribute-scaling 

vector using MATLAB 7.0. The experiments are performed through Pentium 

core2duo 2.13 GHz processor with 1 GB RAM memory.

Databases we use for this thesis are gathering from UCI repository. We select 5 

datasets; iris data, pima-Indian diabetes data, glass data, abalone data and ecoli data. 

All of these datasets are numerical and have no missing value. The other reason that 

these datasets are chosen is their low number of data points and attributes. 

4.1 The description of dataset

Iris data contains 150 records and 4 attributes. Each record represents the 

characteristic of the sepals and petals which can use to determine the types of iris. The 

descriptive statistics of all attributes are shown in Table 4.1.

Attribute 

Information:
Mean

Standard 

Deviation

Sample 

Variance
Range Minimum Maximum

1. Sepal length 

in cm
5.84330 0.82807 0.68569 3.60 4.30 7.90

2. Sepal width 

in cm
3.05400 0.43359 0.18800 2.40 2.00 4.40

3. Petal length 

in cm
3.75870 1.76440 3.11320 5.90 1.00 6.90

4. Petal width 

in cm
1.19870 0.76316 0.58241 2.40 0.10 2.50

Table 4.1 The descriptive statistics of all attributes in Iris data set
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Iris data has 3 target classes, Iris Setosa, Iris Versicolour and Iris Virginica, The 

distribution of each class is equally divided, 50 records per class or 33.33% per class.

Glass data contains 214 records of glass described by the quantity of each 

component. The descriptive statistics of all attributes are shown in Table 4.2.

Attribute 

Information:
Mean

Standard 

Deviation

Sample 

Variance
Range Minimum Maximum

1. RI: 

Refractive 

index

1.51840 0.00304 0.00001 0.023 1.511 1.534

2. Na: 

Sodium

13.40800 0.81660 0.66684 6.650 10.730 17.380

3. Mg: 

Magnesium

2.68450 1.44240 2.08050 4.490 0.000 4.490

4. Al: 

Aluminum

1.44490 0.49927 0.24927 3.210 0.290 3.500

5. Si: 

Silicon

72.65100 0.77455 0.59992 5.600 69.810 75.410

6. K: 

Potassium

0.49706 0.65219 0.42535 6.210 0.000 6.210

7. Ca: 

Calcium

8.95700 1.42320 2.02540 10.760 5.430 16.190

8. Ba: 

Barium

0.17505 0.49722 0.24723 3.150 0.000 3.150

9. Fe: Iron 0.05701 0.09744 0.00949 0.510 0.000 0.510

Table 4.2 The descriptive statistics of all attributes in Glass data set

For the second to last attributes, the value is in the unit measurement: weight 

percent in corresponding oxide. 

The data is divided into 7 classes or types of glass based on its usage.  The 

target class is the usage types of glass whose distribution is shown in Table 4.3.
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Class : The usage types of glass The number of instances

1. building windows float processed 70 (33%)

2. building window non-float processed 76 (35%)

3. vehicle window float processed 17   (8%)

4. vehicle window non-float processed 0   (0%)

5. containers 13   (6%)

6. tableware 9   (4%)

7. headlamps 29 (14%)

Table 4.3 The target class distribution in Glass data set

Pima Indians diabetes data contains the diabetes-related information of the 

total 768 Pima and Indian people. There are 8 physical attributes collected from the 

test group of Pima and Indians all in numeric value. A list of attributes is : 

1. Number of times pregnant

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test
3. Diastolic blood pressure (mmHg)

4. Triceps skin fold thickness (mm)
5. 2-Hour serum insulin (muU/ml)

6. Body mass index (weight in kg/(height in m)2)
7. Diabetes pedigree function

8. Age (years)
The descriptive statistics of all attributes are shown in Table 4.4. 
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Attribute 

Information:
Mean

Standard 

Deviation

Sample 

Variance
Range Minimum Maximum

1. Number of 

times pregnant 

3.84510 3.370 11.354 17.00 0.00 17.00

2. Plasma 

glucose 

concentration 

120.89000 31.973 1,022.200 199.00 0.00 199.00

3. Diastolic blood 

pressure

69.10500 19.356 374.650 122.00 0.00 122.00

4. Triceps skin 

fold thickness 

20.53600 15.952 254.470 99.00 0.00 99.00

5. 2-Hour serum 

insulin 

79.79900 115.240 13,281.000 846.00 0.00 846.00

6. Body mass 

index 

31.99300 7.884 62.160 67.10 0.00 67.10

7. Diabetes 

pedigree function 

0.47188 0.331 0.110 2.34 0.08 2.42

8. Ages 33.24100 11.760 138.300 60.00 21.00 81.00

  Table 4.4 The descriptive statistics of all attributes in Pima-Indians diabetes 

data set

The target class is the result of the diabetes test, 1 for positive and 0 for 

negative. Class Distribution is 

Class Number of instances

1 500 (65%)

0 268 (35%)

Table 4.5 The target class distribution in Pima-Indians diabetes data set 

Abalone data is used for predicting the age of abalone from physical 

measurements. So the value of each attribute will be the value of physical appearance 
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of abalone. The abalone data record contains 4177 records with 8 attributes, which are 

listed below:

1. Sex

2. Length

3. Diameter

4. Height

5. Whole weight

6. Shucked weight

7. Viscera weight

8. Shell weight

However we exclude the first attribute which is a nominal value. So we use 

only 7 attributes. The descriptive statistics of all attributes are shown in Table 4.6.

Attribute 

Information:
Mean

Standard 

Deviation

Sample 

Variance
Range Minimum Maximum

1. Length 0.52399 0.12009 0.01442 0.7400 0.0750 0.8150

2. Diameter 0.40788 0.09924 0.00985 0.5950 0.0550 0.6500

3. Height 0.13952 0.04183 0.00175 1.1300 0.0000 1.1300

4. Whole 

weight 
0.82874 0.49039 0.24048 2.8235 0.0020 2.8255

5. Shucked 

weight 
0.35937 0.22196 0.04927 1.4870 0.0010 1.4880

6. Viscera 

weight 
0.18059 0.10961 0.01202 0.7595 0.0005 0.7600

7. Shell 

weight 
0.23883 0.13920 0.01938 1.0035 0.0015 1.0050

Table 4.6 The descriptive statistics of all attributes in abalone data set

This dataset contain a target class as ages which is the integer value varied from 

1-29. This leads to a great number of classes. We modified this column into four 
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distinct values via its quartile to prevent the imbalance of a class distribution. The 

class distribution after modifying is shown in the following table.

Class (Quartile) Number of instances

1 (within 25%) 1407 (34%)

2 (from 25% upto 50%) 689 (16%)

3 (from 50% upto 75%) 1121 (27%)

4 (above 75%) 960 (23%)

Table 4.7 The target class distribution in abalone data set

Ecoli data shows the localization site of proteins. It contains 336 records and 7 

attributes. The detail of all attributes is listed below

Attribute Information

1. mcg: McGeoch's method for signal sequence recognition.

2. gvh: von Heijne's method for signal sequence recognition.

3. lip: von Heijne's Signal Peptidase II consensus sequence score.

4. chg: Presence of charge on N-terminus of predicted lipoproteins.

5. aac: score of discriminant analysis of the amino acid content of outer 

membrane and periplasmic proteins.

6. alm1: score of the ALOM membrane spanning region prediction program.

7. alm2: score of ALOM program after excluding putative cleavable signal 

regions from the sequence.

The descriptive statistics of all attributes are shown on Table 4.8.
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Attribute 

Information:
Mean

Standard 

Deviation

Sample 

Variance
Range Minimum Maximum

1. mcg 0.50006 0.19463 0.03788 0.89 0.00 0.89

2. gvh 0.50000 0.14816 0.02195 0.84 0.16 1.00

3. lip 0.49548 0.08850 0.00783 0.52 0.48 1.00

4. chg 0.50149 0.02728 0.00074 0.50 0.50 1.00

5. aac 0.50003 0.12238 0.01498 0.88 0.00 0.88

6. alm1 0.50018 0.21575 0.04655 0.97 0.03 1.00

7. alm2 0.49973 0.20941 0.04385 0.99 0.00 0.99

Table 4.8 The descriptive statistics of all attributes in ecoli data set 

The target class is the localization of proteins, which has a class distribution as 

in the table 4.9

Class (Quartile) Number of instances

1. cp  (cytoplasm)                                          143 (43%)

2. im  (inner membrane without signal 

sequence)        

77 (23%)

3. pp  (perisplasm)                                    52 (15%)

4. imU (inner membrane, uncleavable 

signal sequence)  

35 (10%)

5. om  (outer membrane)                              20  (6%)

6. omL (outer membrane lipoprotein)                     5  (1%)

7. imL (inner membrane lipoprotein)                     2  (1%)

8. imS (inner membrane, cleavable signal 

sequence)                 

2  (1%)

Table 4.9 The target class distribution in ecoli data set
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Similar to Al-Harbi and Rayward-Smith’s work, a solution for each case is a 

vector of weights which we called the attribute-scaling vector. From Al-Harbi’s work, 

the initial point of the search was randomly chosen. Instead of unreliable random 

choices, we consider three candidates for initial vectors and do supervised K-means 

clustering with these vectors in various numbers of clusters. After several 

experiments of clustering, we choose the one that give the least average error for each 

data set.

The average error we got from each candidate of an initial scaling vector is 

shown in Table 4.10.

(1, 1, …, 1)

Iris data 0.070001 0.071667 0.074167

Glass data 0.455396 0.456245 0.459219

Pima data 0.311199 0.311849 0.312500

Abalone data 0.504635 0.496262 0.498206

Ecoli data 0.158278 0.158279 0.196428

Table 4.10 The average misclassification error on the candidates of initial 

vector.

The table suggests that the vector of one is the most suitable candidate to be 

used as an initial point in all datasets except Abalone data which the reciprocal of 

range is the better choice.

Data is partitioned with the ratio 80 : 20, using 80% of data set as the training 

set to train the scaling vector and build the model. The rest of data set is the test set 

which is used to evaluate the model. We also evaluate the whole data based on the 

trained model which the results will be shown in Appendix B. The experiments are 

then repeated for 5 different partitions with uniform sampling.

The number of clusters for each dataset is another parameter for supervised K-

means clustering to be considered. In Al-Harbi and Rayward-Smith work, it was set to 
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be equal to the number of target class (2 for Pima-Indians diabetes). However in this 

thesis, we investigate the effect of the number of clusters on our method. More 

experiments with various numbers of clusters are performed. For example the iris 

dataset is tested from k = 3 up to 10, 7-14 for glass dataset, 2-9 for Pima-Indians 

diabetes data, 4-10 for abalone data and 8-15 for ecoli data.

Other settings are the length of initial interval and the minimum tolerance of 

final interval which both are set at 20 and 0.0001 respectively. Since the reduction 

ratio of the golden section line search which is (0.618)v-1 with v as the number of 

iterations, each line search needs at least 26 iterations until reaching the final interval. 
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4.2 Result

This section contains the result discussions from our experiments. In overall, 

our algorithms, both cyclic coordinate and Hooke and Jeeves, are able to reduce the 

misclassification error in the training set on all datasets. But there are some 

differences on the evaluation and how suitable each dataset is to this supervised K-

means clustering.

First, the iris dataset gives 10.67% misclassification error when we apply K-

means clustering. After applying attribute-scaling vector optimization by cyclic 

coordinate method and Hooke and Jeeves method, the algorithms give the vector that 

provides the error as shown in the figure 4.1 along with the error before applying 

scaling vector.

Fig.4.1 Misclassification error on Iris training set with k = 3

The result on this figure comes from the experiment which the number of 

clusters is set at k = 3.  The error from clustering is significantly reduced by our 

algorithms in a significance rate which is 200-300 %. 
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In order to determine that our attribute-scaling vector from our algorithms is 

suitable for the classification, we evaluate it with the test set from previously 

partitioning. The result from the scaling vector with the same experiment as in figure 

4.1 is shown in figure 4.2.

Fig.4.2 Misclassification error on Iris test set with k = 3

From the figure 4.2, Scaling vectors from experiment no.1 and no.5 give the 

error-free result. Even the case that gives the error about 16% (Experiment no.4) can 

be considered a good result since there are only 4-5 misclassified data points from 

total 30 data points in the test set. This shows that our algorithms work very well on 

iris data set. 

Next, we consider the attribute-scaling vector we get from algorithms and see 

how it affects the clustering. We choose the example from experiment no.1 which has 

the attribute-scaling vector as [0, 0.0001, 0.6086, 1.8103]. Notice that very low values 

on the first and second elements suggest that the first and second attributes are not 

significant on classifying by clustering compared with the other two attributes. We 

observe the clustering in the axis of latter pair of attributes (petal length and petal 

width) and investigate the difference between the clustering without applying scaling 
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vector as in the figure 4.3 and the clustering with applying scaling vector as in the 

figure 4.4.

          Fig.4.3 The graph of the clustering of iris data points without scaling vector 
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Fig.4.4 The graph of the clustering of iris data points with scaling vector 

For both figures, their clusters and misclassified points are separated by the 

shape; diamond points for cluster 1, square points for cluster 2, triangle points for 

cluster 3 and circle points for misclassified points.    

These two figures show the effect of scaling vector on clustering iris dataset. 

The first cluster which gathers at the bottom-left of the figure represents the diamond 

class (class 1), the second cluster in the middle represents the square class (class 2) 

and the last cluster which is on the top represents the triangle class (class 3). In the 

figure 4.3, there are 16 points that are misclassified (circle points) or around 10.67%. 

While after applying scaling vector as shown in the figure 4.4, the location and ratio 

of each data point has changed and also affected the clustering. The centroids have 

been moved and some elements change the cluster. We find that there are only 6 

points (which is 4%) that are still misclassified and the error is effectively decreasing.

Another factor that we analyze is the difference between cyclic coordinate 

method and Hooke and Jeeves method which are used to optimizing attribute-scaling 

vectors. Both give the same optimal vector and the misclassification error. There is 
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only one difference between two algorithms which is the time using for both 

algorithms. Hooke and Jeeves method adds another search called pattern search. 

However after the experiment on iris dataset, the result shows slower running time as 

we see in the figure 4.5, while the optimal solution is the same.  

Fig.4.5 The graph of time used for cyclic coordinate method and Hooke and 

Jeeves method on Iris data set.

As seen in the figure, the running time used for Hooke and Jeeves method is 

larger than the running time for cyclic coordinate method about 20-25%. Both 

methods use only few iterations determining the optimal scaling vector. Therefore, 

Hooke and Jeeves method eventually uses more time due to additional pattern search.

The final analysis on iris dataset is the effect of the number of clusters for the 

supervised K-means algorithms. Normally, the bigger number of clusters should lead 

to less misclassification error due to the fact that the new cluster may group the 

minority data points that contain no other class. However this assumption may not 
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hold. The result of supervised K-means clustering with applying attribute-scaling 

vectors varied by the number of clusters for the iris dataset is shown in the figure 4.6 

Fig.4.6 The misclassification error on iris dataset varied by the number of 

clusters

Figure 4.6 shows the fluctuation of the error when the numbers of clusters are 

small. As the number of clusters increases, the error decreases.

Iris dataset is a good example that can be classified by clustering. As previous 

result shows that our algorithms can effectively classify those three target class much 

more effectively. There is a research that introduced similar supervised K-means 

clustering with other approach on finding the attribute-scaling vector. Al-Harbi and 

Rayward-Smith [21] suggested Simulated Annealing to optimize the vector and 

perform the experiment on Pima-Indians diabetes dataset with the number of cluster   

k = 2. Their work had partitioned the dataset into 2 sets with the ratio 80:20, the 

former for training set and the latter for test set, which is the same as our experiment. 

Then, we compare the result from our algorithms to the result provided in that paper.
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Clustering on Pima-Indians diabetes dataset with K-means algorithm without 

any modification gives the misclassification error of 0.3398 or around 34%. In the 

figure 4.7, we show the misclassification error from applying attribute-scaling vector 

on 5 sets of experiment in both algorithms compared with the error from K-means 

clustering without scaling vector on the same training sets.

Fig.4.7 Misclassification error on Pima-Indians diabetes training set with k = 2

As shown in the figure, the reduction rate of error is not much as the rate from 

iris dataset, about 28-30% of the error. With the information of result in Al-Harbi and 

Rayward-Smith work, we compare our results to theirs as seen in the table 4.11.
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Supervised K-means clusteringC4.5

Simulated 

Annealing

Cyclic coordinate Hooke and Jeeves

Average 0.24767 Average 0.24767Pima-Indians 

Diabetes

0.2631 0.2476

Min 0.23491 Min 0.23491

Table 4.11 The error from the training set in each algorithm

For the table, C4.5 is a classification algorithm used to generate a decision tree 

developed by Ross Quinlan [36] and was considered as one of the effective classifiers. 

So Al-Harbi and Rayward-Smith use it to compare the result of their algorithm with 

the result from C4.5. In order to check the validity of these attribute-scaling vectors as 

a model for classification, we will evaluate with the test set (the other 20% of dataset) 

and see the result. The evaluation result is seen in the figure 4.8.

Fig.4.8 Misclassification error on Pima-Indians diabetes test set with k = 2
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As seen in the figure 4.8, there are several experiments that our attribute-

scaling vectors have the same misclassification error. This can be explained by 

uniform partition of dataset that fail to maintain the same target class distribution in 

the test set. We also compare the results to other algorithms in the table 4.12

Supervised K-means clusteringC4.5

Simulated 

Annealing

Cyclic coordinate Hooke and Jeeves

Average 0.30218 Average 0.30218Pima-

Indians 

Diabetes

0.2850 0.2536

Min 0.26452 Min 0.26452

               

Table 4.12 The error from the test set in each algorithm

Our work gives a slightly worse misclassification error than simulated 

annealing. Since the report about running time of simulated annealing is unavailable, 

we cannot compare and conclude about the running time between our works and 

theirs.

The time using for both algorithms in Pima-Indians diabetes dataset has the 

same trend as the time in iris dataset. The running time of Hooke and Jeeves method 

is larger than the running time of cyclic coordinate method about 10-15%. Again, the 

algorithms use only few rounds of iterations in finding the optimal attribute-scaling 

vector, so Hooke and Jeeves method cannot accelerate the multidimensional search 

and end up spend more time due to the additional pattern search. See the figure 4.9 for 

time comparison between two methods.
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Fig.4.9 The graph of time used for cyclic coordinate method and Hooke and 

Jeeves method on Pima-Indians diabetes data set.

The rest of datasets do not show significant improvement on test set. Ecoli 

dataset is a dataset that gives a low misclassification error (around 18-23℅), 

suggesting that this dataset might works well with supervised K-means clustering with 

applying attribute-scaling vector. And our algorithms also give the vector that 

provides lower error. See the figure 4.10 for error comparison between supervised K-

means algorithm without scaling vector and with scaling vector.  
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Fig.4.10 Misclassification error on Ecoli training set with k = 8 

Our algorithms can provide the vectors that reduce the misclassification error 

from around 18-23℅ to 14-16℅ and look promising to adapt the supervised K-means 

clustering model. However, after we evaluate the vectors to their respectively test 

sets, we find these unsatisfying results as shown in the figure 4.11.
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Fig.4.11 Misclassification error on Ecoli test set with k = 8

As seen in the figure 4.11, we see higher errors in the test sets on most of 

experiments. The reasons behind this failure might be the test set does not maintain 

the distribution of class and the dataset itself is imbalance which cause the test set fail 

to be a candidate evaluation dataset.   

Other examples are the datasets of which clustering has a conflict with 

classification. The result from the experiment with glass dataset shows that supervised 

K-means clustering do not work well with this dataset. Even though our algorithms 

eventually reduce the number of error, the result is still hardly acceptable to be a 

successful method.  See the figure 4.12 for the error before and after apply attribute-

scaling vector we had trained in the training set of glass dataset with k = 7.
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Fig.4.12 Misclassification error on Glass training set with k = 7 

Our algorithms can reduce the misclassification error on the training set 

around 10%; however, the misclassification error after applying attribute-scaling 

vectors is still high.(around 40% of the dataset) This suggests that this dataset is not 

suitable for supervised K-means clustering. The results when we evaluate with the test 

set of their respective training set also show unsatisfying misclassification error, see 

the figure 4.13 for the results.
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Fig.4.13 Misclassification error on Glass test set with k = 7 

From the figure 4.13, three out of five experiments give the error from 

supervised K-means algorithm with scaling vector more than the error for supervised 

K-means algorithm without scaling vector. This may be interpreted that the 

classification model built by supervised K-means algorithm with attribute-scaling 

vector may not be suitable for glass dataset. 

Another example of dataset that supervised K-means clustering does not work 

is abalone dataset which also gives a high misclassification error with supervised K-

means algorithm. After we apply our algorithms finding an attribute-scaling vector, 

the vector reduces the error only a little compared with the previous error as shown in 

the figure 4.14.
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Fig.4.14 Misclassification error on Abalone training set with k = 4

From the figure 4.14, the reduction rate we retrieve after applying attribute-

scaling vector is very low compared with supervised K-means clustering without 

scaling vector. Moreover, the error is still too high to be considered acceptable for this 

data set. To confirm this, we evaluate the model from scaling vector with the test set 

to see how well the model fits its data. The result is seen in the figure 4.15.
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Fig.4.15 Misclassification error on Abalone test set with k = 4

From the figure 4.15, we find that our attribute-scaling vectors have lower 

misclassification error but these errors are too high (above 40%). This leads to the 

conclusion that abalone dataset is not suitable to apply supervised K-means clustering. 

With the results from the experiments, the conclusion is discussed in the next 

chapter. The details of results from the experiments that were omitted are reported in 

Appendix.



CHAPTER V
CONCLUSION 

5.1 Conclusion

Our experiments show that our algorithm can successfully reduce the 

misclassification error and give the effective supervised K-means clustering in two 

datasets, i.e. iris and Pima-Indians diabetes. The errors from algorithms with the 

cyclic coordinate and Hooke and Jeeves method in these two datasets are decreasing 

from the K-means clustering. On the other hand, the algorithm seems not to work well 

on the other datasets, glass, ecoli, and abalone. The success on the first two datasets 

may come from the characteristic of datasets themselves that their clustering are 

suitable for classification concept by having low distance function value among the 

data points in the same class and high value among the data points in the different 

class. So supervised K-means clustering with attribute-scaling vector can be applied 

and classified effectively. When we apply our algorithm to these datasets, the optimal 

vector we got will emphasis the attributes that can separate data points in the different 

class to different cluster and lead to the better clustering. For the other three datasets, 

the experiments show that they are not suitable to apply supervised K-means 

clustering and even though our algorithms can reduce the misclassification errors, 

they are still too high to be acceptable. 

In order to determine future data set that can apply supervised K-means cluster 

with our attribute-scaling vector, we apply a measure called “Entropy” [37]. Entropy 

is a measure that determines the disorder of the group of data. In this case, the sets to 

be considered are the data clusters from K-means clustering without scaling vector. 

Since the misclassification error depends on the number of misclassified data point in 

each cluster, the value of cluster entropy will show the purity of data points in each 

cluster. The formula of the entropy is defined as :

2( ) ( ) log ( )i j i j
j T

H i p Class p Class


 
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where H(i) is an entropy of cluster i. T is the set of target class. pi(Classj) is the 

ratio of the data point with class j in cluster i. 

If the entropy is high, it implies that each cluster will contain many 

misclassified points. This eventually gives the high error even though it will be 

reduced later by auto-scaling algorithm. Iris and Pima-Indians datasets give the value 

of cluster entropy less than 1 in every cluster (see table 5.1) while the entropy of 

cluster in glass and abalone data set are more than 1 in most clusters. Ecoli data set 

which is a data set that is good only in the training set give a couple clusters that their 

entropy is more than 1. From this measure, we conclude that the data set in which 

every cluster entropy is less than 1 can be applied in supervised K-means clustering 

effectively.

Cluster 1 2 3 4 5 6 7 8
Iris 0 0.3088 0.3912 0
Pima-Indians 0.9987 0.8835
Glass 0 1.4374 0.5159 1.4591 1.6405 0 1.5452
Abalone 1.9909 1.1989 1.8283 1.3615
Ecoli 0.1485 0.5189 0.1654 0.6030 1.9610 0.4855 0.8325 1.2025

Table 5.1 The entropy of each cluster after performing K-means clustering

Another conclusion that we have is that both cyclic coordinate method and 

Hooke and Jeeves method give the same solution or the same attribute-scaled vector. 

This means that pattern search direction may not help in this problem domain. One of 

the possible reasons is that there is a small number of iterations in most experiments 

before reaching the optimal solution; therefore, there is no iteration for Hooke and 

Jeeves method to skip. So, the number of line searches is not reduced. And with the 

addition of the pattern search in each iteration, the time used for Hooke and Jeeves 

method is more than the time used for cyclic coordinate. 

Finally, changing the number of clusters does not provide any obvious trends 

for a better attribute-scaled vector. We can use the number of clusters on K-means 

clustering to be equal to the number of class since more number of clusters does not 

have a significant improvement on the misclassification error.
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5.2 Future work

The similarity of this thesis and Al-Harbi and Rayward Smith is using the 

same Euclidean distance function with the similar multiplication of attribute-scaled 

vector. This supervised K-means clustering may work better if applying other distance 

function such as Manhattan distance function. Moreover, we can extend the problem 

by multiplying weight matrix (n × n) to the distance metric [38]. Another extension 

will be to change the metric from Euclidean distance to Mahalanobis distance [39] 

which contains the correlation between variables. This will change the n-dimensional 

optimization problem to be n2-dimensional problem. 

Another choice of improvement is changing the optimization techniques to be 

able to find an optimal vector faster or determining the global optimal. There are 

many derivative-free optimization techniques that can be used for this direction.

After further improvements on this technique, we can apply this as an 

automatic scaling technique using in data pre-processing. Instead of spending time to 

manually scale the value of dataset or using the typical data normalization, we can let 

the machine to automatically scale the data into the suitable range according to the 

provided target class.  
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APPENDIX
THE EXPERIMENT RESULTS 

MATLAB 7.0 is used as a tool to implement thanks to the existing K-means 

algorithm on its statistic toolbox, while the experiments are performed through 

Pentium core2duo 2.13 GHz processer with 1GB RAM memory.

Databases for this thesis are gathering from UCI repository, which are iris data, 

pima-Indian diabetes data, glass data, abalone data and ecoli data. All of these 

datasets are numerical and have no missing value. Moreover, they all have low 

numbers of data points and attributes. 

Data is partitioned with the ratio 80 : 20, using 80% of data set as the training 

set and the rest of data set is the test set. We also evaluate the whole data based on the 

trained model. The experiments are then repeated for 5 different partitions with 

uniform sampling.

Since we investigate the effect of the number of clusters on our method, more 

experiments with various numbers of clusters are performed. For the iris dataset, it is 

set from k = 3 up to 10, 7-14 for glass dataset, 2-9 for Pima-Indians diabetes data, 4-

10 for abalone data and 8-15 for ecoli data. 



66

Results on Cyclic Coordinate Method

Iris dataset #1 with cyclic coordinate method
Error

#k Sepal 
length

Sepal 
width

Petal 
length

Petal 
width Training Pre-

Training Test Whole 
data

Running 
Time

3 0.000 0.000 0.609 1.810 0.04098 0.10656 0.00000 0.04000 2.1996

4 0.000 0.617 1.000 1.000 0.04918 0.08197 0.14286 0.06667 2.1372

5 0.000 0.617 1.157 4.554 0.04098 0.08197 0.00000 0.04000 3.6036

6 0.000 0.000 1.000 6.381 0.04918 0.09836 0.00000 0.05333 2.9328

7 1.000 7.743 4.022 6.180 0.02459 0.04098 0.00000 0.02667 3.0732

8 0.000 0.907 1.307 2.175 0.03279 0.04098 0.00000 0.04000 4.0092

9 1.000 1.000 1.000 1.000 0.04098 0.04098 0.07143 0.02667 1.6536

10 1.732 1.000 1.833 1.732 0.02459 0.04098 0.00000 0.03333 3.9312

Iris dataset #2 with cyclic coordinate method
Error

#k Sepal 
length

Sepal 
width

Petal 
length

Petal 
width Training Pre-

Training Test Whole 
data

Running 
Time

3 0.000 0.000 0.000 0.000 0.03906 0.10156 0.04546 0.04667 2.2152

4 0.183 0.000 0.561 1.000 0.03906 0.13281 0.04546 0.12000 2.3556

5 1.000 2.496 2.496 15.015 0.03125 0.13281 0.04546 0.04000 3.0108

6 0.000 2.088 1.000 4.051 0.03906 0.08594 0.09091 0.05333 3.6348

7 0.000 1.149 0.876 1.000 0.02344 0.08594 0.00000 0.02000 3.1512

8 1.785 1.000 1.000 4.068 0.03125 0.07813 0.04546 0.04667 3.8688

9 1.000 1.483 1.483 1.483 0.02344 0.05469 0.00000 0.02000 4.2276

10 0.000 0.218 0.244 0.887 0.03125 0.06250 0.04546 0.03333 3.9780
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Iris dataset #3 with cyclic coordinate method
Error

#k Sepal 
length

Sepal 
width

Petal 
length

Petal 
width Training Pre-

Training Test Whole 
data

Running 
Time

3 0.000 0.000 0.000 0.000 0.03906 0.10156 0.04546 0.04667 2.1684

4 0.183 0.000 0.561 1.000 0.03906 0.13281 0.04546 0.12000 2.2308

5 1.000 2.496 2.496 15.015 0.03125 0.13281 0.04546 0.04000 2.9172

6 0.000 2.088 1.000 4.051 0.03906 0.08594 0.09091 0.05333 3.6036

7 0.000 1.149 0.876 1.000 0.02344 0.08594 0.00000 0.02000 3.1200

8 1.785 1.000 1.000 4.068 0.03125 0.07813 0.04546 0.04667 3.8064

9 1.000 1.483 1.483 1.483 0.02344 0.05469 0.00000 0.02000 4.1340

10 0.000 0.218 0.244 0.887 0.03125 0.06250 0.04546 0.03333 3.9624

Iris dataset #4 with cyclic coordinate method
Error

#k Sepal 
length

Sepal 
width

Petal 
length

Petal 
width Training Pre-

Training Test Whole 
data

Running 
Time

3 0.000 0.000 0.000 0.000 0.01681 0.10924 0.16129 0.04000 2.2932

4 1.000 2.886 6.729 49.063 0.01681 0.12605 0.09677 0.05333 3.3696

5 2.160 0.000 1.000 1.773 0.09244 0.09244 0.16129 0.13333 2.1528

6 0.000 2.718 1.000 3.654 0.01681 0.09244 0.06452 0.06667 6.5676

7 1.652 1.000 2.987 5.301 0.01681 0.08403 0.06452 0.04000 2.8860

8 1.000 1.000 1.000 1.000 0.00840 0.00840 0.12903 0.02667 1.6692

9 0.000 1.008 1.175 1.000 0.00840 0.05882 0.09677 0.03333 3.8532

10 1.000 1.000 1.000 1.000 0.00840 0.00840 0.12903 0.03333 2.2152
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Iris dataset #5 with cyclic coordinate method
Error

#k Sepal 
length

Sepal 
width

Petal 
length

Petal 
width Training Pre-

Training Test Whole 
data

Running 
Time

3 0.000 0.000 0.068 0.156 0.06897 0.11207 0.00000 0.04000 2.3400

4 0.315 0.000 0.750 0.677 0.04310 0.11207 0.05882 0.08000 2.0280

5 0.000 0.258 0.357 1.214 0.04310 0.10345 0.00000 0.04000 2.3712

6 0.000 5.797 1.000 3.777 0.04310 0.10345 0.11765 0.07333 4.7424

7 1.139 2.314 1.000 1.523 0.00862 0.06035 0.08824 0.03333 3.4944

8 1.101 1.000 2.559 1.000 0.03448 0.05172 0.05882 0.06667 3.9624

9 1.000 1.000 1.000 1.000 0.01724 0.01724 0.02941 0.02667 1.9032

10 1.543 2.191 1.000 1.543 0.00862 0.01724 0.08824 0.04667 3.3540
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Glass Dataset #1 with cyclic coordinate method

# k Refractive 
index Sodium Mg Al. Silicon K. Calcium Barium Iron

7 0 0.9078 1 6.5559 1 1 1 1 1
8 0 1 2.7384 7.2699 0.9467 6.1486 1 9.7942 0.0001
9 0 1.6321 1 4.4792 1 1 1 1 1
10 0 1 5.8414 9.2536 1 13.09 1 1.1254 7.6067
11 0 0.5974 1 1 1.8486 2.8703 1 1 1
12 0 1.6241 1.1914 2.4274 1 1 1 2.3642 1
13 12.145 1 1 1 1 1 1 1 0
14 0 3.5592 2.8562 7.6369 3.4861 15.354 3.9829 9.9458 2.0834

Error
# k

Training Pre-
Training Test Whole data

Running 
Time

7 0.40571 0.48571 0.53846 0.44393 26.193
8 0.39429 0.45714 0.43590 0.40654 18.471
9 0.39429 0.48571 0.46154 0.46729 18.190
10 0.38857 0.48571 0.48718 0.44860 24.586
11 0.36571 0.38857 0.43590 0.47664 40.342
12 0.33714 0.41143 0.48718 0.45327 37.144
13 0.37143 0.37143 0.43590 0.42523 13.494
14 0.35429 0.39429 0.41026 0.39252 29.375

Glass Dataset #2 with cyclic coordinate method

# k
Refractive 

index Sodium Mg Al. Silicon K. Calcium Barium Iron

7 0.0001 0 1 6.9189 2.0292 0.0001 1 2.7903 9.9164
8 0 1 1 5.8242 1 1 1 2.9903 9.1324
9 0.0001 1 3.4969 3.6818 0 0.0001 0.8739 1 4.6839
10 0 3.4535 3.6217 12.987 1 1 1 3.4036 9.3459
11 0 1 6.2353 3.5342 1 2.2081 1 14.744 3.637
12 0.0001 1.896 13.295 11.903 0.9878 8.8517 1 0 0.0001
13 0.0001 1 11.676 8.7998 0 1 1.9845 1 0.0001
14 0 1 1 6.4186 2.0607 10.71 3.2798 1.7846 1

Error
# k

Training Pre-
Training Test Whole 

data

Running 
Time

7 0.43605 0.55814 0.33333 0.50935 35.568
8 0.41860 0.51163 0.38095 0.42991 25.257
9 0.41860 0.55233 0.28571 0.44393 38.688
10 0.41860 0.53488 0.30952 0.42991 25.803
11 0.40116 0.49419 0.28571 0.42991 29.515
12 0.40116 0.44767 0.28571 0.44393 28.938
13 0.39535 0.51163 0.23810 0.42523 34.991
14 0.41279 0.43605 0.21429 0.41589 23.416
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Glass Dataset #3 with cyclic coordinate method

# k
Refractive 

index Sodium Mg Al. Silicon K. Calcium Barium Iron

7 0.0001 0 1 6.9189 2.0292 0.0001 1 2.7903 9.9164
8 0 1 1 5.8242 1 1 1 2.9903 9.1324
9 0.0001 1 3.4969 3.6818 0 0.0001 0.8739 1 4.6839
10 0 3.4535 3.6217 12.987 1 1 1 3.4036 9.3459
11 0 1 6.2353 3.5342 1 2.2081 1 14.744 3.637
12 0.0001 1.896 13.295 11.903 0.9878 8.8517 1 0 0.0001
13 0.0001 1 11.676 8.7998 0 1 1.9845 1 0.0001
14 0 1 1 6.4186 2.0607 10.71 3.2798 1.7846 1

Error
# k

Training Pre-
Training Test Whole 

data

Running 
Time

7 0.43605 0.55814 0.33333 0.50935 35.319
8 0.41860 0.51163 0.38095 0.42991 25.132
9 0.41860 0.55233 0.28571 0.44393 38.127
10 0.41860 0.53488 0.30952 0.42991 25.428
11 0.40116 0.49419 0.28571 0.42991 29.359
12 0.40116 0.44767 0.28571 0.44393 28.767
13 0.39535 0.51163 0.23810 0.42523 34.913
14 0.41279 0.43605 0.21429 0.41589 23.260

Glass Dataset #4 with cyclic coordinate method

# k
Refractive 

index Sodium Mg Al. Silicon K. Calcium Barium Iron

7 0 1 4.7185 7.211 1 11.99 1 0.0001 6.7581
8 0.0001 1.2872 1 5.818 1 0 1 6.5239 1
9 0 5.5235 1 10.382 1.6793 1.0746 6.8486 4.2051 0.0001
10 0 1 2.5015 8.0569 1 3.2332 1 3.9936 8.8526
11 0.0001 2.8489 15.224 13.939 1 4.5608 7.4788 0 18.479
12 0 1.1063 2.7288 1 1 1 1 1 1
13 0 0.0001 3.7934 1 1 1 1 0.0001 0.9982
14 0 1 5.6506 9.2255 1 0.9999 1 5.6719 3.8996

Error
# k

Training Pre-
Training Test Whole 

data

Running 
Time

7 0.43605 0.55814 0.33333 0.50935 35.319
8 0.41860 0.51163 0.38095 0.42991 25.132
9 0.41860 0.55233 0.28571 0.44393 38.127
10 0.41860 0.53488 0.30952 0.42991 25.428
11 0.40116 0.49419 0.28571 0.42991 29.359
12 0.40116 0.44767 0.28571 0.44393 28.767
13 0.39535 0.51163 0.23810 0.42523 34.913
14 0.41279 0.43605 0.21429 0.41589 23.260
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Glass Dataset #5 with cyclic coordinate method

# k
Refractive 

index Sodium Mg Al. Silicon K. Calcium Barium Iron

7 0 0.3637 1 4.2392 1 1 1 4.2323 7.4046
8 0.0001 2.6477 4.8489 10.464 2.2134 1 3.6086 4.561 0
9 0 1.0048 1 2.1828 1 6.8135 2.4007 0.0001 1
10 0 0.0001 4.2513 1 1 1 1 1 7.1836
11 1 1 1 1 1 1 1 1 1
12 0 1 1 5.0206 3.1872 1 1 0.97 1
13 0 1 3.0322 1 1 1 3.5503 1 1
14 0 1 1 4.9609 1.8001 7.4725 1 1 1

Error
# k

Training Pre-
Training Test Whole 

data

Running 
Time

7 0.48619 0.53591 0.48485 0.46729 32.199
8 0.40331 0.54144 0.42424 0.43925 48.423
9 0.42541 0.44199 0.39394 0.44860 20.982
10 0.39227 0.42541 0.42424 0.51869 20.031
11 0.41436 0.41436 0.36364 0.42991 12.012
12 0.38122 0.40331 0.36364 0.47664 23.041
13 0.38122 0.42541 0.36364 0.43925 23.291
14 0.34807 0.41989 0.33333 0.40187 31.309
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Pima-Indians diabetes Dataset #1 with cyclic coordinate method

# 
k

Number 
of times 
pregnant

Plasma
glucose 

concentration

Diastolic 
blood 

pressure

Triceps 
skin fold 
thickness

2-Hour 
serum 
insulin

Body 
mass 
index

Diabetes 
pedigree 
function

Age

2 0 11.312 0 17.708 0.895 7.4489 0.6766 7.5813
3 8.9392 8.7412 0 0.0001 1 0.0001 0.0001 5.6293
4 3.1414 9.7649 11.318 4.6477 1 1 0 5.7837
5 7.5274 14.875 6.0108 1 2.8234 3.7837 0 5.9473
6 7.0103 7.3605 9.932 1.5353 1 14.054 0 2.7613
7 19.544 15.309 4.0998 0.0001 1 0 0.0001 12.344
8 0 17.701 0.0001 0.0001 0.9586 5.2765 0.0001 10.01
9 0 14.892 1 1.7516 1.0813 10.608 0.0001 7.5915

Error
# k

Training Pre-Training Test Whole data
Running 

Time

2 0.24960 0.34022 0.29496 0.25781 28.080
3 0.24483 0.34499 0.28058 0.25000 26.146
4 0.24960 0.33545 0.25899 0.25651 36.348
5 0.25437 0.33386 0.23741 0.25911 47.674
6 0.24960 0.31161 0.27338 0.25651 38.127
7 0.24324 0.30684 0.25899 0.25781 109.590
8 0.24642 0.29730 0.24460 0.25781 83.492
9 0.25119 0.30207 0.25180 0.25911 97.267

Pima-Indians diabetes Dataset #2 with cyclic coordinate method

# k
Number 
of times 
pregnant

Plasma
glucose 

concentration

Diastolic 
blood 

pressure

Triceps 
skin fold 
thickness

2-Hour 
serum 
insulin

Body 
mass 
index

Diabetes 
pedigree 
function

Age

2 0.0001 10.332 0.0001 15.273 1 0.9977 0.9918 0
3 14.049 8.3545 0.9989 6.095 1 7.5627 0 9.1034
4 13.16 8.6739 7.8553 2.2226 0.9404 13.879 0 1
5 0.9262 9.8098 5.7066 5.2204 1.0105 10.582 0 12.453
6 4.584 9.4339 7.4663 4.3731 1 11.52 0 10.826
7 22.175 12.144 1.9704 24.252 1.9704 15.161 1 5.5228
8 0 3.5673 0.4857 6.9448 1 5.1221 0.0001 7.996
9 1.8393 24.09 5.2438 1.8393 1.8393 1.8393 1 2.7279

Error
# k

Training Pre-Training Test Whole data
Running 

Time

2 0.24765 0.33072 0.33846 0.26563 29.281
3 0.24451 0.34483 0.23846 0.25260 24.664
4 0.24295 0.33229 0.25385 0.25260 35.506
5 0.24451 0.32132 0.23846 0.24870 82.119
6 0.23824 0.30721 0.23846 0.25000 65.068
7 0.23668 0.31505 0.26923 0.25651 69.046
8 0.23511 0.30408 0.27692 0.25521 72.650
9 0.24765 0.29310 0.25385 0.25391 70.403



73

Pima-Indians diabetes Dataset #3 with cyclic coordinate method

# k
Number 
of times 
pregnant

Plasma
glucose 

concentration

Diastolic 
blood 

pressure

Triceps 
skin fold 
thickness

2-Hour 
serum 
insulin

Body 
mass 
index

Diabetes 
pedigree 
function

Age

2 0.0001 10.332 0.0001 15.273 1 0.9977 0.9918 0
3 14.049 8.3545 0.9989 6.095 1 7.5627 0 9.1034
4 13.16 8.6739 7.8553 2.2226 0.9404 13.879 0 1
5 0.9262 9.8098 5.7066 5.2204 1.0105 10.582 0 12.453
6 4.584 9.4339 7.4663 4.3731 1 11.52 0 10.826
7 22.175 12.144 1.9704 24.252 1.9704 15.161 1 5.5228
8 0 3.5673 0.4857 6.9448 1 5.1221 0.0001 7.996
9 1.8393 24.09 5.2438 1.8393 1.8393 1.8393 1 2.7279

Error
# k

Training Pre-Training Test Whole data
Running 

Time

2 0.24765 0.33072 0.33846 0.26563 29.235
3 0.24451 0.34483 0.23846 0.25260 24.648
4 0.24295 0.33229 0.25385 0.25260 35.365
5 0.24451 0.32132 0.23846 0.24870 81.776
6 0.23824 0.30721 0.23846 0.25000 64.912
7 0.23668 0.31505 0.26923 0.25651 69.046
8 0.23511 0.30408 0.27692 0.25521 74.568
9 0.24765 0.29310 0.25385 0.25391 69.670

Pima-Indians diabetes Dataset #4 with cyclic coordinate method

# k
Number 
of times 
pregnant

Plasma
glucose 

concentration

Diastolic 
blood 

pressure

Triceps 
skin fold 
thickness

2-Hour 
serum 
insulin

Body 
mass 
index

Diabetes 
pedigree 
function

Age

2 0.0633 5.0134 0 0.0001 0.5076 15.287 0.0001 8.5433
3 0 7.7061 0.0001 1 0.89 0.9907 0.9644 11.424
4 3.1696 10.092 0 7.8915 1 7.5305 0.0001 10.972
5 9.0567 4.0916 4.1726 3.6589 1 9.4132 4.8055 8.764
6 1 4.3815 1 1 1 6.9382 0 0.0001
7 0 10.897 2.6559 2.8861 2.8761 15.671 0.0001 2.6083
8 5.033 7.3305 2.1853 8.4018 1 17.157 3.5265 14.431
9 7.7636 7.5938 1 9.7789 1 13.755 0 1

Error
# k

Training Pre-Training Test Whole data
Running 

Time

2 0.23491 0.34747 0.26452 0.24609 51.215
3 0.25122 0.34910 0.23871 0.25130 24.539
4 0.24633 0.34584 0.25161 0.24870 63.368
5 0.23817 0.30995 0.25161 0.25651 63.508
6 0.24633 0.31158 0.26452 0.25521 36.052
7 0.24633 0.31648 0.27742 0.25130 53.118
8 0.21860 0.30179 0.23871 0.23698 151.700
9 0.22838 0.30832 0.23226 0.26302 52.806
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Pima-Indians diabetes Dataset #5 with cyclic coordinate method

# k
Number 
of times 
pregnant

Plasma
glucose 

concentration

Diastolic blood 
pressure

Triceps 
skin fold 
thickness

2-Hour 
serum 
insulin

Body 
mass 
index

Diabetes 
pedigree 
function

Age

2 0 8.9167 1.0859 14.722 0.9464 12.322 0.0001 9.1623
3 0 13.803 5.2428 11.889 1.3038 0.9258 0.988 9.8319
4 1.2546 10.275 8.2872 7.7335 1 14.36 1.1146 1.1805
5 6.7903 6.827 1.7963 1 1 12.329 0 0.3267
6 5.9019 12.09 4.3684 1 1 0.9996 0 13.9
7 6.4421 12.252 2.7717 1 1 0.9721 0 1
8 2.042 5.3111 7.7227 9.785 1 6.0737 0 10.851
9 0 15.068 7.2482 1.7555 1 1 0.0001 0.9999

Error
# k

Training Pre-Training Test Whole data
Running 

Time

2 0.25854 0.35122 0.27451 0.26693 41.605
3 0.25854 0.36098 0.20261 0.25130 47.081
4 0.24553 0.34309 0.19608 0.25260 34.632
5 0.25366 0.30244 0.20915 0.25651 52.136
6 0.25528 0.31382 0.18301 0.25000 74.990
7 0.25854 0.31382 0.18954 0.25781 54.132
8 0.25041 0.29919 0.22222 0.27604 125.720
9 0.24878 0.29756 0.19608 0.25781 51.777
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Abalone Dataset #1 with cyclic coordinate method

# k Length Diameter Height Whole 
weight

Shucked 
weight

Viscera 
weight

Shell 
weight

4 13.059 19.078 28.079 1.9176 1.3487 1 27.12
5 0 2.1009 19.12 0.6876 0.0001 1.9728 10.971
6 37.461 51.733 28.297 9.8398 8.0071 1 127.65
7 3.3045 17.959 2.0333 1 2.6721 3.452 39.756
8 3.7323 0 5.486 0.252 1 17.137 17.559
9 1.1021 1 10.333 1 8.2707 5.1352 16.089
10 4.8415 5.858 12.951 0 2.8401 0.3648 7.471

Error
# k

Training Pre-Training Test Whole data
Running 

Time

4 0.48286 0.51625 0.50441 0.48791 456.54
5 0.47813 0.52482 0.49937 0.48288 460.33
6 0.47961 0.51212 0.49559 0.48719 529.14
7 0.47872 0.50739 0.50315 0.48408 867.01
8 0.47193 0.51300 0.50315 0.49701 642.30
9 0.46188 0.50768 0.48802 0.47474 1259.40
10 0.45833 0.51152 0.49306 0.47307 821.67

Abalone Dataset #2 with cyclic coordinate method

# k Length Diameter Height Whole 
weight

Shucked 
weight

Viscera 
weight

Shell 
weight

4 4.2758 0.0001 29.258 0 0.0001 0.9146 9.7525
5 3.489 12.009 2.8522 0.4732 0 3.5174 20.357
6 0.8589 16.394 1.4652 1 0 0.0001 19.023
7 1 13.72 10.257 1 0 1.9082 14.995
8 27.008 37.109 19.397 1 35.049 1.333 73.95
9 7.2405 1.8966 14.564 1 1.116 1.116 1.116
10 7.4082 1.0877 3.7893 1 1.7132 8.2176 12.356

Error
# k

Training Pre-Training Test Whole data
Running 

Time

4 0.48552 0.51655 0.47667 0.48863 833.50
5 0.48729 0.53221 0.47541 0.48480 618.87
6 0.49202 0.52009 0.47289 0.49390 602.44
7 0.49113 0.51300 0.47289 0.48839 1057.30
8 0.47872 0.51743 0.44388 0.48097 1280.70
9 0.48907 0.51537 0.48172 0.48839 530.47
10 0.47754 0.51596 0.45649 0.49437 1417.10
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Abalone Dataset #3 with cyclic coordinate method

# k Length Diameter Height Whole 
weight

Shucked 
weight

Viscera 
weight

Shell 
weight

4 5.925 8.6149 13.7 0.0001 0.0001 0 12.041
5 3.5006 10.883 0.0001 0.3618 0 0.9997 17.042
6 7.3533 7.2209 1.2721 1.7069 1 2.9012 20.343
7 0.9287 8.1773 0.0001 0 0.0001 3.6278 21.085
8 6.4845 5.7469 15.718 1.3598 14.819 1 31.951
9 11.351 11.973 7.517 0 9.0245 7.5946 19.003
10 7.8134 8.844 17.887 1.2273 4.2976 1 8.9629

Error
# k

Training Pre-Training Test Whole data
Running 

Time

4 0.49255 0.52443 0.46285 0.48887 317.91
5 0.49225 0.53367 0.44823 0.48456 565.38
6 0.49315 0.52145 0.46285 0.48671 606.44
7 0.48927 0.51579 0.46529 0.48312 325.65
8 0.47765 0.51907 0.46650 0.47570 514.35
9 0.50328 0.51847 0.47016 0.47785 1053.50
10 0.47735 0.51996 0.44336 0.47283 1078.00

Abalone Dataset #4 with cyclic coordinate method

# k Length Diameter Height Whole 
weight

Shucked 
weight

Viscera 
weight

Shell 
weight

4 19.818 1.7678 21.503 1 2.7071 1.7676 31.23
5 1 0 16.794 0.0001 1 3.5146 17.055
6 0.6196 2.5847 13.023 0.0007 0.0004 0 15.579
7 16.34 0 9.7004 1.7291 0.9998 2.8645 19.386
8 4.2118 18.318 12.223 1.2218 1 1.0492 25.018
9 0 1.304 0.0001 0.3745 9.7037 6.4624 18.546
10 28.768 3.4657 28.375 1 3.8052 3.8052 24.521

Error
# k

Training Pre-Training Test Whole data
Running 

Time

4 0.49035 0.51469 0.49134 0.49102 373.37
5 0.48115 0.52894 0.48144 0.48504 455.35
6 0.48917 0.51410 0.48144 0.48504 601.10
7 0.49124 0.51113 0.49257 0.49318 672.26
8 0.48442 0.51083 0.48639 0.48719 1019.10
9 0.46661 0.51172 0.45545 0.47498 1522.30
10 0.47136 0.51291 0.48515 0.49078 826.01
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Abalone Dataset #5 with cyclic coordinate method

# k Length Diameter Height Whole 
weight

Shucked 
weight

Viscera 
weight

Shell
weight

4 3.1605 13.783 15.346 0.8669 0 3.5166 16.075
5 5.8246 11.347 20.231 0 0.0001 4.7016 21.344
6 0 5.4619 17.912 0.4737 0.3824 2.8352 14.257
7 2.4614 5.075 58.221 1 15.038 12.267 26.783
8 8.1618 0 0.0001 1.4688 1.0065 0.9985 17.232
9 7.4963 7.3062 0 0.5228 8.7495 9.4012 16.904
10 7.1902 11.495 15.265 14.578 4.7501 0 1

Error
# k

Training Pre-Training Test Whole data
Running 

Time

4 0.49676 0.51942 0.46983 0.48863 456.15
5 0.48558 0.53149 0.47240 0.48384 563.91
6 0.48852 0.51383 0.46727 0.48695 439.92
7 0.47528 0.51001 0.47240 0.50467 862.17
8 0.48764 0.51236 0.47368 0.48935 616.31
9 0.47028 0.51089 0.44544 0.47881 1079.70
10 0.50471 0.51207 0.50449 0.51017 706.95
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Ecoli Dataset #1 with cyclic coordinate method

# k Mcg Gvh Lip Chg Acc Alm1 Alm2

8 0.6708 0.8238 2.8795 0 1 1 0.7894
9 1.3657 1 1 0 1 1.2766 0.6889
10 1.5182 1 1.3653 1.4271 1.3653 1.179 1.3653
11 3.0664 1.9167 1 5.2342 1.7949 2.1234 1.1684
12 1 0.9629 7.1769 0 1.7343 1 1.0848
13 1.0369 1.032 1.032 4.5661 1.032 1 1.0319
14 1.178 1.178 1 5.0193 1.178 1.3568 1.2173
15 3.2016 1 1 0 0.9587 1 0.5999

Error
# k

Training Pre-Training Test Whole data
Running 
Time

8 0.13718 0.17329 0.41026 0.18750 24.913
9 0.18051 0.19495 0.42308 0.16964 18.486
10 0.15162 0.18051 0.39744 0.16071 22.761
11 0.13718 0.17690 0.39744 0.16369 34.835
12 0.15162 0.19856 0.42308 0.17262 34.086
13 0.12635 0.15523 0.37179 0.17857 25.678
14 0.11191 0.13718 0.39744 0.19048 43.524
15 0.15162 0.17690 0.41026 0.17560 48.626

Ecoli Dataset #2 with cyclic coordinate method

# k Mcg Gvh Lip Chg Acc Alm1 Alm2

8 1.468 1.0928 1 4.1087 1.0997 1.1934 1.3186
9 2.2337 1.0889 6.318 0 1.7079 1 1.738
10 0.9963 0.7353 0.5491 0.0001 1.2759 1.6497 0
11 1.3758 0.5256 1 0 1.3423 1.1518 0.6572
12 2.2636 1.159 1 3.8914 1.0664 1.2084 1.2644
13 1.1963 1.0976 3.7448 8.4239 1.7551 1.0976 1
14 1.6447 1.3242 1.8016 6.1208 1.7909 1 1.8013
15 322.09 209.83 123.82 1 239.61 201.02 239.61

Error
# k

Training Pre-Training Test Whole data
Running 
Time

8 0.16245 0.22744 0.39744 0.16667 26.302
9 0.16606 0.22022 0.39744 0.20833 35.100
10 0.14440 0.20939 0.43590 0.18155 54.975
11 0.15884 0.17690 0.42308 0.17262 32.245
12 0.13718 0.17690 0.39744 0.16071 33.259
13 0.13357 0.20217 0.38462 0.15476 54.429
14 0.10469 0.12996 0.38462 0.14583 24.757
15 0.11552 0.13357 0.38462 0.15179 33.665
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Ecoli Dataset #3 with cyclic coordinate method

# k Mcg Gvh Lip Chg Acc Alm1 Alm2

8 1 1.22 9.4084 0 0.9421 0.9995 1
9 1.5913 1 0 0.0001 1.0206 1 0.5753
10 2.2351 1 0.4827 0.0001 0 1.716 0.9998
11 0.6102 1.008 7.6186 0 1.0878 0.8723 0.8377
12 2.4797 1.8585 1 0 1 1 1.177
13 0.9363 1.1741 4.9175 0 1.6857 1 1
14 1 1.3079 1.0291 1.3079 1.3079 1.3079 1.3079
15 1.9447 1.8338 1 1.8338 1.8331 1.8338 1.8338

Error
# k

Training Pre-Training Test Whole data
Running 
Time

8 0.14440 0.21661 0.32468 0.22024 12.558
9 0.13718 0.18773 0.29870 0.16369 28.611
10 0.17329 0.20939 0.29870 0.20536 29.484
11 0.14801 0.16606 0.27273 0.17560 31.746
12 0.16968 0.18773 0.28571 0.18452 19.750
13 0.12635 0.15162 0.29870 0.17560 48.938
14 0.13718 0.15884 0.31169 0.18155 22.948
15 0.12996 0.14440 0.29870 0.12798 25.584

Ecoli Dataset #4 with cyclic coordinate method

# k Mcg Gvh Lip Chg Acc Alm1 Alm2

8 1 2.2906 10.195 26.379 2.2906 2.2906 2.2906
9 1.3295 2.0757 9.7879 0 1.3708 1 1.3368
10 1 0.9484 6.5982 0 1.026 1 1.1579
11 1 1.0914 0.5948 0.00014 0.84777 1 0.9064
12 4.8698 8.2115 4.6992 1 8.2115 8.2115 8.2115
13 0.7257 0.2923 1 0 0.9389 0.8102 0.7578
14 2.4338 1 1.3765 4.8448 1.9428 1.6061 1.641
15 2.505 1.8566 3.9824 10.906 2.992 1.8566 1

Error
# k

Training Pre-Training Test Whole data
Running 
Time

8 0.11913 0.18051 0.34615 0.20536 15.04
9 0.13357 0.19495 0.26923 0.18452 35.209
10 0.11552 0.15162 0.35897 0.16964 29.344
11 0.13357 0.14079 0.32051 0.15774 15.975
12 0.10108 0.12635 0.26923 0.16071 18.034
13 0.12635 0.18051 0.26923 0.17857 44.398
14 0.11913 0.21300 0.23077 0.13988 46.878
15 0.11913 0.16606 0.25641 0.13690 34.133
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Ecoli Dataset #5 with cyclic coordinate method

# k Mcg Gvh Lip Chg Acc Alm1 Alm2

8 1.7933 1 1.4849 1.5419 1.1931 1.2059 1.5419
9 0.534 1 1 0 1 1 1
10 1.235 1 0.9995 0 1 1 1
11 2.0635 1.1114 1 3.3212 1 1 1
12 1.0668 1.0664 1.0664 4.0594 1 1.0664 1.0664
13 1.213 0.925 3.9604 0 1.2651 1 0.7563
14 1 1 1 2.6957 1 1.7917 1.0047
15 2.4585 1 1.0808 5.7633 1.2962 1.8634 1.0808

Error
# k

Training
Pre-
Training Test Whole data

Running 
Time

8 0.14079 0.20578 0.38462 0.19643 14.524
9 0.17690 0.18051 0.34615 0.16071 20.951
10 0.15523 0.15884 0.35897 0.15476 14.430
11 0.12274 0.15523 0.35897 0.17560 34.492
12 0.12274 0.14440 0.34615 0.13690 22.542
13 0.12635 0.13718 0.35897 0.16964 22.417
14 0.10830 0.12274 0.34615 0.15476 25.631
15 0.10830 0.18051 0.34615 0.13690 35.677
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Results on Hooke and Jeeves Method

Iris dataset #1 with Hooke and Jeeves method
Error

#k Sepal 
length

Sepal 
width

Petal 
length

Petal 
width Training Pre-

Training Test Whole 
data

Running 
Time

3 0.000 0.000 0.609 1.810 0.04098 0.10656 0.00000 0.04000 2.6052

4 0.000 0.617 1.000 1.000 0.04918 0.08197 0.14286 0.06667 2.5272

5 0.000 0.617 1.157 4.554 0.04098 0.08197 0.00000 0.04000 4.4616

6 0.000 0.000 1.000 6.381 0.04918 0.09836 0.00000 0.05333 3.6504

7 1.000 7.743 4.022 6.180 0.02459 0.04098 0.00000 0.02667 3.8064

8 0.000 0.907 1.307 2.175 0.03279 0.04098 0.00000 0.04000 4.9296

9 1.000 1.000 1.000 1.000 0.04098 0.04098 0.07143 0.02667 2.0436

10 1.732 1.000 1.833 1.732 0.02459 0.04098 0.00000 0.03333 4.6644

Iris dataset #2 with Hooke and Jeeves method
Error

#k Sepal 
length

Sepal 
width

Petal 
length

Petal 
width Training Pre-

Training Test Whole 
data

Running 
Time

3 0.000 0.000 0.000 0.000 0.03906 0.10156 0.04546 0.04667 2.652

4 0.183 0.000 0.561 1.000 0.03906 0.13281 0.04546 0.12000 3.0108

5 1.000 2.496 2.496 15.02 0.03125 0.13281 0.04546 0.04000 3.6192

6 0.000 2.088 1.000 4.051 0.03906 0.08594 0.09091 0.05333 4.6332

7 0.000 1.149 0.876 1.000 0.02344 0.08594 0.00000 0.02000 4.134

8 1.785 1.000 1.000 4.068 0.03125 0.07813 0.04546 0.04667 4.6488

9 1.000 1.483 1.483 1.483 0.02344 0.05469 0.00000 0.02000 5.148

10 0.000 0.218 0.244 0.887 0.03125 0.06250 0.04546 0.03333 4.8204
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Iris dataset #3 with Hooke and Jeeves method
Error

#k Sepal 
length

Sepal 
width

Petal 
length

Petal 
width Training Pre-

Training Test Whole 
data

Running 
Time

3 0.000 0.000 0.000 0.000 0.03906 0.10156 0.04546 0.04667 2.6208

4 0.183 0.000 0.561 1.000 0.03906 0.13281 0.04546 0.12000 3.0108

5 1.000 2.496 2.496 15.02 0.03125 0.13281 0.04546 0.04000 3.51

6 0.000 2.088 1.000 4.051 0.03906 0.08594 0.09091 0.05333 4.4772

7 0.000 1.149 0.876 1.000 0.02344 0.08594 0.00000 0.02000 4.0716

8 1.785 1.000 1.000 4.068 0.03125 0.07813 0.04546 0.04667 4.524

9 1.000 1.483 1.483 1.483 0.02344 0.05469 0.00000 0.02000 5.0388

10 0.000 0.218 0.244 0.887 0.03125 0.06250 0.04546 0.03333 4.7112

Iris dataset #4 with Hooke and Jeeves method
Error

#k Sepal 
length

Sepal 
width

Petal 
length

Petal 
width Training Pre-

Training Test Whole 
data

Running 
Time

3 0.000 0.000 0.000 0.000 0.01681 0.10924 0.16129 0.04000 2.7144

4 1.000 2.886 6.729 49.063 0.01681 0.12605 0.09677 0.05333 4.1652

5 2.160 0.000 1.000 1.773 0.09244 0.09244 0.16129 0.13333 2.5896

6 0.000 2.718 1.000 3.654 0.01681 0.09244 0.06452 0.06667 7.8

7 1.652 1.000 2.987 5.301 0.01681 0.08403 0.06452 0.04000 3.7596

8 1.000 1.000 1.000 1.000 0.00840 0.00840 0.12903 0.02667 2.1372

9 0.000 1.008 1.175 1.000 0.00840 0.05882 0.09677 0.03333 4.6488

10 1.000 1.000 1.000 1.000 0.00840 0.00840 0.12903 0.03333 2.8548
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Iris dataset #5 with Hooke and Jeeves method
Error

#k Sepal 
length

Sepal 
width

Petal 
length

Petal 
width Training Pre-

Training Test Whole 
data

Running 
Time

3 0.000 0.000 0.068 0.156 0.06897 0.11207 0.00000 0.04000 2.8704

4 0.315 0.000 0.750 0.677 0.04310 0.11207 0.05882 0.08000 2.5272

5 0.000 0.258 0.357 1.214 0.04310 0.10345 0.00000 0.04000 2.7612

6 0.000 5.797 1.000 3.777 0.04310 0.10345 0.11765 0.07333 5.7564

7 1.139 2.314 1.000 1.523 0.00862 0.06035 0.08824 0.03333 4.1184

8 1.101 1.000 2.559 1.000 0.03448 0.05172 0.05882 0.06667 4.6644

9 1.000 1.000 1.000 1.000 0.01724 0.01724 0.02941 0.02667 2.3868

10 1.543 2.191 1.000 1.543 0.00862 0.01724 0.08824 0.04667 4.2432
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Glass Dataset #1 with Hooke and Jeeves method

# k
Refractive 

index Sodium Mg Al. Silicon K. Calcium Barium Iron

7 0 0.9078 1 6.5559 1 1 1 1 1
8 0 1 2.7384 7.2699 0.9467 6.1486 1 9.7942 0.0001
9 0 1.6321 1 4.4792 1 1 1 1 1
10 0 1 5.8414 9.2536 1 13.09 1 1.1254 7.6067
11 0 0.5974 1 1 1.8486 2.8703 1 1 1
12 0 1.6241 1.1914 2.4274 1 1 1 2.3642 1
13 12.145 1 1 1 1 1 1 1 0
14 0 3.5592 2.8562 7.6369 3.4861 15.354 3.9829 9.9458 2.0834

Error
# k

Training Pre-
Training Test Whole 

data

Running 
Time

7 0.40571 0.48571 0.53846 0.44393 17.566
8 0.39429 0.45714 0.43590 0.40654 30.249
9 0.39429 0.48571 0.46154 0.46729 17.550
10 0.38857 0.48571 0.48718 0.44860 80.075
11 0.36571 0.38857 0.43590 0.47664 29.812
12 0.33714 0.41143 0.48718 0.45327 35.958
13 0.37143 0.37143 0.43590 0.42523 28.111
14 0.35429 0.39429 0.41026 0.39252 42.292

Glass Dataset #2 with Hooke and Jeeves method

# k
Refractive 

index Sodium Mg Al. Silicon K. Calcium Barium Iron

7 0.0001 0 1 6.9189 2.0292 0.0001 1 2.7903 9.9164
8 0 1 1 5.8242 1 1 1 2.9903 9.1324
9 0.0001 1 3.4969 3.6818 0 0.0001 0.8739 1 4.6839
10 0 3.4535 3.6217 12.987 1 1 1 3.4036 9.3459
11 0 1 6.2353 3.5342 1 2.2081 1 14.744 3.637
12 0.0001 1.896 13.295 11.903 0.9878 8.8517 1 0 0.0001
13 0.0001 1 11.676 8.7998 0 1 1.9845 1 0.0001
14 0 1 1 6.4186 2.0607 10.71 3.2798 1.7846 1

Error
# k

Training Pre-
Training Test Whole 

data

Running 
Time

7 0.43605 0.55814 0.33333 0.50935 35.568
8 0.41860 0.51163 0.38095 0.42991 25.257
9 0.41860 0.55233 0.28571 0.44393 38.688
10 0.41860 0.53488 0.30952 0.42991 25.803
11 0.40116 0.49419 0.28571 0.42991 29.515
12 0.40116 0.44767 0.28571 0.44393 28.938
13 0.39535 0.51163 0.23810 0.42523 34.991
14 0.41279 0.43605 0.21429 0.41589 23.416
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Glass Dataset #3 with Hooke and Jeeves method

# k
Refractive 

index Sodium Mg Al. Silicon K. Calcium Barium Iron

7 0.0001 0 1 6.9189 2.0292 0.0001 1 2.7903 9.9164
8 0 1 1 5.8242 1 1 1 2.9903 9.1324
9 0.0001 1 3.4969 3.6818 0 0.0001 0.8739 1 4.6839
10 0 3.4535 3.6217 12.987 1 1 1 3.4036 9.3459
11 0 1 6.2353 3.5342 1 2.2081 1 14.744 3.637
12 0.0001 1.896 13.295 11.903 0.9878 8.8517 1 0 0.0001
13 0.0001 1 11.676 8.7998 0 1 1.9845 1 0.0001
14 0 1 1 6.4186 2.0607 10.71 3.2798 1.7846 1

Error
# k

Training Pre-
Training Test Whole 

data

Running 
Time

7 0.43605 0.55814 0.33333 0.50935 41.028
8 0.41860 0.51163 0.38095 0.42991 28.033
9 0.41860 0.55233 0.28571 0.44393 43.150
10 0.41860 0.53488 0.30952 0.42991 27.987
11 0.40116 0.49419 0.28571 0.42991 32.292
12 0.40116 0.44767 0.28571 0.44393 32.074
13 0.39535 0.51163 0.23810 0.42523 38.392
14 0.41279 0.43605 0.21429 0.41589 25.584

Glass Dataset #4 with Hooke and Jeeves method

# k
Refractive 

index Sodium Mg Al. Silicon K. Calcium Barium Iron

7 0 1 4.7185 7.211 1 11.99 1 0.0001 6.7581
8 0.0001 1.2872 1 5.818 1 0 1 6.5239 1
9 0 5.5235 1 10.382 1.6793 1.0746 6.8486 4.2051 0.0001
10 0 1 2.5015 8.0569 1 3.2332 1 3.9936 8.8526
11 0.0001 2.8489 15.224 13.939 1 4.5608 7.4788 0 18.479
12 0 1.1063 2.7288 1 1 1 1 1 1
13 0 0.0001 3.7934 1 1 1 1 0.0001 0.9982
14 0 1 5.6506 9.2255 1 0.9999 1 5.6719 3.8996

Error
# k

Training Pre-Training Test Whole data
Running 

Time

7 0.43605 0.55814 0.33333 0.50935 16.817
8 0.41860 0.51163 0.38095 0.42991 39.250
9 0.41860 0.55233 0.28571 0.44393 33.103
10 0.41860 0.53488 0.30952 0.42991 32.323
11 0.40116 0.49419 0.28571 0.42991 35.443
12 0.40116 0.44767 0.28571 0.44393 38.626
13 0.39535 0.51163 0.23810 0.42523 19.968
14 0.41279 0.43605 0.21429 0.41589 39.375
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Glass Dataset #5 with Hooke and Jeeves method

# k
Refractive 

index Sodium Mg Al. Silicon K. Calcium Barium Iron

7 0 0.3637 1 4.2392 1 1 1 4.2323 7.4046
8 0.0001 2.6477 4.8489 10.464 2.2134 1 3.6086 4.561 0
9 0 1.0048 1 2.1828 1 6.8135 2.4007 0.0001 1
10 0 0.0001 4.2513 1 1 1 1 1 7.1836
11 1 1 1 1 1 1 1 1 1
12 0 1 1 5.0206 3.1872 1 1 0.97 1
13 0 1 3.0322 1 1 1 3.5503 1 1
14 0 1 1 4.9609 1.8001 7.4725 1 1 1

Error
# k

Training Pre-
Training Test Whole 

data

Running 
Time

7 0.48619 0.53591 0.48485 0.46729 36.223
8 0.40331 0.54144 0.42424 0.43925 52.541
9 0.42541 0.44199 0.39394 0.44860 22.667
10 0.39227 0.42541 0.42424 0.51869 22.667
11 0.41436 0.41436 0.36364 0.42991 12.854
12 0.38122 0.40331 0.36364 0.47664 25.288
13 0.38122 0.42541 0.36364 0.43925 26.037
14 0.34807 0.41989 0.33333 0.40187 33.774
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Pima-Indians diabetes Dataset #1 with Hooke and Jeeves method

# k
Number 
of times 
pregnant

Plasma
glucose 

concentration

Diastolic 
blood 

pressure

Triceps 
skin fold 
thickness

2-Hour 
serum 
insulin

Body 
mass 
index

Diabetes 
pedigree 
function

Age

2 0 11.312 0 17.708 0.895 7.4489 0.6766 7.5813
3 8.9392 8.7412 0 0.0001 1 0.0001 0.0001 5.6293
4 3.1414 9.7649 11.318 4.6477 1 1 0 5.7837
5 7.5274 14.875 6.0108 1 2.8234 3.7837 0 5.9473
6 7.0103 7.3605 9.932 1.5353 1 14.054 0 2.7613
7 19.544 15.309 4.0998 0.0001 1 0 0.0001 12.344
8 0 17.701 0.0001 0.0001 0.9586 5.2765 0.0001 10.01
9 0 14.892 1 1.7516 1.0813 10.608 0.0001 7.5915

Error
# k

Training Pre-Training Test Whole data
Running 

Time

2 0.24960 0.34022 0.29496 0.25781 30.763
3 0.24483 0.34499 0.28058 0.25000 29.001
4 0.24960 0.33545 0.25899 0.25651 40.295
5 0.25437 0.33386 0.23741 0.25911 55.458
6 0.24960 0.31161 0.27338 0.25651 42.479
7 0.24324 0.30684 0.25899 0.25781 122.070
8 0.24642 0.29730 0.24460 0.25781 96.112
9 0.25119 0.30207 0.25180 0.25911 110.930

Pima-Indians diabetes Dataset #2 with Hooke and Jeeves method

# k
Number 
of times 
pregnant

Plasma
glucose 

concentration

Diastolic 
blood 

pressure

Triceps 
skin fold 
thickness

2-Hour 
serum 
insulin

Body 
mass 
index

Diabetes 
pedigree 
function

Age

2 0.0001 10.332 0.0001 15.273 1 0.9977 0.9918 0
3 14.049 8.3545 0.9989 6.095 1 7.5627 0 9.1034
4 13.16 8.6739 7.8553 2.2226 0.9404 13.879 0 1
5 0.9262 9.8098 5.7066 5.2204 1.0105 10.582 0 12.453
6 4.584 9.4339 7.4663 4.3731 1 11.52 0 10.826
7 22.175 12.144 1.9704 24.252 1.9704 15.161 1 5.5228
8 0 3.5673 0.4857 6.9448 1 5.1221 0.0001 7.996
9 1.8393 24.09 5.2438 1.8393 1.8393 1.8393 1 2.7279

Error
# k

Training Pre-Training Test Whole data
Running 

Time

2 0.24765 0.33072 0.33846 0.26563 31.918
3 0.24451 0.34483 0.23846 0.25260 27.129
4 0.24295 0.33229 0.25385 0.25260 42.619
5 0.24451 0.32132 0.23846 0.24870 90.262
6 0.23824 0.30721 0.23846 0.25000 71.620
7 0.23668 0.31505 0.26923 0.25651 80.091
8 0.23511 0.30408 0.27692 0.25521 81.011
9 0.24765 0.29310 0.25385 0.25391 77.142
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Pima-Indians diabetes Dataset #3 with Hooke and Jeeves method

# k
Number 
of times 
pregnant

Plasma
glucose 

concentration

Diastolic 
blood 

pressure

Triceps 
skin fold 
thickness

2-Hour 
serum 
insulin

Body 
mass 
index

Diabetes 
pedigree 
function

Age

2 0.0001 10.332 0.0001 15.273 1 0.9977 0.9918 0
3 14.049 8.3545 0.9989 6.095 1 7.5627 0 9.1034
4 13.16 8.6739 7.8553 2.2226 0.9404 13.879 0 1
5 0.9262 9.8098 5.7066 5.2204 1.0105 10.582 0 12.453
6 4.584 9.4339 7.4663 4.3731 1 11.52 0 10.826
7 22.175 12.144 1.9704 24.252 1.9704 15.161 1 5.5228
8 0 3.5673 0.4857 6.9448 1 5.1221 0.0001 7.996
9 1.8393 24.09 5.2438 1.8393 1.8393 1.8393 1 2.7279

Error
# k

Training Pre-Training Test Whole data
Running 

Time

2 0.24765 0.33072 0.33846 0.26563 31.965
3 0.24451 0.34483 0.23846 0.25260 27.129
4 0.24295 0.33229 0.25385 0.25260 42.713
5 0.24451 0.32132 0.23846 0.24870 90.293
6 0.23824 0.30721 0.23846 0.25000 71.324
7 0.23668 0.31505 0.26923 0.25651 80.434
8 0.23511 0.30408 0.27692 0.25521 81.058
9 0.24765 0.29310 0.25385 0.25391 77.673

Pima-Indians diabetes Dataset #4 with Hooke and Jeeves method

# k
Number 
of times 
pregnant

Plasma
glucose 

concentration

Diastolic 
blood 

pressure

Triceps 
skin fold 
thickness

2-Hour 
serum 
insulin

Body 
mass 
index

Diabetes 
pedigree 
function

Age

2 0.0633 5.0134 0 0.0001 0.5076 15.287 0.0001 8.5433
3 0 7.7061 0.0001 1 0.89 0.9907 0.9644 11.424
4 3.1696 10.092 0 7.8915 1 7.5305 0.0001 10.972
5 9.0567 4.0916 4.1726 3.6589 1 9.4132 4.8055 8.764
6 1 4.3815 1 1 1 6.9382 0 0.0001
7 0 10.897 2.6559 2.8861 2.8761 15.671 0.0001 2.6083
8 5.033 7.3305 2.1853 8.4018 1 17.157 3.5265 14.431
9 7.7636 7.5938 1 9.7789 1 13.755 0 1

Error
# k

Training Pre-Training Test Whole data
Running 

Time

2 0.23491 0.34747 0.26452 0.24609 57.190
3 0.25122 0.34910 0.23871 0.25130 27.690
4 0.24633 0.34584 0.25161 0.24870 71.651
5 0.23817 0.30995 0.25161 0.25651 74.085
6 0.24633 0.31158 0.26452 0.25521 41.527
7 0.24633 0.31648 0.27742 0.25130 60.825
8 0.21860 0.30179 0.23871 0.23698 166.050
9 0.22838 0.30832 0.23226 0.26302 58.984
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Pima-Indians diabetes Dataset #5 with Hooke and Jeeves method

# k
Number 
of times 
pregnant

Plasma
glucose 

concentration

Diastolic 
blood 

pressure

Triceps
skin fold 
thickness

2-Hour 
serum 
insulin

Body 
mass 
index

Diabetes 
pedigree 
function

Age

2 0 8.9167 1.0859 14.722 0.9464 12.322 0.0001 9.1623
3 0 13.803 5.2428 11.889 1.3038 0.9258 0.988 9.8319
4 1.2546 10.275 8.2872 7.7335 1 14.36 1.1146 1.1805
5 6.7903 6.827 1.7963 1 1 12.329 0 0.3267
6 5.9019 12.09 4.3684 1 1 0.9996 0 13.9
7 6.4421 12.252 2.7717 1 1 0.9721 0 1
8 2.042 5.3111 7.7227 9.785 1 6.0737 0 10.851
9 0 15.068 7.2482 1.7555 1 1 0.0001 0.9999

Error
# k

Training Pre-Training Test Whole 
data

Running 
Time

2 0.25854 0.35122 0.27451 0.26693 44.460
3 0.25854 0.36098 0.20261 0.25130 51.012
4 0.24553 0.34309 0.19608 0.25260 38.267
5 0.25366 0.30244 0.20915 0.25651 56.301
6 0.25528 0.31382 0.18301 0.25000 79.826
7 0.25854 0.31382 0.18954 0.25781 62.759
8 0.25041 0.29919 0.22222 0.27604 136.440
9 0.24878 0.29756 0.19608 0.25781 59.811
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Abalone Dataset #1 with Hooke and Jeeves method

# k Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight

4 13.059 19.078 28.079 1.9176 1.3487 1 27.12
5 0 2.1009 19.12 0.6876 0.0001 1.9728 10.971
6 37.461 51.733 28.297 9.8398 8.0071 1 127.65
7 3.3045 17.959 2.0333 1 2.6721 3.452 39.756
8 3.7323 0 5.486 0.252 1 17.137 17.559
9 1.1021 1 10.333 1 8.2707 5.1352 16.089
10 4.8415 5.858 12.951 0 2.8401 0.3648 7.471

Error
# k

Training Pre-Training Test Whole 
data

Running 
Time

4 0.48286 0.51625 0.50441 0.48791 517.75
5 0.47813 0.52482 0.49937 0.48288 591.17
6 0.47961 0.51212 0.49559 0.48719 656.90
7 0.47872 0.50739 0.50315 0.48408 966.11
8 0.47193 0.51300 0.50315 0.49701 685.75
9 0.46188 0.50768 0.48802 0.47474 1377.80
10 0.45833 0.51152 0.49306 0.47307 945.62

Abalone Dataset #2 with Hooke and Jeeves method

# k Length Diameter Height Whole 
weight

Shucked 
weight

Viscera 
weight

Shell 
weight

4 4.2758 0.0001 29.258 0 0.0001 0.9146 9.7525
5 3.489 12.009 2.8522 0.4732 0 3.5174 20.357
6 0.8589 16.394 1.4652 1 0 0.0001 19.023
7 1 13.72 10.257 1 0 1.9082 14.995
8 27.008 37.109 19.397 1 35.049 1.333 73.95
9 7.2405 1.8966 14.564 1 1.116 1.116 1.116
10 7.4082 1.0877 3.7893 1 1.7132 8.2176 12.356

Error
# k

Training Pre-Training Test Whole data
Running 

Time

4 0.48552 0.51655 0.47667 0.48863 517.75
5 0.48729 0.53221 0.47541 0.48480 591.17
6 0.49202 0.52009 0.47289 0.49390 656.90
7 0.49113 0.51300 0.47289 0.48839 966.11
8 0.47872 0.51743 0.44388 0.48097 685.75
9 0.48907 0.51537 0.48172 0.48839 1377.80
10 0.47754 0.51596 0.45649 0.49437 945.62
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Abalone Dataset #3 with Hooke and Jeeves method

# k Length Diameter Height Whole 
weight

Shucked 
weight

Viscera 
weight

Shell 
weight

4 5.925 8.6149 13.7 0.0001 0.0001 0 12.041
5 3.5006 10.883 0.0001 0.3618 0 0.9997 17.042
6 7.3533 7.2209 1.2721 1.7069 1 2.9012 20.343
7 0.9287 8.1773 0.0001 0 0.0001 3.6278 21.085
8 6.4845 5.7469 15.718 1.3598 14.819 1 31.951
9 11.351 11.973 7.517 0 9.0245 7.5946 19.003
10 7.8134 8.844 17.887 1.2273 4.2976 1 8.9629

Error
# k

Training Pre-Training Test Whole data
Running 

Time

4 0.49255 0.52443 0.46285 0.48887 361.30
5 0.49225 0.53367 0.44823 0.48456 679.60
6 0.49315 0.52145 0.46285 0.48671 800.53
7 0.48927 0.51579 0.46529 0.48312 428.02
8 0.47765 0.51907 0.46650 0.47570 677.03
9 0.50328 0.51847 0.47016 0.47785 1170.70
10 0.47735 0.51996 0.44336 0.47283 1243.80

Abalone Dataset #4 with Hooke and Jeeves method

# k Length Diameter Height Whole 
weight

Shucked 
weight

Viscera 
weight

Shell 
weight

4 19.818 1.7678 21.503 1 2.7071 1.7676 31.23
5 1 0 16.794 0.0001 1 3.5146 17.055
6 0.6196 2.5847 13.023 0.0007 0.0004 0 15.579
7 16.34 0 9.7004 1.7291 0.9998 2.8645 19.386
8 4.2118 18.318 12.223 1.2218 1 1.0492 25.018
9 0 1.304 0.0001 0.3745 9.7037 6.4624 18.546
10 28.768 3.4657 28.375 1 3.8052 3.8052 24.521

Error
# k

Training Pre-Training Test Whole data
Running 

Time

4 0.49035 0.51469 0.49134 0.49102 420.86
5 0.48115 0.52894 0.48144 0.48504 519.95
6 0.48917 0.51410 0.48144 0.48504 758.24
7 0.49124 0.51113 0.49257 0.49318 751.05
8 0.48442 0.51083 0.48639 0.48719 1179.60
9 0.46661 0.51172 0.45545 0.47498 1820.70
10 0.47136 0.51291 0.48515 0.49078 948.41
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Abalone Dataset #5 with Hooke and Jeeves method

# k Length Diameter Height Whole 
weight

Shucked 
weight

Viscera 
weight

Shell 
weight

4 3.1605 13.783 15.346 0.8669 0 3.5166 16.075
5 5.8246 11.347 20.231 0 0.0001 4.7016 21.344
6 0 5.4619 17.912 0.4737 0.3824 2.8352 14.257
7 2.4614 5.075 58.221 1 15.038 12.267 26.783
8 8.1618 0 0.0001 1.4688 1.0065 0.9985 17.232
9 7.4963 7.3062 0 0.5228 8.7495 9.4012 16.904
10 7.1902 11.495 15.265 14.578 4.7501 0 1

Error
# k

Training Pre-Training Test Whole data
Running 

Time

4 0.49676 0.51942 0.46983 0.48863 515.43
5 0.48558 0.53149 0.47240 0.48384 655.03
6 0.48852 0.51383 0.46727 0.48695 505.32
7 0.47528 0.51001 0.47240 0.50467 975.35
8 0.48764 0.51236 0.47368 0.48935 723.81
9 0.47028 0.51089 0.44544 0.47881 1245.30
10 0.50471 0.51207 0.50449 0.51017 787.23
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Ecoli Dataset #1 with Hooke and Jeeves method

# k Mcg Gvh Lip Chg Acc Alm1 Alm2

8 0.6708 0.8238 2.8795 0 1 1 0.7894
9 1.3657 1 1 0 1 1.2766 0.6889
10 1.5182 1 1.3653 1.4271 1.3653 1.179 1.3653
11 3.0664 1.9167 1 5.2342 1.7949 2.1234 1.1684
12 1 0.9629 7.1769 0 1.7343 1 1.0848
13 1.0369 1.032 1.032 4.5661 1.032 1 1.0319
14 1.178 1.178 1 5.0193 1.178 1.3568 1.2173
15 3.2016 1 1 0 0.9587 1 0.5999

Error
# k

Training Pre-Training Test Whole data
Running 

Time

8 0.13718 0.17329 0.41026 0.18750 28.080
9 0.18051 0.19495 0.42308 0.16964 20.904
10 0.15162 0.18051 0.39744 0.16071 28.314
11 0.13718 0.17690 0.39744 0.16369 40.186
12 0.15162 0.19856 0.42308 0.17262 38.595
13 0.12635 0.15523 0.37179 0.17857 33.790
14 0.11191 0.13718 0.39744 0.19048 51.699
15 0.15162 0.17690 0.41026 0.17560 55.474

Ecoli Dataset #2 with Hooke and Jeeves method

# k Mcg Gvh Lip Chg Acc Alm1 Alm2

8 1.468 1.0928 1 4.1087 1.0997 1.1934 1.3186
9 2.2337 1.0889 6.318 0 1.7079 1 1.738
10 0.9963 0.7353 0.5491 0.0001 1.2759 1.6497 0
11 1.3758 0.5256 1 0 1.3423 1.1518 0.6572
12 2.2636 1.159 1 3.8914 1.0664 1.2084 1.2644
13 1.1963 1.0976 3.7448 8.4239 1.7551 1.0976 1
14 1.6447 1.3242 1.8016 6.1208 1.7909 1 1.8013
15 322.09 209.83 123.82 1 239.61 201.02 239.61

Error
# k

Training Pre-Training Test Whole data
Running 

Time

8 0.16245 0.22744 0.39744 0.16667 29.094
9 0.16606 0.22022 0.39744 0.20833 39.468
10 0.14440 0.20939 0.43590 0.18155 62.478
11 0.15884 0.17690 0.42308 0.17262 40.966
12 0.13718 0.17690 0.39744 0.16071 39.765
13 0.13357 0.20217 0.38462 0.15476 61.402
14 0.10469 0.12996 0.38462 0.14583 28.174
15 0.11552 0.13357 0.38462 0.15179 39.796
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Ecoli Dataset #3 with Hooke and Jeeves method

# k Mcg Gvh Lip Chg Acc Alm1 Alm2

8 1 1.22 9.4084 0 0.9421 0.9995 1
9 1.5913 1 0 0.0001 1.0206 1 0.5753
10 2.2351 1 0.4827 0.0001 0 1.716 0.9998
11 0.6102 1.008 7.6186 0 1.0878 0.8723 0.8377
12 2.4797 1.8585 1 0 1 1 1.177
13 0.9363 1.1741 4.9175 0 1.6857 1 1
14 1 1.3079 1.0291 1.3079 1.3079 1.3079 1.3079
15 1.9447 1.8338 1 1.8338 1.8331 1.8338 1.8338

Error
# k

Training Pre-Training Test Whole data
Running 

Time

8 0.14440 0.21661 0.32468 0.22024 17.035
9 0.13718 0.18773 0.29870 0.16369 41.933
10 0.17329 0.20939 0.29870 0.20536 40.498
11 0.14801 0.16606 0.27273 0.17560 41.496
12 0.16968 0.18773 0.28571 0.18452 25.615
13 0.12635 0.15162 0.29870 0.17560 58.485
14 0.13718 0.15884 0.31169 0.18155 26.723
15 0.12996 0.14440 0.29870 0.12798 28.283

Ecoli Dataset #4 with Hooke and Jeeves method

# k Mcg Gvh Lip Chg Acc Alm1 Alm2

8 1 2.2906 10.195 26.379 2.2906 2.2906 2.2906
9 1.3295 2.0757 9.7879 0 1.3708 1 1.3368
10 1 0.9484 6.5982 0 1.026 1 1.1579
11 1 1.0914 0.5948 0.00014 0.84777 1 0.9064
12 4.8698 8.2115 4.6992 1 8.2115 8.2115 8.2115
13 0.7257 0.2923 1 0 0.9389 0.8102 0.7578
14 2.4338 1 1.3765 4.8448 1.9428 1.6061 1.641
15 2.505 1.8566 3.9824 10.906 2.992 1.8566 1

Error
# k

Training Pre-Training Test Whole data
Running 

Time

8 0.11913 0.18051 0.34615 0.20536 16.817
9 0.13357 0.19495 0.26923 0.18452 39.780
10 0.11552 0.15162 0.35897 0.16964 33.852
11 0.13357 0.14079 0.32051 0.15774 15.975
12 0.10108 0.12635 0.26923 0.16071 21.013
13 0.12635 0.18051 0.26923 0.17857 52.775
14 0.11913 0.21300 0.23077 0.13988 54.117
15 0.11913 0.16606 0.25641 0.13690 38.610
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Ecoli Dataset #5 with Hooke and Jeeves method

# k Mcg Gvh Lip Chg Acc Alm1 Alm2

8 1.7933 1 1.4849 1.5419 1.1931 1.2059 1.5419
9 0.534 1 1 0 1 1 1
10 1.235 1 0.9995 0 1 1 1
11 2.0635 1.1114 1 3.3212 1 1 1
12 1.0668 1.0664 1.0664 4.0594 1 1.0664 1.0664
13 1.213 0.925 3.9604 0 1.2651 1 0.7563
14 1 1 1 2.6957 1 1.7917 1.0047
15 2.4585 1 1.0808 5.7633 1.2962 1.8634 1.0808

Error
# k

Training
Pre-
Training Test Whole data

Running 
Time

8 0.14079 0.20578 0.38462 0.19643 16.942
9 0.17690 0.18051 0.34615 0.16071 23.712
10 0.15523 0.15884 0.35897 0.15476 17.254
11 0.12274 0.15523 0.35897 0.17560 37.908
12 0.12274 0.14440 0.34615 0.13690 27.565
13 0.12635 0.13718 0.35897 0.16964 25.475
14 0.10830 0.12274 0.34615 0.15476 28.969
15 0.10830 0.18051 0.34615 0.13690 44.491
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