CHAPTER 1V
TRIDIAGONAL MATRIX FOR DISTILLATION

Product distribution for multicomponent distillation in complex columns

can be computed by this tridiagonal matrix algorithm. Method is simple, fast and

numerically stable. ;\‘, /
A new lteratl\;g ope @ problems of multicomponent

distillation in complex Th s meth loys the tridiagonal matrix

algorithm for the so alance equations, and uses

Newton's method for ature profile. The material
- : Ny
balance is solved sim for-eack E%ld therefore no matching is

required. Both distribu isfril ents are handled with equal

For the conylemence of denvmg the general working equations, a
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column has n eﬂulhbrmm stages including a c%lenser (partlalq_}otal or compound
contcop Y4 GO AR IR G om e o
bottom w1th the condenser as the first stage and the reboiler as the nth stage. It is
assumed that one feed stream Fj, one vapour side stream W), one liquid side stream

Uj, and one intercooler or interheater Q; exist at each stage except for the condenser
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Itaneously for each component.
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Figure 4.2. An ideal equilibrium stage is represented by Equation(4-1)to(4-4)
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and the reboiler. This model column can be reduced to any simpler one by setting
the undesired quantities to zero. Thus for a conventional column all the quantities
of the external streams except F}, Op, Op, D and B are zero.

Each stage in the model column is assumed to be an equilibrium stage,

that is, the vapor stream leaving the stage is in equilibrium with the liquid stream

) ideal equilibrium stage.
a&aﬂy four sets of equations which

lation. They are the material

leaving the same stage. Figure 4.

balance equation(M), summation equation(S) of

mole fractions, and thg four sets of equations are
Depending o atvarigble how the material and heat -

balances are written, there the MESH equations. In this

work, the material and n around each stage and the

independent variables are the mele fra of diquid x;;, the vapor rate profile V),

SH equations for the model

column are readily denve'd as follows:
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My\x;,V; ) L \x ;. (V +W, )y,j—(Lj+Uj)x +V+,y,_1+l+sz,j =0 (4-1)
E-Equation

E; %V J) =yj—Kyx; =0 (4-2)



S-Equation

8, (xpo¥;0T) = Zya-lo 0 ‘ @3)
or '

s,(x,.7, ) =3 x,~10=0

(4-3a)

i=l

H-Equation — Y ———

) £ "\ Hj+l+FH -9, =

L \! +V

L) =L

N

Equation (4-1) and" (4-2) .are g 2d a d the L’s are expressed as

functions of Vs by an ovgra of all stages from the condenser

through the j th stage.

Via "‘t(F W
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The M-equation is then reduced to a tridiagonal matrix from,

(4-5)

Bx, +Cx, =D, 4-7)

ij,‘j_, +Bjx,.j +ij,‘j*l = Dj ,25j<n-1 (4-8)
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A%, s+ B,%, = D, 4-9)
or in matrix notation as,
(B, C
4, B G
4, B, ) (4-10)
Ah—l Bn
] A
or simply,
[ 1{x}= {D (4-10a)
where, :
B, =-WK,+U,); C, =l K YN 4-11)
| . ._J_ -
4= LJ,_V +IZ(F W, - M‘ ? (4-12a)

B, = -[(V +W ﬂL +U, |
R
Sy ”QW'] ﬁ*?ﬁ"}fu URNINY1AY @

A,=V,+B; B,=—(V,K,+B);D,=0 o (4-13)

With the above manipulation of the M and E equation and further
manipulations of the S and H equations,the  MESH equation for multicomponent

separation at constant pressure in a complex column become,
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('f’ Vi T, 1)=[Axc]§‘y}‘{Dj}'° ; 1<ism and 1<j<n (4-14)

8,(,T )= 2 K,x,~10=0 , 1<js<n | (4-15)
i=1

H 5, 7,.7) = =1 )V~ hj)(V +W,)

~(y~h) L /} Q=0 ,1<jsn  (416)
| A— *
There are n(m( \-.Pthese n(m+2) equations and

' [s) t. Tl olem now is to find a set of

therefore this system of eg
values of x;, V; and 7} tg ons. Because of their non-linear
nature, a direct sifultafiegus s 7 wis. ve '\-’ icult if not impossible.
Consequently, the solution gs ;}e iy Y using some iterative approaches.

A simple and fast iterative procedur gsented in the following sections.
. .! > ‘-* e ki
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4.2 \; MATRIX M

When the ﬂo rates an ns of fe streams are given, and the
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the tridiagonal form of the matrix [ 4,, ] and by grouping the vector {D} with [4,,]

as,
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A B C D,
4, B, C(, D, |, 1<i<m 4-17)
An—l B n-1 Cn—l D n-1
i 4 "B B ]
the solution of Equation (4-14)  be easily obtained by use of a simple
algorithm derived from the Gaus: AV ionemethod. In this algorithm, two
ili it ﬁ aluati d g, and
auxiliary quantities, p; and"g, are cal t evaluating p; and g, an

p,=C/B;9,=D,/B, (4-18a)
=¢,/(8,- 4,p,. (4-18b)
%= (Dj 4,9, )/(BJ T : (4-18c)
.t’:?f-j
j u e .. 4,-!
Then, values of x”’s are ca __é[;, Jb /g valuating x, and receding backward

with j decreasing

gs__:’

iy
=q, (4-19a)
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equatlon,qEquatlon (4-15) and if K,, s could be expressed as function of 7} such as

K;=a,+a,T,+a, T} +a,T; , 1sism (4-20)

the S-equation is a function of T only, that is,

j(T)=Z(Za,dT"')x,j 10=0 , 1<i<n 4-21)

i=1 N\k=1



34

For the solution of this equation, most of the previous investigators employed the
Newton-Raphson iterative method. Others used the method of false position.
Muller's method is, in a sense, a generalization of the method of false

position. As shown in Figure 4.3, a quadratic curve g, (I}) =0, is drawn through

three points, (ﬁ,S/,)_, (1}2,sz) and

root , T}, of this quadratic equati

(7}3,SJ,), on the curve of SI(I}) =0. The

the first approximation of the root of

7}4) is evaluated. The point

(Tﬁ,S 13) is then replaces 4 ) is replaced until

where, € is a predescri
The iterative fo

For a general equation, S,(7, J/=" 7)= 0, the formula which is easily adaptable to

i:;;i""(z"'ﬁfﬂ"ﬂ ﬂwswmm g

(4-22a)
—(zs 2)/ (zz—z,) 5 (4220)
axy (zk-3)1k-l o i (Z/‘-z Xl » d;-.)z +f (Z,,_l Xl + 2-d,‘_'l) - (4-22¢)

c=fGis) dios = f e A+ dp )+ £ Eet) (4-22d)
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When x,.j"s are obtained from the M-equation and new T},S are calculated
from the S-equation by Muller's method, new values of V; can be calculated
directly from the H-equation, Equation (4-16). The enthalpies of the internal vapor
and liquid streams can be calculated by use of either the ideal solution approach or
Yen's generalized equations. Enthalpies of feed streams and given or specified.

In the ideal SOlUthﬂ ’W enthalpies of the internal streams are

calculated by: \\.:\ /

" *;::;;::: |
H, = gJ’y(bu +by, Ty o, |

(4-23)

hj=llex,j(<,~,,+c2,.Tj+c3 ¥ ) e * - (4-24)
Computational Procedu

Step 1. Assum te profile (Vj)) by means of constant

correlation, and then e x[ABc], using Equation (4-

11), (4-12), and (4- 13)

S A R 9. 2 i o

tridiagonal matﬁ* algorithm, Equatpn (4-18) and (4-19)

o e Q47 Bt SBE43 WEA, |afion 120 o
Equatlon (4-15) and solve the latter by Muller's iterative formula, Equations (4-22),
for new values of (]}1

Step 5. Calculate the enthalpies of the internal vapor and liquid streams
by Equations (4-23) and (4-24) respectively or by use of Yen's generalized

equations.
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Step 6. Solve Equation (4-16) for a new set of (Vj)k
Step 7. Repeat steps (2) through (6) until ((T})“—(T;)Hj <g,. where,
€, is a predescribed tolerance.

The block diagram of such a computational routine is shown in Figure

4.4.
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Figure 4.3 How Muller's method compare graphically with Newton-Raphson.
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