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Chapter 1

Introduction

The accelerated expansion of the universe has been discovered for more than
a decade [1, 2]. What is responsible for this aeceleration is called dark energy. A
number of explanations of-dark energy have therefore been made. The simplest
description concerns with introducing a cosmolegical constant in the Einstein field
equations. It is in agreemeng with most of the eogmological observations. As a
phenomenological models it i§ SllCCGSS%lﬂ. However, the value of the cosmological
constant is so small. Itswalue dsimore than 30 orders of magnitude smaller than
the Planck scale. This considerable dif{"er?_nce causes a theory not to be natural.
This is the naturalness proplem ‘c-)rr the c:fgsinological constant problem. Moreover,
there is also the coincidence problem of _Why-‘the dark energy and the matter have
comparable contributioins t0 thesenergy Iéénsity at the present time. Since the en-
ergy density of the cosmologic"éﬂ 'ébnstantﬁjrf;iins constant throughout the history
of the universe while the energy ‘density_fgffﬂqe matter decreases as the universe

expands, the Coinci_dgnce problem is therefore too difﬁgfﬁ_lt to be understood if the

dark energy is the txj{’i_e cosmological constant. »~

Apart from cosmiological constant there are other alternative models of dark
energy which are dynamical. The most popular model is the quintessence model
in which a scalar field plays'the role of the dark energy. [3, 4]. Due to their
homogeneity and isotropy, quintessence and other scalar field models agree with
the cosmolagical principle: Although scalarfield models do 1ot Eonflict with the
observational data but’'so far noone has discovered the fundaniental scalar particle.
Moreover, at a more fundamental level there is no reason to exclude the possibility
of some other higher form field to be the dark energy. These higher form fields
can exist in some theories such as the string theory. The presence of them does
not necessarily violate the cosmological principle. For these reasons an effort has
been made in using a vector field, a one-form field, to play a role of dark energy
[5, 6, 7, 8]. However, most of the vector field models encounter instabilities [9].
Generalizations to higher form fields have also been proposed [10, 11]. Two-form

field models also have the same problem as vector field models. On the other hand



three-form field models have no such problem: they are stable [11]. Therefore, it is
of interest to consider a three-form field as a candidate for dark energy. Moreover,
there is also the accelerated expansion in the very early universe called inflation.
What drives inflation is called inflaton. Similar to dark energy, a three-form field
is proposed to be the candidate for inflaton [11, 12]. The possibility for a three-
form field to be dark energy and inflaton and to solve the coincidence problem is
the aim of this thesis.

This thesis is organized as follows. In Chapter II, we give the basic cosmology
Is of dark energy and inflation are
scalar field and three-form field
ntroduc tonomous system and apply it

| models. The Chapter V is devoted to the

o dark matter. In this thesis we

necessary for this thesis. n-fo
discussed in Chapter III.

models only. In Chapter
to the scalar field an
discussion of couplin
study four types of co e models. The conclusions

are in the final chapter

el
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Chapter 11

Basic cosmology

at large scales. The byirig 1 is pr le 15 the Friedmann-Robertson-
Walker (FRW) metri

(2.1)

where a(t) is the scale fa ‘universe can be described by

the Einstein field equations
(2.2)

, is the Ricci tensor, R is

The Ricci tens

can be expressed a;

- @mﬁmﬁiﬁ i ?’ﬁ“

AR ARV A Y o

The mefric tensor and its inverse in the FRW metric (2.1) take the form

G = diag(~1,a*(), (1), (1)), (2.5)

g = diag(—1,1/a*(t),1/a*(t),1/a*(t)). (2.6)

Using the FRW metric (2.1), we can obtain all components of the Christoffel
symbol,

ry = aaaij, (2.7)

Iy = 26 (2.8)

)
a J



where the dot denotes differentiation with respect to time ¢ and the other compo-
nents are all zero. Then we can derive the nonvanishing components of the Ricci

tensors

Roo = 8al'y — 0015, + T%a o0 — Tl

a
= —3- 2.9
: (29)
_ « « a 16 B
Rij = 0.1, — O;T', + 5,15 — g1,
= (ad + 2a%) (2.10)

Now, we can find the Ricci sca

%Cimg the Ricci tensors,

/ | (2.11)
The nonvanishing co{ "»"'-\-.s\‘ﬁk\. an be obtained.
(2.12)
(2.13)
We can raise a lower index o the F istein tensors by using the inverse metric
tensor
(2.14)

AUGINEDININNT e
Ehtiiﬁ“ifﬁfﬁﬁiﬂfa el AR LT AT Y]

radlatlo s. We describe each of these species as a fluid. In this thesis the fluid

is assumed to be perfect, the fluid with no viscosity and momentum density. For

the perfect fluid the energy momentum tensor takes the form

T}' = Diag(—p,p,p,p), (2.16)

where p is the energy density of the fluid and p is the pressure density. Substituting
(2.14) - (2.16) into the Einstein equations, the (0,0) component gives

a® 8@
—_ = — 2.17
a2 3 Ps (2.17)



while the (4, j) component gives
a a?
p + 202 = —4rGp. (2.18)
The Hubble parameter is defined as

H (2.19)

Il
Qe

Its derivative is given by

' ﬁ 2. (2.20)
The (0,0) component (2.1 /’
| 8_
This is the Friedman i \ \,\ of the universe. The (i, j)

component (2.18) bex
(2.22)

This is the acceleratic the accelerated expansion of the

universe. The conserva tensor leads to the continuity

equation yas :
YT} =0, + Dl T, Tt = 0. (2.23)
For the time w-__--..g, ]

]

0. m (2.24)
22 Bl SR 113
¢ o v
We ca t 1 i equation (2.21).

radiation can be written as p = p/3, while the pressure for matter vanishes. We

define the equation of state parameter as

w (2.25)

Il
> I

Therefore the equation of state parameter for radiation is w, = 1/3 and for matter

we have w,,, = 0. The continuity equation (2.24) can be rewritten as

p+3Hp(l+w)=0.



It can be solved by straightforward integration and the solution is
p = Ca 30+, (2.26)

where C' is constant. Hence, for radiation, the energy density p, is proportional
to a~%:

pr = Ca™*, (2.27)

and for the matter
pm = Ca™>. (2.28)

, Wedmann equation (2.17) gives
- @
——

A(g (2.29)

where A and ¢; are co{ se them 'tlaiﬁondition thata =0at ¢t =0,

Putting the energy density (2

(2.30)

Therefore the evoluti / 8 i the radiation dominated universe is

v (2.31)
. e

. w3l ) . )
and the evolution of the scale factor of th dominated universe is

Jrfg?i;‘}f_‘j. ‘;J;

| (2.32)

We have seen that the ? iverse has a decelerated

s

expansion.

g
23 DTN INY N

A differential n-form is ﬁ)ﬁ tenSor which is totall antiSﬁlmrﬁe'cric. Therefore, a

AL VAR b K NET ek k) JEa b1 g

there aré no n-forms with n > d due to their antisymmetric property.

For n-form A and m-form B, we can build (n + m)-form A A B by wedge

product
_(n+m)!
(ANB)ry. My = WA[Ml.,.MnBMn+1...Mn+m], (2.33)
with My, ..., M,,y1 = 1,...,n. The square bracket denotes antisymmetrization:

1 ) .
Tiany..m,) = E(TML” u, + alternating sum over permutations

of indices M;...M,,). (2.34)



Alternating sum means that odd permutations give a minus sign, for example,

1

T[MleMs] = §(TM1M2M3 - TM1M3M2 + TM3M1M2

_TM3M2M1 + TM2M3M1 - TM2M1M3)' (2'35)
The wedge product of two 1-forms is

By the definition we find that

N A. (2.37)

We can form the v the exterior derivative

d defined as
(2.38)
The exterior derivative imply the gradient
(2.39)
Exterior derivatives obe
d(A AN (dB). (2.40)

Another interest of the exter

Y (2.41)

which is written a,sm = 0. This results from thgﬂdeﬁni‘cion of d and partial

derivatives co te. W efine -fo t closed if dA = 0 and exact
it A=dC foréi:ij(ﬂ -for Al E)s]ﬁc sed, but the converse
1s not necessarily true. ¢ a Y

YRIANNIUURTIINESR

2.4 qInﬂation

Inflation is the period of the very early universe with an accelerated expansion.
It has been introduced to solve some problems in which the Big Bang model
cannot handle such as the flatness problem, the horizon problem and the origin of
structure problem. It does not replace the Big Bang idea. Instead it adds some
ideas on the Big Bang model. Inflation in a more abstract form will be mentioned

in the next chapter.



2.5 The acceleration of the universe

Observations tell us that the universe nowadays has the accelerated expansion.
Moreover, there is also the period of the universe with an accelerated expansion
in the very early time called inflation. To explain these accelerations, consider the

acceleration equation by substituting (2.17) into (2.18),

a ArG
o= —T(P + 3p). (2.42)

W)nverse requires that

p+3
—

giving the equation o d

Therefore, the accelerated expansi

(2.43)

(2.44)

Therefore, both radi e to the acceleration of the
universe. In order to explai accole - ed to introduce new species
with negative pressure. e ' f' TiveRse we call the species driving
inflation inflaton and i pecies producing the accelerated
expansion of the universe > next, chapter, we will study models

of dark energy.

d

2
ﬂ‘lJEJ’J‘VIEWl’ﬁWEI’]ﬂ‘i
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Chapter 111

Dark energy and inflation from an n-form field

Thanks to its characteristic, the isotropy, the most popular candidate for
dark energy and inflaton is a secalar field.” Howeyer, there are no reasons to exclude
the possibility of a higher form field tobe dark’encrgy and inflaton. Vector inflation
has first been proposeds{i8|. However, vector inflation has difficulty since it induces
anisotropy and faces 4h€ prebletn of slow=roll. I [14]. Golovnev, Mukhanov, and
Vanchurin have shownhat these probl]'ems can be overcome. To reduce the degree
of anisotropy, vector figlds have to form eithera triplet of mutually orthogonal
vector fields or a large number-‘.of‘rarrzi‘or;nly directed vector fields. We obtain
the isotropic universe ifi the first case and the slightly anisotropic universe in the
other case with the anigotiopy of ordeI; 1 / VN for N vector fields. To handle
the slow-roll, a vector field needb to non—mmlmally couple to gravity. Therefore,
a non-minimally coupled vectOuhield behayes as a minimally coupled scalar field.

However, the models of veetorficld have istabilities [9]..That is the perturbations

around the backgrmfpﬂ diverge.Themodels-oftwofoti field also face the same
problem [11]. On tlicother hand, the three-form ficld Tnodels are stable. In this
chapter, we will review models of dark energy and inflation from an n-form field,

concentrating only on a sealar field and aithree-form field.

3.1 ~n~form field-models,of-dark energy and in-

flation

In this section, we review [11] in which we consider an n-form field A in 4-

dimensional spacetime with the action

1

1
Sy = /d4x\/_ {167@ IO 1)!F2 — V(A% — ﬁ&PR : (3.1)

where F,, .. = (n+ 1)V, Ay, and A? = A#-#m A The equation
of motion of the n-form field obtained by varying the action (3.1) with respect to



10

the field is
VHE oy = 20V +ER) Ay - (3.2)

The energy momentum tensor of the n-form field is derived by

2 0S4

which can be written as

1 1
T = i Fomn P 420V Ay A gy, (G P24 V(AT )
+$ [nRAum s AP l

Let us now consider ex -forn dﬁ for n = 0 [15] and n = 3 [12].

3.2 Scalar f els of dark energy and infla-

tion

zero-form field or a scalar field

in 4-dimensional space o ofithe \u‘- ar field is given by

Vvu¢vu¢ - V(¢):| ) (35)

where V(¢) is the potentiat-o ar-field=—The equation of motion of the

scalar field obtained by ve espect to ¢ is

FRw@utJ’me %’mmm%
Q WAy ﬂﬁ%%ﬁ%’)@ﬂﬂ’] ﬂ G

The energy momentum tensor of the scalar field is derived by

2 08
Ty = —\/—_—QW, (3.8)

(3.6)

which can be expressed as

1
T;w = vy¢vu¢ — Guw Egaﬁva¢vﬂ¢ + V(¢) . (39)
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The energy density and pressure of the scalar field are

ps =Ty

= %& + V() (3.10)
pe =1}

= V) (3.11)

From (2.21) and (3.10) we obtain

} . (3.12)

The equation of state par

\ (3.13)
It ranges in the regio =N ondltlon of the accelerated
expansion (2.44), we ob ]
That is the universe has_ L accel erated e on when the kinetic term of a
scalar field is less than the pote
In the context 1 we need iofial condition. To explain

Scliique called the slow-roll

approx1mat10n T% appre th_mﬁrst term of (3.7) and the

first term of (3.12)

ﬂ‘UEﬂ’J NENTHLINT 11

‘ 9 87TG

e ARSI TINEDSY s

equal in the slow-roll approximation. This approximation will be valid if two
parameters satisfy
€(¢) <1 and |n(¢)| <1, (3.16)

where the slow-roll parameters € and 7 are defined as

1 1dv\?
) = f5rc (V@) ’
1 14d%v

n(¢) = GV A2




12

These conditions are necessary for the slow-roll approximation to be valid. How-
ever, they are not sufficient conditions because they are only related to the form
of the potential. We can freely choose the value of ¢ because of the second order
of the scalar field equation of motion (3.7) and actually we can select ¢ to violate
the slow-roll approximation. Therefore, it is necessary to introduce the additional
condition to make the slow-roll approximation valid. Under such condition, ¢ sat-
isfies (3.14). (3.14) and (3.16) are referred to as the slow-roll conditions. We
see that (3.15) is a consequence of (3.14) and €(¢) < 1. Inflation comes to an end

when the slow-roll conditions are violated.

3.3 Three-form field models of dark energy and

inflation

For n = 3 case, we revigw 420 The action for a three-form field A, minimally

_—

coupled to gravity cafl be'wiitten ag

Y &

l'

£ 2 _V(AY]. 1
T A (3.17)
|

Here, we define S el /]

.1..

Fu,,pg = 4V[MAVPU] and A2 A“VPA“W)

From (3.2), we get £l equation of motion of the three—}orm field
| VO = 1217 (A%) A (3.18)
The energy momentur tensor of the three-formfield is given by (3.4)
FAAE éFmﬁprﬂp TV 14,3157~ ( 48F2 3 V(A2)) (3.19)

For the FRW metric (2.1), the timelike component of the three-form field is non-

dynamical because its equation of motion (3.18) reads
12‘//(142)141'3‘0 - 0, (320)

which is an algebraic constraint. This implies A;;o = 0. Therefore, we can only

focus on the spacelike components which take the form

Aijr = a®(t)eu X (1), (3.21)
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where we will study the scalar field X rather than the field A. In 4-dimensional
spacetime a three-form field is dual to a scalar field. The scalar field X are related
to the field A4,,, via

A2 = APAL,,
= 6X>.

From (3.18) we obtain the equation of motion of the field X

—12V'(A*)X.

Since
(3.22)
where V,x = dV/dX X as
X - (3.23)
From (3.4), each com : -' . Jentum tensor of the three-form
field is 24} \
(3.24)
¢ X — V(A2)] 8ij- (3.25)
The energy densit tf-_i_“ 7 ‘FT,' given by

pymz ~70 @
quifiemiignas o
The eﬂtﬂl@tiﬂi@: ?ﬁ)ﬂjfiﬁ:ﬂﬁ g&] o

= -1+ = . 3.28
Px ( )

Note that the value of wy depends on the slope of the potential and the properties

of the field. From the condition of the accelerated expansion (2.44), we obtain

Vx X 2

Px 3
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We can choose the suitable potential for the three-form field to produce an accel-
erated expansion. In the context of inflation, the slow-roll conditions are no longer
required for the three-form field. In other words, inflation can occur even if the

three-form field is not slowly rolling [11].

In the next chapter we will introduce you to an autonomous system playing

an important role in cosmology.

AULINENINYINg
ARIANTAUIM TN



Chapter IV

Autonomous system of dark energy models

In this chapter we review S universe can be described in
terms of autonomous sys f 6T 'me basic definitions associated
with dynamical systems ; 1 e following coupled differential equations

L \ V

for two variables x

(4.1)
where f and g are the f system (4.1) is autonomous if
f and g are explicitly indej (e, Ye) s a fixed point or a
critical point of the autonoma

(4.2)
A fixed point (z., Y. es the condition

.Q:cg),y(t)) o (xctyj) for t — oo. (4.3)

We can find 8 bty Pk ol bBR] & 149 fixed poiats. Let us

consider small %lerturbatlons oz and oy around the fixed pomtm(;c, Ye)s

AN AINIUNBIANUNAY oo

Substltutmg into (4.1) gives the first-order differential equations

d [ ox ox
W<5?/>:M<5y>’ )

where N = In(a) is the e-foldings number which is a convenient parameter to use
for the dynamics of dark energy. The relation between N and ¢ is
d 1d

d_N — Ea. (4.6)
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The matrix M depends on x. and y. and is given by

of of
M = ( Z % ) : (4.7)
9z 9y (m:zc,y:yc)

This equation has two eigenvalues p; and po. Thus the stability around the fixed
points depends on the characteristics of the eigenvalues, which is classified as

follows.

i) Stable node: pu; < 0 and py < 0.

.

> 0 and py < 0).

(
(ii) Unstable node: pq >
(iii) Saddle point:

M is negative and the real

(iv) Stable spiral: 7 i nt
parts of p; and us ar \

A fixed point i

cases (ii) and (iii).

ergy 5 ?f; ¥al t—‘

Including the effects-g] the background fluids fromﬂ 21) and (2.22) we have

ﬂuwwﬁw BN T 19

/ (4.9)

AR DN Sy,

following dimensionless quantities

/ﬂb _m/v)\_ V,¢

= Y= —F=" A= 410
Vor' = var S T (4.10)
where V., = dV/d¢. Then
T = -3+ ?)\yz + g:z: (1 = w)z” + (1+wn)(1 — )], (4.11)
6 3
=Py By — s+ () (=), (412)

2 2
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Name Y Wiot Existence | Stability
(a) 0 0 Wy, all A and ~ no
(b1) 0 1 all A and ~ no

(b2) -1 0 1 all A and ~ no

(c) 2/ V6 VI=X/6 | X/3-1| XN<6 | N<3y
(d) | 37/VOA [ /B2 =)7/2)02 | (437) | A>3y | A2>3y

Table 4.1: All the fixed points in the quintessence model.

where 2’ = dx/dN and ' =

constraint equation

N }riedmann equation (4.8) becomes the

(4.13)
2 alar field ¢ in terms of these
RET (N (4.14)
Using (3.10), the densi
(4.15)

The total effective equa

2 Iﬂ %) (4.16)

ﬂumwﬁwmm @

From (4.10) W%I consider the case ‘pf constant )\ The potentlaqu;lvmg such the A

©ARANNTUINRIANENY

We obtain the fixed points by setting da/dN = 0 and dy/dN = 0. We summarize
all the fixed points in the Table 4.1

— ¥ 4wy, (1

Next we analyze the properties of these fixed points. We define new variable
v =1+ w,,. We are interested in the fluid with 1 < v < 2. Let us consider the
existence of each fixed point. The existence condition is that  and y are real. For
the fixed point (a), (z = 0,y = 0), it exists for all A and . For the stability, we
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analyze by using the matrix M given by (4.7). For the fixed point (a), the matrix

M becomes

-34+37y 0
Moy = ( L ) (4.19)
0 5"}/
The eigenvalues of the matrix M obtained by using the characteristic equation are
3 3
p=—5(2-7) and pz=21. (4.20)

Therefore, the fixed point (a) is a saddle point since p; < 0 and py > 0 for the

W ,y = 0), it exists for all A and . For

(4.21)

range of 7. For the fixed point
the stability, the matrix M i

Its eigenvalues are give

(4.22)

\\\ v

6 and a saddle point for
=6 ,y \ " it exists for all A and ~. For

(4.23)

] ﬁ

W =3(2—7) andapus =3+ —/\ (4.24)

thﬂléﬂ;n Yl EJ Dty &J‘ mﬁm T

Its eigenvalues are gl

4.25)

For the stability, the matrix M is

2
My = -3 32— VE- X (4.36)
c) — 2 . .
SL=V6—XR 53y
Its eigenvalues are given by
1

=g (A>=6) and po =A* — 3. (4.27)
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Thus it is stable for A\? < 3y and a saddle point for 3y < A\? < 6. From (4.16),

this fixed point gives the total equation of state

)\2
Wiot = ? — 1. (428)

The accelerated expansion occurs when wy,; < —1/3, then
N <2, (4.29)
That is this fixed point can give the accelerated expansion of the universe. From

(4.15), the density parameter for the scalar field is

’// (4.30)
Therefore, this fixed pomt s the sca & inated solution. For the fixed

point (d), (xzi’w/\/_, —2— XY

density parameter for the scalar

find that  and y are real for
the range of 7. However, when'caleulating the
field from (4.15), we Obtai

(4.31)
From the constraint €quafion (4.13), 4 d that
4 N \
(4.32)
Thus
(4.33)
This is the existence conditios foritt d). For the stability, the matrix
M is =
Mg = 1 —n : (4.34)
(d) : ‘: )y -
=71 -1 - (= —]
Its elgenvalueﬁ ﬁ 33 m a j
Hi2 = — T‘l (4.35)
Theyﬂﬁ%ﬂ\‘iﬂ‘im mm WEJ’]@ d
24~
A2 4.36
<92 (4.36)

Therefore, the fixed point (d) is stable for 3y < A\? < 2492/(9y — 2) and stable
spiral for A* > 24~4%/(9y —2). From (4.16), the total equation of state of this fixed

3v(y—1 A2 —3
Wit = % + wm (T’V) : (4.37)

From the existence condition (4.33) and the range of -y, we get w;,; > 0. Therefore,

point is

this fixed point cannot explain the current accelerated expansion of the universe.
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Name z Y w Weot Existence
(a) 0 0 +1 - all A and ~
oy | 2] o1 o 1 all \ and 7
b2) | -y2] 1 |0 B all \ and 7

(c) Teat \/gxemt 0 | depending on | depending on

the potential | the potential

Table 4.2: All the fixed points in the three-form field model.

4.3 Autonomous three-form field dark

energy m
In this section we revie we have
o pm} : (4.38)
(4.39)
Define the dimension
1 pm ‘/aX
=rX,y=— 2 A\Nz)=——F+. 4.40
r=nXy= o B’ o 0= 4
From the Friedmann equatlo - (2 ve have the constraint equation
A 42wl (4.41)
We can eliminate z"from systein by using this equation.

Then we obtain the autonomous system for the three-form field

ﬂﬁjﬁ(@%i)ﬂ‘jﬂﬂ’]ﬂi (4.42)
AT I el Lk

———w v+ AMz)z(1 — y* — w? (4.44)

To find the fixed points we set 2/, 3/ and w’ are equal to zero. We summarize all
the fixed points in the Table 4.2

We can find the density parameter of the three-form field by using (3.26),

(4.6), (4.40), and (4.41)

K px
Qv =

X = 32

=1—w? (4.45)
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Let us analyze the stability of the fixed points. The fixed point (a) corre-
sponds to the matter dominated solution. The eigenvalues are (—3, —37v/2, 37).

Therefore it is not stable.

The fixed point (b) has the eigenvalues (—3,0,—37/2). Since one of the
eigenvalues is zero, we cannot say anything about the stability of the fixed point
from the linear analysis. We have to consider specific potentials and go to the
nonlinear order. The eigenvector corresponding to the vanishing eigenvalue is

(1/2/3,1,0). We analyze the stability along the zero eigenvalue direction or =

\/2/36z + 8y for which we obtal\
‘;@W//é

—

(4.46)

where n > 1 and p™
such that ™ =1. T

(4.47)
For a negative initial quire p™ > 0 if n is even
and p™ < 0 if n is odd sitive perturbation we require
1™ < 0 independent of the value of 1 ed point (b1) we have a negative
perturbation and the fixe po‘ii_d TfEa ) we have a positive perturbation. Therefore

for the fixed point (b1) to be_.ﬁ‘@,:ﬂu if n is even and p™ < 0 if n is odd.

For the fixed pom’qlﬁ)Q ) to be stable ﬂ@g‘(ﬁ ) we obtain the density
[

(4.48)
The ﬁxﬂ ]uiﬂ rg: mSEJ m jtw ﬂuqcf]tjt the extrema of the

potential. Its s%blhty depends on.the specific fo Arm of the pot@tlal From (4.45)

RIS RV T v

Qx = 1. (4.49)

Qx =1.

We will consider the potentials as follows.
1. V =exp(—nX)

For this potential the fixed points (b) have

18
) = 5z Von. (4.50)
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Therefore the fixed point (b1) is stable for n > 0 and the fixed point (b2) is stable
for n < 0.

2. V = exp(—nX?)
The value of u for the fixed point (b) is

(2) 72 2 72
1

Therefore the fixed points (b) are both stable if n > 0.

(0, ,wues are —(3/2)(1 + /1 + 8n/3

3. V=X?+k /
We take k to b/ ant h\ d points (b) have

7k \\\ L
4 2/3+k

Therefore they are unstables | &'ﬁ ~-' -\\ 0,0,0). Tts eigenvalues are
’1 (4.53)

2

The fixed point (c) is
and —3v/2. This fixed poi

(4.52)

'.ﬂ.‘.- -4k
Therefore this fixed point is stable

4.V = X4k ,
)

WV,
Again k is a posi --‘V s (b) we have

@) — (4.54)

(2) o 2
Thus again ti@‘ y ﬂsi ?1‘&] ]?]ﬂi WJH ’i ﬁi the eigenvalues are
Because of the zer6 eigenvalueswe have to go to/the second order.
A B g T TR

@ ___12 4
He 125k (4.55)

Therefore this fixed point is stable.
5.V =(X2—C?+k
We take C' > 0. For the fixed points (b) we obtain

@ 44 2/3-C? @ 144 2/3-C?
i = — 5 2 and - flyy = 5 2
25 (2/3-C?*)"+k 25 (2/3-C?)"+k

(4.56)
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VX) () (b1) | (b2) | (c)
exp(—nX) | no |[n>0|n<0] yes

exp(-nX?) |no [n>0|n>0|n<0

Table 4.3: The stability of all the fixed points in the three-form field model.

Therefore they are stable when C' > /2/3. For this type of the potential the fixed
points (c¢) have three fixed points

. (0,0,0). (4.57)

—= - — 4.58
5 5 (4.58)
Therefore it is stable fou'k o 282/ °. Moreover it exists for C' < 2/3.
The eigenvalues of th
37
— - —. 4.59
: (459)
. . Pl s 1 . C L
Therefore it is unstable. We stinmarize th bility of the fixed points in the Table
4.3 We also note that fro {448 %c (4 oth of the fixed points (b) and (c)
give the dark energy* dominated solutions and hence e the coincidence problem is
not be solved. y;‘ A

In the next cha er, we will discuss the COlnCIdeﬂe problem and the necessity

:«2 ;?Tjigiiﬁﬁﬁ ﬁ ﬁggﬁ %*W ﬁry] ﬁ ﬁd the dark matter in
q W']ﬁNﬂ'ﬁﬂJ URIAINYIAY



Chapter V

Coupling three-form field dark energy with dark

matter

According to observati matter energy density is close in
value to the energy den?’ efﬁrgy‘%ds to the so-called coincidence
problem because their ] ) 1fferent throughout the uni-
verse history. Is it coinc i ies are of the same order?
There have been m coincidence problem and
it has been found tha tion .2\ coupled three-form field cannot
solve the coincidence pr : ‘ three-form field dominated so-
lution (4.48) and (4. '

the explanation of the

decaying into dark energy,
ensities may be made. This

introduces the coupling b A orm field dark energy and dark matter. In

b
The existence of the Jupling can be represented by modified continuity equa-

ﬂ“ﬂ?ﬁﬂmﬁyaﬁni .
ARSI YA,

tions

the coupling, is t e energy transfer

between dark energy and dark matter

@ > 0 = dark matter — dark energy,
() < 0 = dark energy — dark matter,
while the background baryons and radiation still satisfy
Py = —3H py, (5.4)
pr = —3H(p, + py), (5.5)
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where b stands for baryon and r radiation. The explicit form of Einstein equations
(2.21), (2.22) with baryons and radiation included become

2 1 .
H2:%<§(X—}-3HX)2+V(X)+pb+pr+pc>7 (56)

2

: K
H = —7(1/]XX+pb+pr + pr 4 pe)- (5.7)

From equation (5.3), using (3.26) and (3.27), we obtain

Q
V= — % 58
YT X +3HX (58)

X +3HX +

We define the dimensionle radiations and cold dark matters

additional from (4.40)

(5.9)

From equation (2.22 uct the autonomous system

Z =3 (5.10)
y =7- | [t : +éu2+v2> v, (5.11)
,_ e vz} , (5.12)
W = (5.13)
o = I4+)\()z —w? g - (5.14)
o AUBAINLNINONT
V6(X +3HX)H?
~o ERTRAR 'E‘SE‘H‘“%WW NYIAY
Pt 2w’ w0 =1 (5.16)

Generalizing (4.45), we obtain the density parameter of the three-form field
Qx =1 —w? —u? — % (5.17)

From (3.28), we obtain the equation of state parameter

2 1 — 2 02 22 .2
wX:—l—\/;)\(az)y yow o w v (5.18)

1 —w?2—u2—v2
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What should @ be of the form? A coupling model should be phenomenolog-
ical. There have been various models of a coupling proposed. Some of them have
simple functional solutions such as () o< a™. However These models are incomplete.

They cannot be thoroughly tested against observations.

A good model requires at least that ) should be expressed in terms of the
energy densities and other covariant quantities. For the scalar field model in [16]

they represent three forms of the coupling

M Qe |28
() Q= Aot
(D Q =D,
J
where [ and « are dimeugionless constants.

The coupling medel () was obtained via the sealar-tensor theory [17]. It
gives us the accelerated scaling/solutions. Although it has a clear physical mo-
tivation, it is contradictory with the éjl;éervations [18]. The accelerated scaling
attractor is not connected to a -_m;ttex‘:r period where the structure grows in the
standard way. Generalizagious of (1) Wii;h [ = B(¢) also face the same problem
[18]. -

RiGres ) /N
The coupling model (1) ¢does not comesfrom a physical model of dark sector
couplings, but is just for matlleﬁiatical ﬁnphcity. This model and its general-

o e

ization [19], @ = aH (p. IS px) are desié;rie?i to produice an accelerated scaling

attractor. The mode{ (IT) and its generalization avmdftljé problems the model (I)
has with a nonstandard matter epoch [20]. They are phenomenologically useful,
but it is difficult for them to appear from a physical explanation of dark sector

couplings.

To avoidthis problem the model (II) is improved and the non-local transfer

rate, aH, is replaced by the local rate I, giving*the model (IIF}'Q = T'p..

In" this thesis'in"the three-form“field model," the-forms-of @ are similar to

ones in the scalar field model. They are

(I) Q" = _\/g’fﬁpc 241a3 eupo'yprm/uu?
(II) Q" = —aHput,
(III) Q" = —T'p.u*,

where «, § and I' are constant and u* is a four-velocity.

In this thesis we use the exponential potential (V' = Vpe™") and the Gaus-
sian potential (V = Voe 7).



27

Point | . vf Wy | Us | Wiot Existence Stability
A =38 1= | 00|58 |BI<3 181> 5
B +1 0 00| -1 all 5, A 8> -3

\/3/2(462—9)A . .
C —%% —m ShOWIl m ShOWIl m
Figure 5.1(a) | Figure 5.1(a)

Table 5.1: The properti

the coupling model (I).
3,107 pling Q)

N

5.1 Coupli = %/ﬁ;ﬁpcflag,,e”p‘” Vpory UH

sfies equations (5.2) and (5.3)

can be expressed as () - "" 3HX). Therefore the interaction

For this covariant form

variable becomes

o
AUBAABNENIONG ).
N &gwﬁ‘iwm’ﬁgjaﬂ N

= 5w [1 + AM2)r2? — w? — —u?

3
4 4
u = —gu {g + M2)w2? — w? — §u2 — 1)2:| .

We summarize all the fixed points in the Table 5.1.

Next we will analyze each fixed point.

¢ Fixed points A
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These fixed points are (z,y,v,w,u) = (1/2/3Yx, Yx, Vs, 0,0), where
2 4
y*:—gﬁ and vle—yf:1—§62.

The existence condition is that each dimensionless variable is real. Therefore these

fixed points exist when

Iﬁls§

The total equation of state is given

2 9
A s 24, (5.19)

The universe has an ac

To find their stabilities
are (—3,(9—44%) /6, (9

ues of the matrix M (4.7). They
re stable when |3 > 3/2. So we

These fixed points are }Tg v, w,u) = 2/3,+1,0,0,0). They correspond to

e o o A mnmﬂ“’rﬂﬁw Pom 19
PMIANTUNIINYIAY o

therefore the three-form field at these fixed points acts as the cosmological con-
stant and can give the accelerated expansion of the universe. From (5.17) we
obtain {2x = 1. Thus these fixed points cannot solve the coincidence problem be-
cause 2x /€ is not of order of unity. The stability analysis gives the eigenvalues
(—3,0,—3/2 — ). Because of the zero eigenvalue we have to consider the second
order perturbation as in the case of an uncoupled three-form field in the previ-
ous chapter. However we can avoid this complication by analyzing their stability

numerically.
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In numerical method the condition of their stabilities is that each dimension-
less variable converges. For the exponential potential we find that if y, = 1, the
potential parameter (1) needs to be positive and if y, = —1, the potential param-
eter needs to be negative. For the Gaussian potential the stability requires that
n > 0. Therefore they are stable when 8 > —3/2 and y,.n > 0 for the exponential
potential and 8 > —3/2 and 1 > 0 for the Gaussian potential.

e Fixed points C

, Us, Vs, 0,0), where

2 _ﬁﬁ —9))

d points are shown in the

These fixed points are (z,y, v,

The existence condil/

Figure 5.1 (a).

10 ‘
A4
5 o
b Jad e
FplFy I T
n 0 i 1
r:i'ﬂ;i‘ i
-5 ':'ali:';"l-'.-“ :{; R
=10

T 8

(@) (b)

Figure 5.1: () T &L'}l DUNINEID Tt sttty st o

tence (blue, shgllied) in the (3,7) parameter space. The violet @gmn indicates the
compaﬂ)lWeé-])ﬁ ﬁk ﬁh‘}ﬂ}i%ﬁj t@ omt that the
energy parameter ratio of dark energy to dark matter is 7 is figure shows
the evolution of the dynamical variables for the exponential potential V' = Ve .
We use = —2.13 for this simulation. The red line represents the energy param-
eter of dark matter(2.), The blue line represents the energy parameter of dark

energy(§2x) and The green line represents the energy parameter of radiation(€2,).

From (5.18), we get the equation of state parameter for the three-form field

i
T8 —9vBN
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From (5.19), the total equation of state at these fixed points is
Wiop = —1,

therefore, the three-form field at these fixed points acts as the cosmological con-
stant like the fixed points B. From (5.17), we obtain
— 9v/6)
432(28 — V6A)
We can find the density parameter for the cold dark matter

Qx =

(5.21)

To solve the comc’&me problerri we require /3, that is

This is represented by I.he dashed line ua}he Flgure 5.1 (a). n diverges at § =
+./45/14. Tﬂ H ﬁ‘{% ﬁ ﬂ?mjﬁnﬁmlal However these
fixed points a ?‘Ir atio Fr Figure 5.1 (b), there
is no the m ﬁter domlnated eriod like in the®@ase of the scallat field mentloned

i e il 6 1 49 msdmmmae&l and for the

Gaussiaﬁ potential.

5.2 Coupling model (II): Q" = —aHp.u"

The interaction term that satisfies equations (5.2) and (5.3) of this coupling model

can be expressed as ) = Qg = aHp,. and the interaction variable becomes
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The autonomous system (5.10) - (5.14) becomes

lav® 3 \/5 3 4
V=3 » 2)\(:1:),2 (xy 3) + 5 (w + U +v > Y, (5.22)

1 3 4
v = —5aU = v {1 + M)w2? — w? — §u2 — 112] ,
3 4
'LU/:—§’LU|:].+>\() 2:|,
3
u' = —gu [

We summarize all the

Point | . Stability
77 7 ' \\\
A -z //A © 9 3<a<0| a<-3
y Nz \
B -3 <«
Table 5.2: The propertie or the coupling model (II). Note

that, ©z = \/gy at &

Next we will anal;ze each fixed pomt

s GUH ININTNYING

hese B W?ﬁﬁﬂ‘ﬁﬂd %IW’J/W Elﬂ 4!

These fixed points exist when

y.:' If’
|

and



32

From (5.19), at these fixed points the total equation of state is
«
Wiot = o
The universe has an accelerated expansion wy,; < —1/3 when

a < —1.

For their stabilities, the eigenvalues are (—3,a + 3, + 3). Thus they are stable
for a < —3. It follows that they are not stable.

¢ Fixed points B

0.4
0.2
0._‘ -4 -2 0 2
N
(b)
. e e"r.ll"r"l 71:'. o . .
Figure 5.2: (a) shows the evotiition of the dynamical variables for Y« = +1 fixed
point with the a.a- itial potential. We usc a — - —_{J , 1 = 1.0. The red line
represents the energ ameter - ¢)«-the blue line represents the

rk energy ({2x) and the gree 4
parameter o ‘ﬁlatlon ﬁ %sbows théevolution behavior of the total equation

TRk
) mmiﬁmﬁm SR e o

From (5 9) at these fixed points the total equation of state is

energy parameter of line represents the energy

of state para

Wtot = _]-a

therefore the three-form field at these fixed points acts as the cosmological constant
as in the model (I). From (5.17) we obtain 9y = 1. Thus these fixed points
cannot solve the coincidence problem. For their stabilities the eigenvalues are
(—3,0,—3/2 — «/2). We use the numerical method to find the stability condition
as in the model (I). For o < 0 we find that for the exponential potential if y. = 1,
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the potential parameter n > 0 and if y, = —1, the potential parameter n < 0. For
the Gaussian potential the stability requires n > 0.

For o > 0 with the exponential potential, we find that the evolution from
numerical simulation encounters a singularity at the matter dominated era. This
singularity can be seen in the interaction term of (5.22) when v # 0 and y = 0.
However this singularity does not exist in the case of a < 0 as shown in the Figure
5.2. This singularity also exists in the Gaussian potential when v > 0. Therefore

these fixed points are stable when —3 < a < 0 and y,n > 0 for the exponential

H /)/ Gaussian potential.
Z.

5.3 Couplin II): — —Tput

potential and —3 < a < 0 and

The interaction term t ions (5 d (5.3) of this coupling model
can be expressed as mate the Hubble parameter
from the dynamical dimensionless variable for

this model coupling

(5.23)
where Hj is the Hubble - present time. Since from (2.21) H
st ]
decreases as the time increases; the carly verse corresponds to s — 0 and the
‘-J"p;’mu:"ﬂ‘l ¥ - o

present time corres

| The interaction variable becomes
4 ) 1

gnds t0 5=

) 0
where 7 = I'/ Hy. The autonomous system (5.10) - (5.14) becomes

AYBININTNEINT
VARG TOLIRY o

, ysv 3

V= - — Zu [+ A(z)z2?

— Ppw’ — yu’ — ’ycv2] , (5.25)

3 4
w = —5W [1 + M)z —w? — guz - ’02:| :

and the dynamical equation of s is

s = —gs[)\(x)azzQ — yw? — yu? — . (5.26)
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Point Y Uy Wy | Us | S | Wiot Existence Stability

A —=T £ T2 00 |any| 2 | -3<7s<0|7s<—3
B +1 0 0|0 |any| -1 all 7, A s > —3

all 7, A -

e Fixed points A"

These fixed points are (z, y; 4, 1, 5) Y, Us, Vs, 0, 0, 8, ), where

and s, can take any nog negative value. They exist when

ﬂUEJ’JVIEJWécWEJ’]ﬂﬁ
Q‘mﬁﬂﬂ‘im UAIINYAY

87y =2 —3.

From (5.19) at these fixed points the total equation of state is

S
Wtot = %

The universe has an accelerated expansion wy,; < —1/3 when

s < —1.
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For their stabilities the eigenvalues are (—3, (5.7 — 1)/2, 5.7 + 3, 5.7 + 3). They

are stable when
5.7 < —3.

Therefore they are not stable.
e Fixed point B

These fixed points are (z,y, v, w. 2/3,£1,0,0,0, s,). They correspond

to the three-form dominatec ion. ist for all parameters \,7. From
(5.19), at these fixed poi . 5 L@ta‘ce is

therefore the three-for
as in the model (I) an n ( 17), v obtain x = 1. Thus these fixed
stabilities the eigenvalues
ethod to find the stability

points cannot solve {
are (—3,—2,0,(—3 — s

Therefore these fixed poin areaa@ﬂe\ wh

!_.r?i? 3

transfer from dark ni wter to dark energy onl e | \ cal interpretation of this
phenomena is the same a; > cmp ing (IT). We do not show
in detail here. '

roes B ANENTHYINT
e TR I A KR TINY TR o

real vahqa and
)

2z )ys + V6
3

Sy = —=. (528)
v

They exist for all parameters \,7. From (5.19), the total equation of state at these

fixed points is

Wiot = —1,
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therefore the three-form field at these fixed points acts as the cosmological constant
as in fixed points B. We find the key feature of these fixed points when considering
the value of s,. From (5.28), the definition of s (5.23), and the definition of 7 we

have
I' = -3H.

Then at these fixed points the coupling @) takes the form ) = —3Hp. and there-
fore, from (5.2)

From the previous mode re no couplings models able

to solve the coincidence p . In order to 1 , we now have to introduce

the new coupling modeg ' i ; ’. 1 be written in the covariant form

(5.29)

where I is constant. The intera hat satisfies equations (5.2) and (5.3)
ﬂ‘s‘::; ‘i

can be expressed asy() 3H. e_autonomous system (5.10) -

(5.14) are 7 ]

, g
ﬂum y(am)mwrm T
ama%%ff‘imww%”iaﬂ s

2

l _y_x

w' =—§w [1+)\( )r2? —w2—§u2—v},
4 4
u = —gu [§+)\(x)x22—w2—§u2—v2}.

We summarize all the fixed points in the Table 5.4. We define new parameters as

= (97 + 3%?972)1/3 :

B= -7 — 3«/6%.
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Point Existence Stability
Al ~F <70 >0
A2 0<7< % 7 <0
A3 7l < 5 7> 75
Bl Figure 5.3(a) | Figure 5.3(a)
B2 1 No Figure 5.3(b)

IS NE
Table 5.4: Th JL perties 6f the fixed poititsfor the coupling model (I). Note that,

ﬁyﬁﬁx@ﬁ%umwmaﬂ
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¢ Fixed points A

These fixed points are (z,y,v,w,u) = (\/2/3Yx, Ys, Vs, 0,0), where

2
yf—y*—§7:0 and v?=1-—y>2

There are three solutions for y,

1 A 143

A3 2A

C1-i/3  (1+iV3)A

We will consider each solud
e Fixed points

These fixed points cor

They exist when
while they are stable when - ,é

That is they are oy.'%

|
W

¢ Fixed points A2 &

AUYANHNINYINS

These fixed poﬂts correspond to

RIAIATRININYA

They exist when

1
0 < ol < =
EVE
while they are stable when
7 <O0.

Thus they are not stable.

e Fixed points A3
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These fixed points correspond to

~ 1-i/3  (1+iV3)A
Y =TT 6

They exist when

while they are stable when

Again they are not stable.

e Fixed points B

These fixed points av/ ' N2 /3y 0,0), where

(5.32)

and

We see that the solutions i otential. We will consider both of

the potentials.

For the eXp i!-",-':'—T'T','?'",-':'_"."T""_-',_",T ————— :’}} )\ = 77 Then y* haS tWO
A\ A )

e
e
O +7°1)

ﬂuﬁﬁwam§%aﬂﬂi

¢ Fixed points B

- ARIAINIA NN INYAY

T+ /0 (3V67 + 95+ 7%1) B
3n -

solutions

(5.33)

Y1x =

w2

1
+§\/9—B.

The existence condition and the stability of these fixed points are shown in the
Figure 5.3 (a).

From (5.19) and (5.32) the total equation of state at these fixed points is

Wior = —1,
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Figure 5.3: This ‘:J '51' (red, shaded) and exis-
tence (blue, shaded) .!I the (7,7) parameter space .,ll the exponential potential
V = Vpe ™. The violetrregion indicates the compatible region of two conditions.
Dashed line Iﬁ Hxﬁ}lﬂp%t&j)%@ w%jpf]aﬁlefj ratio of dark energy

to dark matterfis 7:3. Figure (a and correspond to y, and y solution respec-

"R AINIUURIINIAY
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therefore the three-form field at these fixed points acts as the cosmological constant

like the previous models. From (5.17), we obtain

9 + 27 + 27\/1 (3v/67 + 99+ 7°n)
9 '

Qx =

From (5.21), the density parameter for the cold dark matter at these fixed points

18

27+ 27/ ( 3\/_7+9n+777

Q.
Therefore the ratio of the « en &k matter is
A—

+ 91 +7°n)

/ \ SOt 72n)
ol we reqaiite O ' /3, that is
A

To solve the coincidence ehy we Teg

oure 5.3 (a). At these fixed points,
n the Figure 5.4. Therefore at

This is represented by th

there is the matter domi

JppudBneatens
awmﬂnmumqmﬂm” o

Figure 5.4: (a) shows the evolution of the dynamical variables for the fixed points
B1 in extension the coupling model with exponential potential. We use v = —0.56
and n = 400v/67°/ (243 — 84052) for this simulation. The red line represents
the energy parameter of dark matter (€2.), The blue line represents the energy
parameter of dark energy (€2x) and The green line represents the energy parameter
of radiation (£2,). (b) shows the evolution behavior of the total equation of state

parameter by using the same parameter with (a).
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¢ Fixed points B2

These fixed points correspond to

T = \[n (36T + 9 +72n)
3n B

w2

1
3

however, they do not exist. Therefore, we are not interested in them.

For the Gaussian potential, from (4.40) we have A = 2nz = /8/3ny and

|

(5.32) becomes

(5.34)

-2

-4

-2 0

Y

(a)

Figure 5.5: This fig
tence (blue, shaded)

V= Voe_"””2 The vi@t regio e CO

ility, (red, shaded) and exis-

“for the Gaussian potential

patmle region of two conditions.
Dashed line represents II,he point that the energy parameter ratio of dark energy

and dark ma‘ﬁ Wﬂ ?ﬂ E] v ?Wmﬂdj to three solutions of

equation (5.3

B v 511 T i 0

solve the coincidence problem.




Chapter VI

Conclusions and discussions

In this thesis, we investigate the possibility of the three-form field to drive
inflation and to be dark energy. We find that.the three-form field can drive inflation
without the slow-roll conditions. This is different from the scalar field for which
the slow-roll conditionssplay animportant rele in‘inflation. In the context of dark
energy, the three-formefieldeanactias dark energy. “However, only the three-form
field alone cannot solveithe coincidencel problem. In order to solve the coincidence
problem we need to couple the thrée—fo:rfr"l field to the dark matter. In this thesis,
we study four types of the coupl—inés. : #

In the coupling model (1), ,_t'here 2;1“6 three types of the fixed points. The
fixed points A are not stable. Although ?ﬁkg fixed points B are stable, they cannot
solve the coincidence problemssinee they g"i'\'féf@he dark energy dominated universe.
For the fixed points C they can solve the com(:ldence problem as shown by the

dashed line in the Figure 5.1 ( ) However there is ng matter dominated period

as shown in the Flgt_;re 5.1 (b). X

For the coupling model (IT), there are two types of the fixed points. The
fixed points A are not stable as in the model (I). The fixed points B are stable,
however they ¢annot selve the coincidence problem since they give the dark energy

dominated uniVérse as in the model (I).

In the couphng model (IIT), there are three types of thel fixad points. The
fixed points A are not stable. The properties of the fixed points B are the same as
in the previous models. That is they cannot solve the coincidence problem since
they give the dark energy dominated universe although they are stable. For the
fixed points C they give p. = 0.

For the coupling model (IV), there are two main types of the fixed points.
All of the fixed points A are not stable. For the exponential potential, the fixed
points B1 are stable. They can solve the coincidence problem, represented by

the dashed line in the Figure 5.3 (a). Moreover, they give the matter dominated
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period in agreement with the observations. The fixed points B2 do not exist. For
the Gaussian potential, the fixed points can also solve the coincidence problem as
shown by the dashed line in the Figure 5.5 (a) and (b).

AUEINENINYINS
ARAN TN
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Appendix A

Calculation of Einstein tensors

where I',, is the Chri

The metric tensor a .1) take the form

() (A.3)
| \ 1/a2(t)). (A4)

Using the FRW metric (2.1) obtain all components of the Christoffel

symbol,
\
b

03900

T
I
9" (8ogoo + 30900 — Joo)

f usfﬁaﬁmwmm
ammﬁi‘;ﬂ IR NHA Y

2 (30910 + 0ig00)
=0, (A.6)




1
F?j = 590

10
_59
1

2

(956 + 03950
0(@'9;‘0 + 0900 —

(—00a®dis)

= ad&-j,

i 1
F0025

2

59

- —380(

gw(aogoﬁ + 9o gpo

1 ..
—=9”(00g0; + Oogjo —

(8 Jok ""f"..

) P;OI%Z

— 059ij)

8092'3')

- 3[3900)

9900)

5ﬁgj0)

Ok Jjo)

ﬂﬂﬂ?ﬂ%%%ﬂ’lﬂﬁ

Ry

ammniﬁiﬂw

0 — aoer
- 83‘I%i -

=0,

O,T,; + oI, —

NINY18

— 9T, + T8 10 —

girga
| T8
Fjﬂiroj
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(A7)

(A.8)

(A.9)

(A.10)

~~

A11)

(A.12)
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Ri; = 01 — 0,15, + T4, I — 9.1,
= Ol + T, IY, — T, 10 — Th T,
= Oo(ad)dy; + FOkF?j - ngrfo - ngrgk
= (ad + a*)é;; + 3gaa5ij — aaékjg(sf - g&faaéik
= (ai + a*)0y; + 38 — a*0;; — G°0y;
= (ad + 2a*)d;;. (A.13)

Now, we can find the Ricci scalar by contracting the Ricci tensors,

(A.14)

The Einstein tensor

(A.15)

(A.16)

a +75)0

.u‘

= (ad + 24* (5 a*dy;

fUE FYEAINEINT ‘A'")

We can raise &lower index of thg Einstein tensors by usmg the inverse metric

TRRIANN LN ZJVI’TJ‘VIEI']G d

— 3aad;; —

— 3 (A.18)

— (2T (A.19)



o1

Appendix B

Equations of motion of an n-form field from the

variational principle

B.1

We consider an n-fors ime with the action

Sy = /d4:v —g P ¥ ! — QmeAQR} : (B.1)

b (=7
where Ful Hntl = (n+ Vi ﬂzﬁ | Al

motion of the n-form feld isfobtained by & o the Euler-Lagrange equations

Fn Ay - The equation of

(B.2)

’R. (B.3)

B R a5

oL
aA,u,l,..y,n Qn' 8AM1 Hn
o AalﬂnAﬂl ﬁn

qﬁ”{a oAV

+F) G810 -G man ) (ATTOmGI G0 4§01 §on AT

1% (
R
= <V/ + %) (Aul...un + A,U«ln-/J«n)

o, SR
= 2 A :
( V TL. M1 Un
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Since
aL _ 1 a al...ant+1 7B1---Brnt1
a(V“A“l'"“") - _2(n+ 1)!(gﬁlal"'gﬁn"—la”“)—8(VILAH1--~M71)(F [ + )
1 Q1. Q1 a
= =G ) [ s
N1 OB B Br...bnt1
((n+1)!(v A +.))+F
0 n+1
OélAOt2-~-Oén+1
O(VHAHL-1n) <(n + 1)!(v + )>}
- ) [Feve (3002 60)
= - 1) + [P (gﬁl.u"'g,gn-kllin)}
= ——F
we have

Then the equation of motion

v (B.4)

Variation of actio 15; = kY |

5= [ d 'EI [ e )
ﬂuﬂ%ﬁﬁ%ﬂfﬁw #3867 oo

QWW@Nﬂ‘iﬂJ UNIAINYAY

F2—V2)
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In order to calculate the right-handed side of (B.5), we consider

0F? = O Fpypimir Foroovp i g7 gl
= For s For v 0(gHM7 gttt
= Fupnir Forov [(¢7272 gttt ) 5 g
F(ghv g gt ) S g L (gL g ) gt ]
= Fuppinir Forvnnyr (972 gl int ) gl

M1Vl 133 Hn+1Vn+1 H2V2
i Frivn.n o (97 917 g )0g

+ + FMl--~Hn+1F N 1"_ . V")(Sgl‘n-i-l’/n-&-l
= F 2y - (q" b /1 !5

+... +FM ‘ 1 gH2ve HnVn)(sgulul

-‘ S H1V1
AY

<

n+1Vn+1 )5gul v1

+o T e, (g"? [ ngun+11/n+1)5gu11/1
)5gﬂ1V1

Similarly, we get

(B.7)
e ﬂus?waﬂﬁwaﬂﬂi
AN TR 8
e o

Next we will find §,/—g. To do this we use the fact that for any square matrix M

with nonvanishing determinant

In(det M) = Tr(In M), (B.9)
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where we use the fact that exp(In M) = M. The variation of (B.9) gives

T Md(det M) = Tr(M5M). (B.10)

For the metric g,,, we get

69 = 9(g""0g,m).

Using (B.8), we get

(B.11)

Finally, we obtain

(B.12)

Now we compute the v. ) ‘ S el symbols 0T, :

- aﬁg,uu)}

and 0,09,3,

aﬂﬂﬁﬂ@%&mﬁwmﬂﬁ

= (8;191/9)9!375@/)7 9up(Oug )59 nggﬁ 909"

ammnmumawmaa
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Then, we get

1
oLy, = 9 [(augyﬁ)(ggaﬂ + (095109 — (aﬂgﬂy)(;gaﬂ + gaﬁ(_(augl/p)gﬁwégm

—9vp(91.98+)09”" = 9up98v9u09”" — (01980) 9709 — 98p(D0Gur )09
~ 989917 0509" + (059110) 9709”" + 9up(0590 )09 + GuupGuy509”)]
= 5 10,0900 + (2,95,)007 — (O59,0)59" — (2,,)500"
— 9" 90p(80u95+)09" — Gup05 009" = (D193p) 9" Gur 09" — 65 (D 9u) 09"
—085 91y 009" + (08910) 9" 907 09”" + 9 9up(08902)89” + 9°° 9p 91, 0309”7 ]

1 "
= 5 [(0u905)99"” + (0,930 1"/?/ )69°% = (0,u9v,p) 39
o ' JvpU; —(Oug 7)59&7

g0

) G0 0g™ wyy)ég + 9% 9up 90, 0309" ]
= 5 [(Ougus)09™” ¢ — (0u908)09™

—9°°,,p(0,95 7Y — (Ovgus)og

~,u50,09°° + v1)09°" + 9°° 6,409,050 9"
= 5 [~(9s9)

In the above equation, we malk he metric compatibility V,g,, = 0, to

(B.13)

Therefore, D ﬂ

a A «Q A a « A Q A
O3, = 5 [~T3u0009° % 25,0109 — 427 upTi593009" — 97 GupL 71, 95009

-~V BT A TV

—guﬂf?%'g +T3,909" 9@59’” +T3, g&g Y

‘{Wﬂfﬁwéﬂ WULATS VIR

[—T3,9009" = T3,9009% — 0390,13,69"" = 9u30,09°° — T ,63,,09"
—guﬂauég“ﬁ + 13,909 90209” + 9 9upL 390709 + 9°° 94090, 056 9"

= % (=T 39009 = T5,0u009"" = 9,09 = 95009 = 17,909

~ 130,097 + 13,909 909" + 9" 9upL 3, 90209” + 9°° 91p 91,050 9"" |
= % L9809 = T000u309 = 9uaT 09> = 9,500 — T gu506™
— 9180069 + 1039109 9469™" + 9°° 9ol 5390209 + 9% 91p 9,030 9”" ]

1
= —= [908Vu09"" + 945V 09" = 9*° 9,9,V 5097] . (B.14)
>
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From (2.3), the variation of the Ricci tensor is
_ e e o B8 a 7B @ B a 1B
0R, = 0,01, — 0,017, + T3, 00, + 013, I, —['5,0T,, — oI5, T,
o @ B o 8 @
= 0,07, + [2,00%, — T8 673, — T2, 6T9,
@ o B 8 o B a
—8,0T%, — T2,8T8 4+ T2 675, + %, 6T,
= V.0T%, — V,0I%,

1
) [gl/ﬂvavu@aﬂ + 95 Va V.09 — gaﬁgupngavﬂégm]
1
+§ [gaﬁvvvu(sgaﬁ + 9usVy of _ gaﬁgﬂpgmv,jv/ﬁg’”’]
1 Wil 1
= —= [9,5VaV,dg a8V Vu09*" — 679,,V,V 509"

. “
=3 905V, V 409" 7l #uégaﬁ + Gupgv,35g7] . (B.15)
The variation of the Ri

SR =06(g""Ruw)

1
= 5 guﬁvavuég g
+9" 9upGuy
1
= 5 + 5”91/7:'59’”] + R 59”1/
1
=3  + gy 36977] + Rybg*”
= gl“,D(Sgwj. - \Y% (B ]_6)

ﬂa{ Wﬂi@ﬂ%mwﬁwwmﬁ’

ARt g gwljég“” —|— V V.,ogh" — —R,W(s uu)

Nl"l Hn—1*"v

_l _; 2 2y _ _— 2 v
2g,“,< 2(n+1)!F V(42 2n!§A R) 5g

1..-Hn gR 1- n—1
/d4x\/ {( Fpp oy I — (nV’—i—ﬁ App i AP

n —1)!

£A? 1 1, o1 "
ot T ) = 59w\ gyt~ VA gt AR ) 09

A2
— / d*zy/ —g% [9,86¢g" =V ,V,6g"].
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By integrating by parts

/dnac\/—gA“ (V,B) =— /d"a:\/—g (V,A") B + boundary terms,  (B.17)

0S54 becomes
(5514:/de [( Fpiy e FL"

gR Tefbn—1
- ("V' + A1) Appr o A

§A2
2n!
1
_§g;w (_ :| 59’“’
1 ER ) .
= —§/d417 -9 (n_1)|> AHHl Hn—1 l; o
£A?
+7R

- _5 (n_ 1)| B e — 1A51 Hn
+g;w <_2(
5
]‘ 4 E Aul...un_l
= 5 dz umun—1 v

1 ,,F +V A2
;é{‘ #J Vw&njw H’H}jﬁ ] . (B.18)
" RRIRIAT ﬂﬁhi’lﬁ“ﬂ‘ VIR Y

L = , B.19
N \/_59”1, ( )
which can be written as

1 1
Ty = nIFHM w9 20V A AR = g (WFQ " V(A2)>

+% [nRAum...unqAﬁlmun_l + (le + gt = Vuv'/) Az} : (B.20)
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B.2 Scalar field

The action of the scalar field is given by
S = /d4:1:\/_—g SN 1gﬂ”v oV, — V() (B.21)
116G 2 peny ’

where V(¢) is the potential of the scalar field. The equation of motion of the

scalar field is obtained by using

—0, (B.22)

where L is the Lagrangian of

(B.23)
We will compute each
%"
_gaﬂ(guv 5
o=V 'Y,
GBI NENITNYINT
where we introduce the cﬁovar‘iant @ Alembertian operator as &/
ARSI IERY .,
Now we arrive at the equation of motion
Lo — ﬂ =0. (B.25)

do
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For the FRW metric (2.1) we have

O¢ =V, V"
= g""V,V,¢
= 9"V, 0,¢
= g"0,0,06 — g T, 000
=—0- g”FO %¢

o W | f/ (B.26)
Then the equation of mo lllu:u::; e s ‘l @e spacetime (2.1) is
(B.27)
The energy momen .\. ved by
(B.28)

The variation of tl

55 = /d4 {\/ 5{——9 “" Vi) +5\/—g{—%g“”vu¢vu¢—V(¢)}}

ﬁ -" J

- / d*x { —94= 509" V,.0V., 0} — —v/=g -.---__,; %g“ﬁ VapVd — V(¢)}}
\Z J

_ 4 — _r (LS il
_/dx g7 — ”

SRR

Therefore, frorﬂ.l B.28) we obtain t, ‘he energy momentum tensor

RAIATAUPAINIAGY o

Vo dVs6— vw}



Non-vanishing components of the energy momentum tensor are
1
Too = VodVod — goo §ga’gva¢vﬁ¢ + V(o)

= 4 L0 VadV0 4 V(0)

= 4 20"VedVo0 + 5AIV,6V,6 4 V(0)

2
= F - 5P+ V()
= %q&Q +7V(

Ty = V¢ ‘ \‘ ENEON 56 + V(Cf))}
o — 4, .
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— el f,‘V‘-:.., (e
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qmmmm—ww@ﬂmaﬂ

— 42—
—2¢ V(o).
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(B.31)

(B.32)

(B.33)

(B.34)



B.3 Three-form field

61

For the FRW metric (2.1), the timelike component of three-form field is nondy-

namical. This can be shown by observing that

Fopp = 4V 0 Ay
= % (VaAup — Vol + Vol — VA, + Vady — VaAu,
Vo Aaup = VoAaps + VoA pan — VoA o + VoA — VA,
Y, Ay — t, — Vopar + ViAap — ViAawy
V) Ay — ’ Wa +V A,,W YV, Avay)

and

YV Fapp = V*OuAyuy
= 0V 300 A pk 9°°V 50, Anppk 97"V 50, A,,ap + g’V 50, Anvy

- R IEIH S WA T om0, - 70

+9% 050, Aogsp — 6T, Or Ay — 6278000 Arp — 95T 3,00 Aary —

A RremAItl RN Bt -

+9* 050, Acvu — 9°°T5,00Aavn — 9T 30 0p As — 9°° T3, 0p Aary —
= _aOaOAqu - g“ F?jaOA;wp + FouaoAiup + Poya()Auip + FopaOA;wi

97T 0y Aaya
a'BFIBpa Al/a)\
g Fﬁua Aow)\

_aOaI/AO,up - gijrgyaOAi,up - gijrgjauAO,up - gaﬁrgua Aa)\p - aﬂrgpauAa,u)\
—808MAVOP — ginguﬁoA,,ip — “ﬂnga AAap O 8 Ayop "ﬁngauAm)\
—000p Ao — 97T 00 Ay — 97170, Aoy — aﬁrﬁ,,a,,A(W — 9*’T},0, A (B.36)
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Note that we have made use of the homogeneity and isotropy of the universe so

that 9;A4,,, = 0. Consider a timelike component V*F;jo,

VEoijo = —0000Aij0 — 9" T%00 Aijo + T6:00 Akjo + ngaoAiko + T80 Asjk

_aoajAOiO - gle?jaOAkiO - gleilajAom - gaﬂféz@jAam - gaﬁfﬁoajz‘lmx
—000; Ajoo — gklr?iaoAjko - gaﬁrgjaiAAaO - gklrglaiAjoo - gaﬂFéoaiAjax
— 0000 Agji — §PT5,00 Akji — g™ T9,00 Agji — g°° Ff\gjaoAa,\i — g™’ F'g\iaoAaj,\

= —0v00Aijo — g FklaOAZJO + F 00 Arjo + I‘ojao ikO0 — gklr?jaOAkiO
~g"T750; Agim — 6" Ty’ ’f/ hAosi — 9" D0 Aoji
+T5;00 Aok — g ‘ & 9" T390 Arjo

= —0o0oAijo ojao ik0

—gMTy; 00 Ak A kol & -1- g Pkl80AzJO

POjaO ik0
— 0. (B.37)
From (3.18) its equatio
(B.38)
we obtain
(B.39)

which is an algebraie

Consider a spaﬁike =

VFui23 = —éﬁ A2 #F oA %ﬁ i2 +Fo 3 +F0380A121
0 ;u m&ﬁq ﬂﬂ’l 102 Aarns — 9°°T 3302 Agin

—50 WAooz — ]F 30/513 - ’BF 2&4/\05 - ]F uzoza —g” F,3381A2a>\
q A IR L AN HRDE — rri
L — 8000 A123 — 97 T7;00 A1as + 10,00 A123 + Toa00 A2
+F0330A123 - 9 F223014213 - g I‘116)014213 - 9 I‘338014321
= —000pA123 — §7T 00 A 123 + 315,00 A1as
+9%°T9500A123 + "' 7,00 A12s + g% 5500 Aas
= —0000 A1 + 3T, 00 Ar2s.

on >B.36 we have
II}]( )
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From (3.21), we get
80A123 = 80 (a3X)
= a*X + 3a%aX
0000 A1z = a*X + 3a*aX + 3a*aX + 3a*iX + 6aa’X

= a*X + 6a’aX + 3a*iX + 6aa’X.
Therefore, we have
6ai®X + 3¢ (a3X + 3a2ax)

a

1’ X + 3a%aX + 9aa’ X

V@Fyi03 = —a*X — 6a2a )

Then

VFor23 = —a° X £ X + 3a°H2X

(B.40)

From (3.18) we obfain the equ Ticld X

() l

Wﬁﬁ*ﬁﬁﬂfﬂﬂ A3
ammnimuﬁn?’ foAay

av
dA?
Ldv
6dX?
LdV dX
6 dX dX?
L dv
12X dX
1

== ﬁV,X , (B41)

V'(A%) =
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where V,x = dV/dX. Therefore, we get the equation of motion of X as
X=-3HX —-3HX - V. (B.42)

From (B.20), each component of the energy momentum tensor of the three-form
field is

Too = FOMMQMSFMM?#?, + 6V/A0Mw2AM1M2 + — F2 + V(AQ)

3! 48

From (B.35)

H1p2013 ijk
F0M1M2N3F0 - FOiijO

70k + akAOJ’L) (aoAlmn

3)’( + 3a2aX)

aX X + 9a4a2X2)

(B.43)

' 1
= r '—6F0123F0123

AU INUNSWEINT
awwmﬂ?ﬁmﬁ?ﬁﬁ‘faﬂ

(B.44)
Therefore, the (0,0) component of T}, is
: 2 1. 2 )
Too = (X +3HX) = (X + 3HX) V(A%
1. 2
-5 (X + 3HX) V(A2 (B.45)

The (i,j) component of energy momentum tensor is

1

T =

1
Fuup FYP 4+ 6V Ay ALY — <4—8F2 + V(A2)> :
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Observing that
r

g

F"" = 3Fiou )"
= 39" ¢"" g" Fyor Fjyomn
= —3¢""¢" For Fjomn
= =3¢ "¢" (B0 Aka) (Do Amjn)

3 . .
= =2 e (00X + 302X ) (a2X + 3% X))

X 3HX>2
' (B.46)
and
(B.47)
we can rewrite _
T, = -’ (X + 3HX) 12 5, —% (X + 3HX)2 + V(Az)]
— [—% (X 4 3Hx) =
From (B.41) we -‘_-;i*”*””'* \:'J
T, =laf Vix X & V(A2)] 5. (B.48)
The energy de ﬂ ﬁzjﬁ@ﬁe on ﬁ %ﬁ E] ﬁ]el%.iu%glven by
AR N AN
= Too
- % <X + 3HX)2 +V(A) (B.49)
px =T}
= gijTji

1 ... 1 . 2
— e [—5 (X + 3HX) Vi X — V(42| 5

1/. 2
- -3 (X + 3HX) Vi X — V(A2). (B.50)
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