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Chapter I

Introduction

The accelerated expansion of the universe has been discovered for more than

a decade [1, 2]. What is responsible for this acceleration is called dark energy. A

number of explanations of dark energy have therefore been made. The simplest

description concerns with introducing a cosmological constant in the Einstein field

equations. It is in agreement with most of the cosmological observations. As a

phenomenological model, it is successful. However, the value of the cosmological

constant is so small. Its value is more than 30 orders of magnitude smaller than

the Planck scale. This considerable difference causes a theory not to be natural.

This is the naturalness problem or the cosmological constant problem. Moreover,

there is also the coincidence problem of why the dark energy and the matter have

comparable contributions to the energy density at the present time. Since the en-

ergy density of the cosmological constant remains constant throughout the history

of the universe while the energy density of the matter decreases as the universe

expands, the coincidence problem is therefore too difficult to be understood if the

dark energy is the true cosmological constant.

Apart from cosmological constant there are other alternative models of dark

energy which are dynamical. The most popular model is the quintessence model

in which a scalar field plays the role of the dark energy [3, 4]. Due to their

homogeneity and isotropy, quintessence and other scalar field models agree with

the cosmological principle. Although scalar field models do not conflict with the

observational data but so far no one has discovered the fundamental scalar particle.

Moreover, at a more fundamental level there is no reason to exclude the possibility

of some other higher form field to be the dark energy. These higher form fields

can exist in some theories such as the string theory. The presence of them does

not necessarily violate the cosmological principle. For these reasons an effort has

been made in using a vector field, a one-form field, to play a role of dark energy

[5, 6, 7, 8]. However, most of the vector field models encounter instabilities [9].

Generalizations to higher form fields have also been proposed [10, 11]. Two-form

field models also have the same problem as vector field models. On the other hand
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three-form field models have no such problem: they are stable [11]. Therefore, it is

of interest to consider a three-form field as a candidate for dark energy. Moreover,

there is also the accelerated expansion in the very early universe called inflation.

What drives inflation is called inflaton. Similar to dark energy, a three-form field

is proposed to be the candidate for inflaton [11, 12]. The possibility for a three-

form field to be dark energy and inflaton and to solve the coincidence problem is

the aim of this thesis.

This thesis is organized as follows. In Chapter II, we give the basic cosmology

necessary for this thesis. n-form field models of dark energy and inflation are

discussed in Chapter III. We focus in detail on scalar field and three-form field

models only. In Chapter IV, we introduce the autonomous system and apply it

to the scalar field and three-form field models. The Chapter V is devoted to the

discussion of coupling of the three-form field to the dark matter. In this thesis we

study four types of couplings and analyze stability of the models. The conclusions

are in the final chapter.



Chapter II

Basic cosmology

2.1 The Einstein field equations in FRW uni-

verse

To study the universe, we make use of the basic important assumption called

the cosmological principle stating that the universe is homogeneous and isotropic

at large scales. The metric satisfying this principle is the Friedmann-Robertson-

Walker (FRW) metric with line-element,

ds2 = −dt2 + a2(t)dx2, (2.1)

where a(t) is the scale factor. The dynamics of the universe can be described by

the Einstein field equations

Gµ
ν = 8πGT µ

ν , (2.2)

where Gµν ≡ Rµν − (1/2)Rgµν is the Einstein tensor, Rµν is the Ricci tensor, R is

the Ricci scalar, and Tµν is the energy momentum tensor.

The Ricci tensor can be expressed as

Rµν = ∂αΓ
α
µν − ∂νΓ

α
µα + Γα

βαΓ
β
µν − Γα

βνΓ
β
µα, (2.3)

where Γα
µν is the Christoffel symbol given by

Γα
µν =

1

2
gαβ(∂µgνβ + ∂νgβµ − ∂βgµν). (2.4)

The metric tensor and its inverse in the FRW metric (2.1) take the form

gµν = diag(−1, a2(t), a2(t), a2(t)), (2.5)

gµν = diag(−1, 1/a2(t), 1/a2(t), 1/a2(t)). (2.6)

Using the FRW metric (2.1), we can obtain all components of the Christoffel

symbol,

Γ0
ij = aȧδij, (2.7)

Γi
j0 =

ȧ

a
δij, (2.8)
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where the dot denotes differentiation with respect to time t and the other compo-

nents are all zero. Then we can derive the nonvanishing components of the Ricci

tensors

R00 = ∂αΓ
α
00 − ∂0Γ

α
0α + Γα

βαΓ
β
00 − Γα

β0Γ
β
0α

= −3
ä

a
, (2.9)

Rij = ∂αΓ
α
ij − ∂jΓ

α
iα + Γα

βαΓ
β
ij − Γα

βjΓ
β
iα

= (aä+ 2ȧ2)δij. (2.10)

Now, we can find the Ricci scalar by contracting the Ricci tensors,

R ≡ gµνRµν

= 6(
ä

a
+

ȧ2

a2
). (2.11)

The nonvanishing components of the Einstein tensors can be obtained.

G00 = R00 −
1

2
Rg00

= 3
ȧ2

a2
, (2.12)

Gij = Rij −
1

2
Rgij

= (−2aä− ȧ2)δij. (2.13)

We can raise a lower index of the Einstein tensors by using the inverse metric

tensor

G0
0 = g0µGµ0

= −3
ȧ2

a2
, (2.14)

Gi
j = giµGµj

= (−2ä

a
− ȧ2

a2
)δij. (2.15)

Then, consider the right hand side of the Einstein field equations (2.2). We assume

that the universe consists of matters (both baryons and cold dark matters) and

radiations. We describe each of these species as a fluid. In this thesis the fluid

is assumed to be perfect, the fluid with no viscosity and momentum density. For

the perfect fluid the energy momentum tensor takes the form

T µ
ν = Diag(−ρ, p, p, p), (2.16)

where ρ is the energy density of the fluid and p is the pressure density. Substituting

(2.14) - (2.16) into the Einstein equations, the (0, 0) component gives

ȧ2

a2
=

8πG

3
ρ, (2.17)



5

while the (i, j) component gives

ä

a
+

ȧ2

2a2
= −4πGp. (2.18)

The Hubble parameter is defined as

H ≡ ȧ

a
. (2.19)

Its derivative is given by

Ḣ =
ä

a
−H2. (2.20)

The (0, 0) component (2.17) becomes

H2 =
8πG

3
ρ. (2.21)

This is the Friedmann equation describing the evolution of the universe. The (i, j)

component (2.18) becomes

Ḣ = −4πG(ρ+ p). (2.22)

This is the acceleration equation accounting for the accelerated expansion of the

universe. The conservation of the energy momentum tensor leads to the continuity

equation

∇µT
µ
ν ≡ ∂µT

µ
ν + Γµ

αµT
α
ν − Γα

νµT
µ
α = 0. (2.23)

For the time component we obtain

ρ̇+ 3H(ρ+ p) = 0. (2.24)

2.2 Evolution of the universe

We can study the evolution of the universe by using the Friedmann equation (2.21).

We will consider the radiation and matter dominated universe. The pressure for

radiation can be written as p = ρ/3, while the pressure for matter vanishes. We

define the equation of state parameter as

w ≡ p

ρ
. (2.25)

Therefore the equation of state parameter for radiation is wr = 1/3 and for matter

we have wm = 0. The continuity equation (2.24) can be rewritten as

ρ̇+ 3Hρ(1 + w) = 0.
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It can be solved by straightforward integration and the solution is

ρ = Ca−3(1+w), (2.26)

where C is constant. Hence, for radiation, the energy density ρr is proportional

to a−4:

ρr = Ca−4, (2.27)

and for the matter

ρm = Ca−3. (2.28)

Putting the energy density (2.26) into the Friedmann equation (2.17) gives

a = A(t+ c1)
2/3(1+w), (2.29)

where A and c1 are constant. If we choose the initial condition that a = 0 at t = 0,

then c1 = 0 and hence

a = At2/3(1+w). (2.30)

Therefore the evolution of the scale factor of the radiation dominated universe is

a = At1/2, (2.31)

and the evolution of the scale factor of the matter dominated universe is

a = At2/3. (2.32)

We have seen that the radiation and matter dominated universe has a decelerated

expansion.

2.3 Differential forms

A differential n-form is a (0, n) tensor which is totally antisymmetric. Therefore, a

scalar is a zero-form and a dual vector is a one-form. In d-dimensional spacetime,

there are no n-forms with n > d due to their antisymmetric property.

For n-form A and m-form B, we can build (n + m)-form A ∧ B by wedge

product

(A ∧B)M1...Mn+m ≡ (n+m)!

n!m!
A[M1...MnBMn+1...Mn+m], (2.33)

with M1, ...,Mn+1 = 1, ..., n. The square bracket denotes antisymmetrization:

T[M1...Mn] =
1

n!
(TM1...Mn + alternating sum over permutations

of indices M1...Mn). (2.34)
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Alternating sum means that odd permutations give a minus sign, for example,

T[M1M2M3] =
1

3!
(TM1M2M3 − TM1M3M2 + TM3M1M2

−TM3M2M1 + TM2M3M1 − TM2M1M3). (2.35)

The wedge product of two 1-forms is

(A ∧B)MN = 2A[MBN ] = AMBN − ANBM . (2.36)

By the definition we find that

A ∧B = (−1)nmB ∧ A. (2.37)

We can form the (n+ 1)-form from an n-form by the exterior derivative

d defined as

(dA)M1...Mn+1 = (n+ 1)∂[M1AM2...Mn+1]. (2.38)

The exterior derivative of a 0-form, for example, is simply the gradient

(dϕ)M = ∂Mϕ. (2.39)

Exterior derivatives obey a modified version of the Leibniz rule

d(A ∧B) = (dA) ∧B + (−1)nA ∧ (dB). (2.40)

Another interest of the exterior derivative is that

d(dA) = 0, (2.41)

which is written as d2 = 0. This results from the definition of d and partial

derivatives commute. We define an n-form A to be closed if dA = 0 and exact

if A = dC for some (n− 1)-form C. All exact forms are closed, but the converse

is not necessarily true.

2.4 Inflation

Inflation is the period of the very early universe with an accelerated expansion.

It has been introduced to solve some problems in which the Big Bang model

cannot handle such as the flatness problem, the horizon problem and the origin of

structure problem. It does not replace the Big Bang idea. Instead it adds some

ideas on the Big Bang model. Inflation in a more abstract form will be mentioned

in the next chapter.
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2.5 The acceleration of the universe

Observations tell us that the universe nowadays has the accelerated expansion.

Moreover, there is also the period of the universe with an accelerated expansion

in the very early time called inflation. To explain these accelerations, consider the

acceleration equation by substituting (2.17) into (2.18),

ä

a
= −4πG

3
(ρ+ 3p). (2.42)

Therefore, the accelerated expansion of the universe requires that

ρ+ 3p < 0, (2.43)

giving the equation of state parameter

w =
p

ρ
< −1

3
. (2.44)

Therefore, both radiations and matters cannot give rise to the acceleration of the

universe. In order to explain this acceleration, we need to introduce new species

with negative pressure. In the very early universe we call the species driving

inflation inflaton and in the present we call the species producing the accelerated

expansion of the universe dark energy. In the next chapter, we will study models

of dark energy.



Chapter III

Dark energy and inflation from an n-form field

Thanks to its characteristic, the isotropy, the most popular candidate for

dark energy and inflaton is a scalar field. However, there are no reasons to exclude

the possibility of a higher form field to be dark energy and inflaton. Vector inflation

has first been proposed [13]. However, vector inflation has difficulty since it induces

anisotropy and faces the problem of slow-roll. In [14] Golovnev, Mukhanov, and

Vanchurin have shown that these problems can be overcome. To reduce the degree

of anisotropy, vector fields have to form either a triplet of mutually orthogonal

vector fields or a large number of randomly directed vector fields. We obtain

the isotropic universe in the first case and the slightly anisotropic universe in the

other case with the anisotropy of order 1/
√
N for N vector fields. To handle

the slow-roll, a vector field needs to non-minimally couple to gravity. Therefore,

a non-minimally coupled vector field behaves as a minimally coupled scalar field.

However, the models of vector field have instabilities [9]. That is the perturbations

around the background diverge. The models of two-form field also face the same

problem [11]. On the other hand, the three-form field models are stable. In this

chapter, we will review models of dark energy and inflation from an n-form field,

concentrating only on a scalar field and a three-form field.

3.1 n-form field models of dark energy and in-

flation

In this section, we review [11] in which we consider an n-form field A in 4-

dimensional spacetime with the action

SA =

∫
d4x

√
−g

[
R

16πG
− 1

2(n+ 1)!
F 2 − V (A2)− 1

2n!
ξA2R

]
, (3.1)

where Fµ1...µn+1 ≡ (n + 1)∇[µ1Aµ2...µn+1] and A2 ≡ Aµ1...µnAµ1...µn . The equation

of motion of the n-form field obtained by varying the action (3.1) with respect to
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the field is

∇µFµµ1...µn = (2n!V ′ + ξR)Aµ1...µn . (3.2)

The energy momentum tensor of the n-form field is derived by

Tµν = − 2√
−g

δSA

δgµν
, (3.3)

which can be written as

Tµν =
1

n!
Fµµ1...µnF

µ1...µn
ν + 2nV ′Aµµ1...µn−1A

µ1...µn−1
ν − gµν

(
1

2(n+ 1)!
F 2 + V (A2)

)
+

ξ

n!

[
nRAµµ1...µn−1A

µ1...µn−1
ν + (Gµν + gµν�−∇µ∇ν)A

2
]
. (3.4)

Let us now consider examples of n-form dark energy for n = 0 [15] and n = 3 [12].

3.2 Scalar field models of dark energy and infla-

tion

In this section we follow [15]. We will start with a zero-form field or a scalar field

in 4-dimensional spacetime. The action of the scalar field is given by

S =

∫
d4x

√
−g

[
R

16πG
− 1

2
gµν∇µϕ∇νϕ− V (ϕ)

]
, (3.5)

where V (ϕ) is the potential of the scalar field. The equation of motion of the

scalar field obtained by varying the action (3.5) with respect to ϕ is

�ϕ− dV

dϕ
= 0. (3.6)

For the FRW metric (2.1), the equation of motion (3.6) takes the form

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0. (3.7)

The energy momentum tensor of the scalar field is derived by

Tµν = − 2√
−g

δS

δgµν
, (3.8)

which can be expressed as

Tµν = ∇µϕ∇νϕ− gµν

[
1

2
gαβ∇αϕ∇βϕ+ V (ϕ)

]
. (3.9)
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The energy density and pressure of the scalar field are

ρϕ = −T 0
0

=
1

2
ϕ̇2 + V (ϕ) (3.10)

pϕ = T i
i

=
1

2
ϕ̇2 − V (ϕ). (3.11)

From (2.21) and (3.10) we obtain

H2 =
8πG

3

[
1

2
ϕ̇2 + V (ϕ)

]
. (3.12)

The equation of state parameter for the scalar field is

wϕ =
pϕ
ρϕ

=
ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ)
. (3.13)

It ranges in the region −1 ≤ wϕ ≤ 1. From the condition of the accelerated

expansion (2.44), we obtain

ϕ̇2 < V (ϕ).

That is the universe has the accelerated expansion when the kinetic term of a

scalar field is less than the potential term.

In the context of inflation we need the additional condition. To explain

inflation, we introduce the standard approximation technique called the slow-roll

approximation. This approximation eliminates the first term of (3.7) and the

first term of (3.12)

3Hϕ̇ ≃ −dV

dϕ
, (3.14)

H2 ≃ 8πG

3
V, (3.15)

where ≃ means that quantities in the right hand side and the left hand side are

equal in the slow-roll approximation. This approximation will be valid if two

parameters satisfy

ϵ(ϕ) ≪ 1 and |η(ϕ)| ≪ 1, (3.16)

where the slow-roll parameters ϵ and η are defined as

ϵ(ϕ) =
1

16πG

(
1

V

dV

dϕ

)2

,

η(ϕ) =
1

8πG

1

V

d2V

dϕ2
.
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These conditions are necessary for the slow-roll approximation to be valid. How-

ever, they are not sufficient conditions because they are only related to the form

of the potential. We can freely choose the value of ϕ̇ because of the second order

of the scalar field equation of motion (3.7) and actually we can select ϕ̇ to violate

the slow-roll approximation. Therefore, it is necessary to introduce the additional

condition to make the slow-roll approximation valid. Under such condition, ϕ̇ sat-

isfies (3.14). (3.14) and (3.16) are referred to as the slow-roll conditions. We

see that (3.15) is a consequence of (3.14) and ϵ(ϕ) ≪ 1. Inflation comes to an end

when the slow-roll conditions are violated.

3.3 Three-form field models of dark energy and

inflation

For n = 3 case, we review [12]. The action for a three-form field Aµνρ minimally

coupled to gravity can be written as

S =

∫
d4x

√
−g

[
R

16πG
− 1

48
F 2 − V (A2)

]
. (3.17)

Here, we define

Fµνρσ ≡ 4∇[µAνρσ] and A2 ≡ AµνρAµνρ.

From (3.2), we get the equation of motion of the three-form field

∇αFαµνρ = 12V ′(A2)Aµνρ. (3.18)

The energy momentum tensor of the three-form field is given by (3.4)

Tµν =
1

6
FµαβρF

αβρ
ν + 6V ′AµαβA

αβ
ν − gµν

(
1

48
F 2 + V (A2)

)
. (3.19)

For the FRW metric (2.1), the timelike component of the three-form field is non-

dynamical because its equation of motion (3.18) reads

12V ′(A2)Aij0 = 0, (3.20)

which is an algebraic constraint. This implies Aij0 = 0. Therefore, we can only

focus on the spacelike components which take the form

Aijk = a3(t)ϵijkX(t), (3.21)
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where we will study the scalar field X rather than the field A. In 4-dimensional

spacetime a three-form field is dual to a scalar field. The scalar field X are related

to the field Aµνρ via

A2 = AµνρAµνρ

= 6X2.

From (3.18) we obtain the equation of motion of the field X

Ẍ = −3HẊ − 3ḢX − 12V ′(A2)X.

Since

V ′(A2) =
1

12X
V,X , (3.22)

where V,X ≡ dV/dX, we get the equation of motion of X as

Ẍ = −3HẊ − 3ḢX − V,X . (3.23)

From (3.4), each component of the energy momentum tensor of the three-form

field is

T00 =
1

2

(
Ẋ + 3HX

)2
+ V (A2), (3.24)

Tij = a2
[
−1

2

(
Ẋ + 3HX

)2
+ V,X X − V (A2)

]
δij. (3.25)

The energy density and pressure of the three-form field are given by

ρX = −T 0
0

=
1

2

(
Ẋ + 3HX

)2
+ V (A2), (3.26)

pX = T i
i

= −1

2

(
Ẋ + 3HX

)2
+ V,X X − V (A2). (3.27)

The equation of state parameter of the three-form field is

wX =
pX
ρX

= −1 +
V,X X

ρX
. (3.28)

Note that the value of wX depends on the slope of the potential and the properties

of the field. From the condition of the accelerated expansion (2.44), we obtain

V,X X

ρX
<

2

3
.
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We can choose the suitable potential for the three-form field to produce an accel-

erated expansion. In the context of inflation, the slow-roll conditions are no longer

required for the three-form field. In other words, inflation can occur even if the

three-form field is not slowly rolling [11].

In the next chapter we will introduce you to an autonomous system playing

an important role in cosmology.



Chapter IV

Autonomous system of dark energy models

4.1 Autonomous system

In this chapter we review [15]. The dynamics of the universe can be described in

terms of autonomous systems. Let us first present some basic definitions associated

with dynamical systems by considering the following coupled differential equations

for two variables x(t) and y(t)

ẋ = f(x, y, t), ẏ = g(x, y, t), (4.1)

where f and g are the functions of x, y, and t. The system (4.1) is autonomous if

f and g are explicitly independent of time. A point (xc, yc) is a fixed point or a

critical point of the autonomous system if

(f, g)|(xc,yc) = (0, 0). (4.2)

A fixed point (xc, yc) is called an attractor when it satisfies the condition

(x(t), y(t)) → (xc, yc) for t → ∞. (4.3)

We can find an attractor by analyzing the stability of the fixed points. Let us

consider small perturbations δx and δy around the fixed point (xc, yc),

x = xc + δx, y = yc + δy. (4.4)

Substituting into (4.1) gives the first-order differential equations

d

dN

(
δx

δy

)
= M

(
δx

δy

)
, (4.5)

where N = ln(a) is the e-foldings number which is a convenient parameter to use

for the dynamics of dark energy. The relation between N and t is

d

dN
=

1

H

d

dt
. (4.6)
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The matrix M depends on xc and yc and is given by

M =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(x=xc,y=yc)

. (4.7)

This equation has two eigenvalues µ1 and µ2. Thus the stability around the fixed

points depends on the characteristics of the eigenvalues, which is classified as

follows.

(i) Stable node: µ1 < 0 and µ2 < 0.

(ii) Unstable node: µ1 > 0 and µ2 > 0.

(iii) Saddle point: µ1 < 0 and µ2 > 0 (or µ1 > 0 and µ2 < 0).

(iv) Stable spiral: The determinant of the matrix M is negative and the real

parts of µ1 and µ2 are negative.

A fixed point is an attractor in the cases (i) and (iv), but it is not so in the

cases (ii) and (iii).

In this chapter, we will find the dynamics of scalar field and three-form field

dark energy in the presence of the background fluids (matters and radiations).

4.2 Autonomous system in scalar field dark en-

ergy models

Including the effects of the background fluids , from (2.21) and (2.22) we have

H2 =
κ2

3

[
1

2
ϕ̇2 + V (ϕ) + ρm

]
, (4.8)

Ḣ = −κ2

2

[
ϕ̇2 + (1 + wm)ρm

]
, (4.9)

where κ2 = 8πG and m denotes the background fluids. Let us introduce the

following dimensionless quantities

x ≡ κϕ̇√
6H

, y ≡ κ
√
V√

3H
,λ ≡ −V,ϕ

κV
, (4.10)

where V,ϕ ≡ dV/dϕ. Then

x′ = −3x+

√
6

2
λy2 +

3

2
x
[
(1− wm)x

2 + (1 + wm)(1− y2)
]
, (4.11)

y′ = −
√
6

2
λxy +

3

2
y
[
(1− wm)x

2 + (1 + wm)
(
1− y2

)]
, (4.12)
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Name x y wtot Existence Stability

(a) 0 0 wm all λ and γ no

(b1) 1 0 1 all λ and γ no

(b2) -1 0 1 all λ and γ no

(c) λ/
√
6

√
1− λ2/6 λ2/3− 1 λ2 < 6 λ2 < 3γ

(d) 3γ/
√
6λ

√
3(2− γ)γ/2λ2 (4.37) λ2 > 3γ λ2 > 3γ

Table 4.1: All the fixed points in the quintessence model.

where x′ ≡ dx/dN and y′ ≡ dy/dN . The Friedmann equation (4.8) becomes the

constraint equation

x2 + y2 +
κ2ρm
3H2

= 1. (4.13)

From (3.13), the equation of state parameter of the scalar field ϕ in terms of these

dimensionless variables is

wϕ =
x2 − y2

x2 + y2
. (4.14)

Using (3.10), the density parameter for the scalar field is

Ωϕ ≡ κ2ρϕ
3H2

= x2 + y2. (4.15)

The total effective equation of state is given by

wtot =
pϕ + pm
ρϕ + ρm

= x2 − y2 + wm

(
1− x2 − y2

)
(4.16)

= wϕΩϕ + wm (1− Ωϕ) . (4.17)

From (4.10), we consider the case of constant λ. The potential giving such the λ

is

V (ϕ) = V0e
−κλϕ. (4.18)

We obtain the fixed points by setting dx/dN = 0 and dy/dN = 0. We summarize

all the fixed points in the Table 4.1

Next we analyze the properties of these fixed points. We define new variable

γ ≡ 1 + wm. We are interested in the fluid with 1 < γ < 2. Let us consider the

existence of each fixed point. The existence condition is that x and y are real. For

the fixed point (a), (x = 0, y = 0), it exists for all λ and γ. For the stability, we
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analyze by using the matrix M given by (4.7). For the fixed point (a), the matrix

M becomes

M(a) =

(
−3 + 3

2
γ 0

0 3
2
γ

)
. (4.19)

The eigenvalues of the matrix M obtained by using the characteristic equation are

µ1 = −3

2
(2− γ) and µ2 =

3

2
γ. (4.20)

Therefore, the fixed point (a) is a saddle point since µ1 < 0 and µ2 > 0 for the

range of γ. For the fixed point (b1), (x = 1, y = 0), it exists for all λ and γ. For

the stability, the matrix M is

M(b1) =

(
6− 3γ 0

0 −
√
6
2
λ+ 3

)
. (4.21)

Its eigenvalues are given by

µ1 = 3(2− γ) and µ2 = 3−
√
6

2
λ. (4.22)

Therefore, the fixed point (b1) is unstable for λ <
√
6 and a saddle point for

λ >
√
6. For the fixed point (b2), (x = −1, y = 0), it exists for all λ and γ. For

the stability, the matrix M is

M(b2) =

(
6− 3γ 0

0
√
6
2
λ+ 3

)
. (4.23)

Its eigenvalues are given by

µ1 = 3(2− γ) and µ2 = 3 +

√
6

2
λ. (4.24)

Therefore, the fixed point (b2) is unstable for λ > −
√
6 and a saddle point for

λ < −
√
6. For the fixed point (c),

(
x = λ/

√
6, y =

√
1− λ2/6

)
, it exists if

λ2 < 6. (4.25)

For the stability, the matrix M is

M(c) =

(
6− γλ2

2
λ
2
(2− γ)

√
6− λ2

λ
2
(1− γ)

√
6− λ2 γλ2

2
− 3γ

)
. (4.26)

Its eigenvalues are given by

µ1 =
1

2

(
λ2 − 6

)
and µ2 = λ2 − 3γ. (4.27)
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Thus it is stable for λ2 < 3γ and a saddle point for 3γ < λ2 < 6. From (4.16),

this fixed point gives the total equation of state

wtot =
λ2

3
− 1. (4.28)

The accelerated expansion occurs when wtot < −1/3, then

λ2 < 2. (4.29)

That is this fixed point can give the accelerated expansion of the universe. From

(4.15), the density parameter for the scalar field is

Ωϕ = 1. (4.30)

Therefore, this fixed point gives the scalar field dominated solution. For the fixed

point (d),
(
x = 3γ/

√
6λ, y =

√
3(2− γ)γ/2λ2

)
, we find that x and y are real for

the range of γ. However, when calculating the density parameter for the scalar

field from (4.15), we obtain

Ωϕ =
3γ

λ2
. (4.31)

From the constraint equation (4.13), using (4.15) we find that

Ωϕ ≤ 1. (4.32)

Thus

λ2 > 3γ. (4.33)

This is the existence condition for the fixed point (d). For the stability, the matrix

M is

M(d) =

 −3
2
(2− γ)

(
1 + 3γ2

λ2

)
3(1− 3γ2

2λ2 )
√
(2− γ)γ

3
2

[
3(2−γ)γ

λ2 − 1
]√

(2− γ)γ (γ − 3)
[
9(2−γ)γ

4λ2

]  . (4.34)

Its eigenvalues are given by

µ1,2 = −3(2− γ)

4

[
1±

√
1− 8γ (λ2 − 3γ)

λ2(2− γ)

]
. (4.35)

They are real when

λ2 <
24γ2

9γ − 2
. (4.36)

Therefore, the fixed point (d) is stable for 3γ < λ2 < 24γ2/(9γ − 2) and stable

spiral for λ2 > 24γ2/(9γ−2). From (4.16), the total equation of state of this fixed

point is

wtot =
3γ(γ − 1)

λ2
+ wm

(
λ2 − 3γ

λ2

)
. (4.37)

From the existence condition (4.33) and the range of γ, we get wtot > 0. Therefore,

this fixed point cannot explain the current accelerated expansion of the universe.
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Name x y w wtot Existence

(a) 0 0 ±1 - all λ and γ

(b1)
√

2
3

1 0 -1 all λ and γ

(b2) −
√

2
3

-1 0 -1 all λ and γ

(c) xext

√
3
2
xext 0 depending on depending on

the potential the potential

Table 4.2: All the fixed points in the three-form field model.

4.3 Autonomous system in three-form field dark

energy models

In this section we review [12]. From (2.21) and (2.22), we have

H2 =
κ2

3

[
1

2

(
Ẋ + 3HX

)2
+ V (A2) + ρm

]
, (4.38)

Ḣ = −κ2

2
(V,X X + γρm) . (4.39)

Define the dimensionless variables

x ≡ κX, y ≡ κ√
6
(X ′ + 3X), z2 ≡ κ2V

3H2
, w2 ≡ κ2ρm

3H2
, λ(x) ≡ −V,X

κV
. (4.40)

From the Friedmann equation (4.38), we have the constraint equation

y2 + z2 + w2 = 1. (4.41)

We can eliminate z from the above autonomous system by using this equation.

Then we obtain the autonomous system for the three-form field

x′ = 3

(√
2

3
y − x

)
, (4.42)

y′ = −3

2
λ(x)(1− y2 − w2)

(
xy −

√
6

3

)
+

3

2
γyw2, (4.43)

w′ = −3

2
w
[
γ + λ(x)x(1− y2 − w2)− γw2

]
. (4.44)

To find the fixed points we set x′, y′ and w′ are equal to zero. We summarize all

the fixed points in the Table 4.2

We can find the density parameter of the three-form field by using (3.26),

(4.6), (4.40), and (4.41)

ΩX ≡ κ2ρX
3H2

= 1− w2. (4.45)
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Let us analyze the stability of the fixed points. The fixed point (a) corre-

sponds to the matter dominated solution. The eigenvalues are (−3,−3γ/2, 3γ).

Therefore it is not stable.

The fixed point (b) has the eigenvalues (−3, 0,−3γ/2). Since one of the

eigenvalues is zero, we cannot say anything about the stability of the fixed point

from the linear analysis. We have to consider specific potentials and go to the

nonlinear order. The eigenvector corresponding to the vanishing eigenvalue is

(
√

2/3, 1, 0). We analyze the stability along the zero eigenvalue direction δr =√
2/3δx+ δy for which we obtain

δr′ = µ(n)δrn, (4.46)

where n > 1 and µ(n) is the coefficient and we use δx =
√
6δr/5 and δy = 3δr/5

such that µ(1) = 1. The general solution to this equation is

δr = δr0
(
1− δrn−1

0 (n− 1)µ(n)N
)1/1−n

. (4.47)

For a negative initial perturbation (δr0 < 0) we require µ(n) > 0 if n is even

and µ(n) < 0 if n is odd for the stability. For a positive perturbation we require

µ(n) < 0 independent of the value of n. For the fixed point (b1) we have a negative

perturbation and the fixed point (b2) we have a positive perturbation. Therefore

for the fixed point (b1) to be stable µ(n) > 0 if n is even and µ(n) < 0 if n is odd.

For the fixed point (b2) to be stable µ(n) < 0. From (4.45) we obtain the density

parameter of the three-form field for these fixed points

ΩX = 1. (4.48)

The fixed point (c) corresponds to the value of x at the extrema of the

potential. Its stability depends on the specific form of the potential. From (4.45)

we obtain the density parameter of the three-form field for these fixed points

ΩX = 1. (4.49)

We will consider the potentials as follows.

1. V = exp(−ηX)

For this potential the fixed points (b) have

µ
(2)
b =

18

25

√
6η. (4.50)
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Therefore the fixed point (b1) is stable for η > 0 and the fixed point (b2) is stable

for η < 0.

2. V = exp(−ηX2)

The value of µ for the fixed point (b) is

µ
(2)
b1 =

72

25
η and µ

(2)
b2 = −72

25
η. (4.51)

Therefore the fixed points (b) are both stable if η > 0.

The fixed point (c) is (0, 0, 0). Its eigenvalues are −(3/2)(1 ±
√
1 + 8η/3

and −3γ/2. This fixed point is stable when η < 0.

3. V = X2 + k

We take k to be a positive constant. The fixed points (b) have

µ
(2)
b1 = −72

24

1

2/3 + k
and µ

(2)
b2 =

72

24

1

2/3 + k
. (4.52)

Therefore they are unstable. The fixed point (c) is (0, 0, 0). Its eigenvalues are

−3

2

(
1∓

√
1− 8

3k

)
and − 3γ

2
. (4.53)

Therefore this fixed point is stable.

4. V = X4 + k

Again k is a positive constant. For the fixed points (b) we have

µ
(2)
b1 = −96

25

1

4/9 + k
and µ

(2)
b2 =

96

25

1

4/9 + k
. (4.54)

Thus again they are unstable. For the fixed point (c) (0, 0, 0) the eigenvalues are

(−3, 0,−3γ/2). Because of the zero eigenvalue, we have to go to the second order.

We find µ
(2)
c = 0. Thus we move to the third order

µ(3)
c = − 72

125k
. (4.55)

Therefore this fixed point is stable.

5. V = (X2 − C2)
2
+ k

We take C > 0. For the fixed points (b) we obtain

µ
(2)
b1 = −144

25

2/3− C2

(2/3− C2)2 + k
and µ

(2)
b2 =

144

25

2/3− C2

(2/3− C2)2 + k
. (4.56)
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V (X) (a) (b1) (b2) (c)

exp(−ηX) no η > 0 η < 0 yes

exp(−ηX2) no η > 0 η > 0 η < 0

Table 4.3: The stability of all the fixed points in the three-form field model.

Therefore they are stable when C >
√

2/3. For this type of the potential the fixed

points (c) have three fixed points

c1: (±C,±
√

3

2
C, 0) and c2: (0, 0, 0). (4.57)

For the fixed point (c1) the eigenvalues are

−3

2

1±

√
1− 24C2

k

(
C2 − 2

3

)2
 and − 3γ

2
. (4.58)

Therefore it is stable for k > 24C2 (C2 − 2/3)
2
. Moreover it exists for C < 2/3.

The eigenvalues of the fixed point (c2) are

−3

2

(
1±

√
1 +

16C2

3 (C4 + k)

)
and − 3γ

2
. (4.59)

Therefore it is unstable. We summarize the stability of the fixed points in the Table

4.3 We also note that from (4.48) and (4.49) both of the fixed points (b) and (c)

give the dark energy dominated solutions and hence the coincidence problem is

not be solved.

In the next chapter, we will discuss the coincidence problem and the necessity

for introducing the coupling between the three-form field and the dark matter in

order to solve the coincidence problem.



Chapter V

Coupling three-form field dark energy with dark

matter

According to observations, today the dark matter energy density is close in

value to the energy density of dark energy. This leads to the so-called coincidence

problem because their evolutions are considerably different throughout the uni-

verse history. Is it coincidence that their energy densities are of the same order?

There have been many models proposed to explain the coincidence problem and

it has been found that from the section 4.2 an uncoupled three-form field cannot

solve the coincidence problem because it gives the three-form field dominated so-

lution (4.48) and (4.49). If dark matter is capable of decaying into dark energy,

the explanation of the similarity of their energy densities may be made. This

introduces the coupling between three-form field dark energy and dark matter. In

order to alleviate the coincidence problem we expect this coupling to lead to an

accelerated scaling attractor solution

Ωdark energy

Ωdark matter

= O(1) and ä > 0. (5.1)

The existence of the coupling can be represented by the modified continuity equa-

tions

ρ̇c = −3Hρc −Q, (5.2)

ρ̇X = −3H(ρX + pX) +Q, (5.3)

where c stands for cold dark matter and Q, the coupling, is the energy transfer

between dark energy and dark matter

Q > 0 ⇒ dark matter → dark energy,

Q < 0 ⇒ dark energy → dark matter,

while the background baryons and radiation still satisfy

ρ̇b = −3Hρb, (5.4)

ρ̇r = −3H(ρr + pr), (5.5)
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where b stands for baryon and r radiation. The explicit form of Einstein equations

(2.21), (2.22) with baryons and radiation included become

H2 =
κ2

3

(
1

2
(Ẋ + 3HX)2 + V (X) + ρb + ρr + ρc

)
, (5.6)

Ḣ = −κ2

2
(V,X X + ρb + ρr + pr + ρc). (5.7)

From equation (5.3), using (3.26) and (3.27), we obtain

Ẍ + 3HẊ + 3ḢX + V,X =
Q

Ẋ + 3HX
. (5.8)

We define the dimensionless variables for baryons, radiations and cold dark matters

additional from (4.40)

w2 ≡ κ2ρb
3H2

, u2 ≡ κ2ρr
3H2

, v2 ≡ κ2ρc
3H2

. (5.9)

From equation (2.22), (2.24) and (3.23), we can construct the autonomous system

x′ = 3

(√
2

3
y − x

)
, (5.10)

y′ = γ − 3

2
λ(x)z2

(
xy −

√
2

3

)
+

3

2

(
w2 +

4

3
u2 + v2

)
y, (5.11)

v′ = −γy

v
− 3

2
v

[
1 + λ(x)xz2 − w2 − 4

3
u2 − v2

]
, (5.12)

w′ = −3

2
w

[
1 + λ(x)xz2 − w2 − 4

3
u2 − v2

]
, (5.13)

u′ = −3

2
u

[
4

3
+ λ(x)xz2 − w2 − 4

3
u2 − v2

]
. (5.14)

where

γ =
κQ√

6(Ẋ + 3HX)H2
. (5.15)

From (5.6), we obtain the constraint equation

y2 + z2 + w2 + u2 + v2 = 1. (5.16)

Generalizing (4.45), we obtain the density parameter of the three-form field

ΩX = 1− w2 − u2 − v2. (5.17)

From (3.28), we obtain the equation of state parameter

wX = −1−
√

2

3
λ(x)y

1− y2 − w2 − u2 − v2

1− w2 − u2 − v2
. (5.18)
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What should Q be of the form? A coupling model should be phenomenolog-

ical. There have been various models of a coupling proposed. Some of them have

simple functional solutions such as Q ∝ an. However These models are incomplete.

They cannot be thoroughly tested against observations.

A good model requires at least that Q should be expressed in terms of the

energy densities and other covariant quantities. For the scalar field model in [16]

they represent three forms of the coupling

(I) Q =
√

2
3
κβρcϕ̇

(II) Q = αHρc

(III) Q = Γρc,

where β and α are dimensionless constants.

The coupling model (I) was obtained via the scalar-tensor theory [17]. It

gives us the accelerated scaling solutions. Although it has a clear physical mo-

tivation, it is contradictory with the observations [18]. The accelerated scaling

attractor is not connected to a matter period where the structure grows in the

standard way. Generalizations of (I) with β = β(ϕ) also face the same problem

[18].

The coupling model (II) does not come from a physical model of dark sector

couplings, but is just for mathematical simplicity. This model and its general-

ization [19], Q = αH (ρc + ρx) are designed to produce an accelerated scaling

attractor. The model (II) and its generalization avoid the problems the model (I)

has with a nonstandard matter epoch [20]. They are phenomenologically useful,

but it is difficult for them to appear from a physical explanation of dark sector

couplings.

To avoid this problem the model (II) is improved and the non-local transfer

rate, αH, is replaced by the local rate Γ, giving the model (III) Q = Γρc.

In this thesis in the three-form field model, the forms of Q are similar to

ones in the scalar field model. They are

(I) Qµ = −
√

2
3
κβρc

1
24a3

ϵνρσγFνρσγu
µ,

(II) Qµ = −αHρcu
µ,

(III) Qµ = −Γρcu
µ,

where α, β and Γ are constant and uµ is a four-velocity.

In this thesis we use the exponential potential (V = V0e
−ηx) and the Gaus-

sian potential (V = V0e
−ηx2

).
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Point y∗ v2∗ w∗ u∗ wtot Existence Stability

A −2
3
β 1− 4

9
β2 0 0 −4

9
β2 |β| 6 3

2
|β| > 3

2

B ±1 0 0 0 -1 all β, λ β > −3
2

C −3
2
1
β

−
√

3/2(4β2−9)λ

2β2(2β−
√
6λ)

0 0 -1 Shown in Shown in

Figure 5.1(a) Figure 5.1(a)

Table 5.1: The properties of the fixed points for the coupling model (I).

5.1 Coupling model (I): Qµ = −
√

2
3κβρc

1
24a3

ϵνρσγFνρσγu
µ

For this covariant form, the interaction term that satisfies equations (5.2) and (5.3)

can be expressed as Q = Q0 =
√

2
3
κβρc(Ẋ + 3HX). Therefore the interaction

variable becomes

γ = βv2.

The autonomous system (5.10) - (5.14) becomes

x′ = 3

(√
2

3
y − x

)
,

y′ = βv2 − 3

2
λ(x)z2

(
xy −

√
2

3

)
+

3

2

(
w2 +

4

3
u2 + v2

)
y,

v′ = −βyv − 3

2
v

[
1 + λ(x)xz2 − w2 − 4

3
u2 − v2

]
,

w′ = −3

2
w

[
1 + λ(x)xz2 − w2 − 4

3
u2 − v2

]
,

u′ = −3

2
u

[
4

3
+ λ(x)xz2 − w2 − 4

3
u2 − v2

]
.

We summarize all the fixed points in the Table 5.1.

Next we will analyze each fixed point.

• Fixed points A
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These fixed points are (x, y, v, w, u) = (
√

2/3y∗, y∗, v∗, 0, 0), where

y∗ = −2

3
β and v2∗ = 1− y2∗ = 1− 4

9
β2.

The existence condition is that each dimensionless variable is real. Therefore these

fixed points exist when

|β| ≤ 3

2
.

The total equation of state is given by

wtot =
−y2∗ − (1− y2∗ − v2∗ − w2

∗ − u2
∗) [1 + λ(x)x]

1− w2
∗ − u2

∗
. (5.19)

At these fixed points the total equation of state is

wtot = −4

9
β2.

The universe has an accelerated expansion wtot < −1/3 when

|β| >
√
3

2
.

To find their stabilities we calculate the eigenvalues of the matrix M (4.7). They

are (−3, (9− 4β2) /6, (9− 4β2) /3). Thus they are stable when |β| > 3/2. So we

conclude that they are not stable.

• Fixed points B

These fixed points are (x, y, v, w, u) = (±
√

2/3,±1, 0, 0, 0). They correspond to

the three-form dominated solution. They exist for all parameters λ, β. From (5.19)

the total equation of state at these fixed points is

wtot = −1. (5.20)

therefore the three-form field at these fixed points acts as the cosmological con-

stant and can give the accelerated expansion of the universe. From (5.17) we

obtain ΩX = 1. Thus these fixed points cannot solve the coincidence problem be-

cause ΩX/Ωc is not of order of unity. The stability analysis gives the eigenvalues

(−3, 0,−3/2− β). Because of the zero eigenvalue we have to consider the second

order perturbation as in the case of an uncoupled three-form field in the previ-

ous chapter. However we can avoid this complication by analyzing their stability

numerically.



29

In numerical method the condition of their stabilities is that each dimension-

less variable converges. For the exponential potential we find that if y∗ = 1, the

potential parameter (η) needs to be positive and if y∗ = −1, the potential param-

eter needs to be negative. For the Gaussian potential the stability requires that

η > 0. Therefore they are stable when β > −3/2 and y∗η > 0 for the exponential

potential and β > −3/2 and η > 0 for the Gaussian potential.

• Fixed points C

These fixed points are (x, y, v, w, u) = (
√

2/3y∗, y∗, v∗, 0, 0), where

y∗ = − 3

2β
and v2∗ = −

√
3/2(4β2 − 9)λ

2β2(2β −
√
6λ)

.

The existence condition and the stability of these fixed points are shown in the

Figure 5.1 (a).

Figure 5.1: (a): This figure shows the region of stability (red, shaded) and exis-

tence (blue, shaded) in the (β, η) parameter space. The violet region indicates the

compatible region of two conditions. Dashed line represents the point that the

energy parameter ratio of dark energy to dark matter is 7:3.(b): This figure shows

the evolution of the dynamical variables for the exponential potential V = V0e
−ηx.

We use β = −2.13 for this simulation. The red line represents the energy param-

eter of dark matter(Ωc), The blue line represents the energy parameter of dark

energy(ΩX) and The green line represents the energy parameter of radiation(Ωr).

From (5.18), we get the equation of state parameter for the three-form field

wX =
4
√
6β2λ− 8β3

8β3 − 9
√
6λ

.
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From (5.19), the total equation of state at these fixed points is

wtot = −1,

therefore, the three-form field at these fixed points acts as the cosmological con-

stant like the fixed points B. From (5.17), we obtain

ΩX =
8β3 − 9

√
6λ

4β2(2β −
√
6λ)

.

We can find the density parameter for the cold dark matter

Ωc ≡
κ2ρc
3H2

= v2. (5.21)

At these fixed points it is

Ωc = −
√

3/2(4β2 − 9)λ

2β2(2β −
√
6λ)

.

Therefore, the ratio of the dark energy to the dark matter is

ΩX

Ωc

= − 8β3 − 9
√
6λ√

6(4β2 − 9)λ

= − 8β3 − 9
√
6λ

4
√
6β2λ− 9

√
6λ

.

For the exponential potential, from (4.40) we have λ = η. Thus

ΩX

Ωc

= − 8β3 − 9
√
6η

4
√
6β2η − 9

√
6η

.

To solve the coincidence problem we require ΩX/Ωc = 7/3, that is

η =
2
√
6β3

45− 14β2
.

This is represented by the dashed line in the Figure 5.1 (a). η diverges at β =

±
√
45/14. This divergence also exists in the Gaussian potential. However these

fixed points are contradictory with observations. From the Figure 5.1 (b), there

is no the matter dominated period like in the case of the scalar field mentioned

in the beginning of this chapter both for the exponential potential and for the

Gaussian potential.

5.2 Coupling model (II): Qµ = −αHρcu
µ

The interaction term that satisfies equations (5.2) and (5.3) of this coupling model

can be expressed as Q = Q0 = αHρc and the interaction variable becomes

γ =
1

2
α
v2

y
.
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The autonomous system (5.10) - (5.14) becomes

x′ = 3

(√
2

3
y − x

)
,

y′ =
1

2

αv2

y
− 3

2
λ(x)z2

(
xy −

√
2

3

)
+

3

2

(
w2 +

4

3
u2 + v2

)
y, (5.22)

v′ = −1

2
αv − 3

2
v

[
1 + λ(x)xz2 − w2 − 4

3
u2 − v2

]
,

w′ = −3

2
w

[
1 + λ(x)xz2 − w2 − 4

3
u2 − v2

]
,

u′ = −3

2
u

[
4

3
+ λ(x)xz2 − w2 − 4

3
u2 − v2

]
.

We summarize all the fixed points in the Table 5.2.

Point y∗ v∗ w∗ u∗ wtot Existence Stability

A
√

−α
3

±
√

1 + α
3

0 0 α
3

−3 6 α 6 0 α < −3

B ±1 0 0 0 -1 all α,λ −3 < α

Table 5.2: The properties of the fixed points for the coupling model (II). Note

that, x =
√

2
3
y at the fixed points.

Next we will analyze each fixed point.

• Fixed points A

These fixed points are (x, y, v, w, u) = (
√

2/3y∗, y∗, v∗, 0, 0), where

y∗ =

√
−α

3
and v2∗ = 1− y2∗ = 1 +

α

3
.

These fixed points exist when

α ≤ 0,

and

α ≥ −3.
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From (5.19), at these fixed points the total equation of state is

wtot =
α

3
.

The universe has an accelerated expansion wtot < −1/3 when

α < −1.

For their stabilities, the eigenvalues are (−3, α + 3, α + 3). Thus they are stable

for α < −3. It follows that they are not stable.

• Fixed points B

Figure 5.2: (a) shows the evolution of the dynamical variables for y∗ = +1 fixed

point with the exponential potential. We use α = −0.2, η = 1.0. The red line

represents the energy parameter of dark matter (Ωc), the blue line represents the

energy parameter of dark energy (ΩX) and the green line represents the energy

parameter of radiation(Ωr). (b) shows the evolution behavior of the total equation

of state parameter by using the same parameter with (a).

These fixed points are (x, y, v, w, u) = (±
√

2/3,±1, 0, 0, 0). They corre-

spond to the three-form dominated solution. They exist for all parameters λ, α.

From (5.19) at these fixed points the total equation of state is

wtot = −1,

therefore the three-form field at these fixed points acts as the cosmological constant

as in the model (I). From (5.17) we obtain ΩX = 1. Thus these fixed points

cannot solve the coincidence problem. For their stabilities the eigenvalues are

(−3, 0,−3/2− α/2). We use the numerical method to find the stability condition

as in the model (I). For α < 0 we find that for the exponential potential if y∗ = 1,
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the potential parameter η > 0 and if y∗ = −1, the potential parameter η < 0. For

the Gaussian potential the stability requires η > 0.

For α > 0 with the exponential potential, we find that the evolution from

numerical simulation encounters a singularity at the matter dominated era. This

singularity can be seen in the interaction term of (5.22) when v ̸= 0 and y = 0.

However this singularity does not exist in the case of α < 0 as shown in the Figure

5.2. This singularity also exists in the Gaussian potential when α > 0. Therefore

these fixed points are stable when −3 < α < 0 and y∗η > 0 for the exponential

potential and −3 < α < 0 and η > 0 for the Gaussian potential.

5.3 Coupling model (III): Qµ = −Γρcu
µ

The interaction term that satisfies equations (5.2) and (5.3) of this coupling model

can be expressed as Q = Q0 = Γρc. We cannot eliminate the Hubble parameter

from the dynamical system. We have to define a new dimensionless variable for

this model coupling

s ≡ H0

H
, (5.23)

where H0 is the Hubble parameter at the present time. Since from (2.21) H

decreases as the time increases, the early universe corresponds to s → 0 and the

present time corresponds to s = 1. The interaction variable becomes

γ =
1

2

γsv2

y
,

where γ ≡ Γ/H0. The autonomous system (5.10) - (5.14) becomes

x′ = 3

(√
2

3
y − x

)
,

y′ =
γsv2

2y
− 3

2
λ(x)z2

(
xy −

√
2

3

)
+

3

2

(
w2 +

4

3
u2 + v2

)
y, (5.24)

v′ = −γsv

2
− 3

2
v
[
γc + λ(x)xz2 − γbw

2 − γru
2 − γcv

2
]
, (5.25)

w′ = −3

2
w

[
1 + λ(x)xz2 − w2 − 4

3
u2 − v2

]
,

u′ = −3

2
u

[
4

3
+ λ(x)xz2 − w2 − 4

3
u2 − v2

]
,

and the dynamical equation of s is

s′ = −3

2
s[λ(x)xz2 − γbw

2 − γru
2 − γcv

2]. (5.26)
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Point y∗ v∗ w∗ u∗ s∗ wtot Existence Stability

A
√
− s∗γ

3
±
√
1− y2∗ 0 0 any γs

3
−3 6 γs 6 0 γs < −3

B ±1 0 0 0 any -1 all γ, λ γs > −3

C y∗ ±
√

2λ(x∗)y∗(1−y2∗)

2λ(x∗)y∗+
√
6

0 0 − 3
γ

-1 all γ, λ -

Table 5.3: The properties of the fixed points for the coupling model (III). Note

that, x =
√

2
3
y at the fixed points.

We summarize all the fixed points in the Table 5.3.

Next we will analyze each fixed point.

• Fixed points A

These fixed points are (x, y, v, w, u, s) = (
√

2/3y∗, y∗, v∗, 0, 0, s∗), where

y∗ = ±
√
−s∗γ

3
, v∗ = ±

√
1− y2∗ = ±

√
1 +

s∗γ

3
,

and s∗ can take any non-negative value. They exist when

s∗γ ≤ 0,

and

s∗γ ≥ −3.

From (5.19) at these fixed points the total equation of state is

wtot =
γs

3
.

The universe has an accelerated expansion wtot < −1/3 when

γs < −1.
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For their stabilities the eigenvalues are (−3, (s∗γ − 1)/2, s∗γ + 3, s∗γ + 3). They

are stable when

s∗γ < −3.

Therefore they are not stable.

• Fixed point B

These fixed points are (x, y, v, w, u, s) = (±
√

2/3,±1, 0, 0, 0, s∗). They correspond

to the three-form dominated solution. They exist for all parameters λ, γ. From

(5.19), at these fixed points the total equation of state is

wtot = −1,

therefore the three-form field at these fixed points acts as the cosmological constant

as in the model (I) and (II). From (5.17), we obtain ΩX = 1. Thus these fixed

points cannot solve the coincidence problem. For their stabilities the eigenvalues

are (−3,−2, 0, (−3− s∗γ)/2). We use the numerical method to find the stability

condition as in the model (I). The result is that no dimensionless variables diverge.

Therefore these fixed points are stable when s∗γ > −3.

The well behavior of the energy density evolution is allowed only for neg-

ative sign of interaction parameter, γ < 0. In other words, it is allowed energy

transfer from dark matter to dark energy only. The physical interpretation of this

phenomena is the same as mentioned in the model coupling (II). We do not show

in detail here.

• Fixed point C

These fixed points are (x, y, v, w, u, s) = (
√
2/3y∗, y∗, v∗, 0, 0, s∗), where y∗ is any

real value and

v∗ = ±

√
2λ(x∗)y∗(1− y2∗)

2λ(x∗)y∗ +
√
6

, (5.27)

s∗ = −3

γ
. (5.28)

They exist for all parameters λ, γ. From (5.19), the total equation of state at these

fixed points is

wtot = −1,
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therefore the three-form field at these fixed points acts as the cosmological constant

as in fixed points B. We find the key feature of these fixed points when considering

the value of s∗. From (5.28), the definition of s (5.23), and the definition of γ we

have

Γ = −3H.

Then at these fixed points the coupling Q takes the form Q = −3Hρc and there-

fore, from (5.2)

ρ̇c = 0.

Therefore, these fixed points are in contradiction with observations.

5.4 Extension to another coupling model

From the previous models, we have seen that there are no couplings models able

to solve the coincidence problem. In order to solve it, we now have to introduce

the new coupling model. This coupling model can be written in the covariant form

as

Qµ = − Γ

24a3
ϵνρσγFνρσγu

µ, (5.29)

where Γ is constant. The interaction term that satisfies equations (5.2) and (5.3)

can be expressed as Q = Q0 = Γ(Ẋ + 3HX). The autonomous system (5.10) -

(5.14) are

x′ = 3

(√
2

3
y − x

)
,

y′ = γ − 3

2
λ(x)z2

(
xy −

√
2

3

)
+

3

2

(
w2 +

4

3
u2 + v2

)
y, (5.30)

v′ = −γy

v
− 3

2
v

[
1 + λ(x)xz2 − w2 − 4

3
u2 − v2

]
, (5.31)

w′ = −3

2
w

[
1 + λ(x)xz2 − w2 − 4

3
u2 − v2

]
,

u′ = −3

2
u

[
4

3
+ λ(x)xz2 − w2 − 4

3
u2 − v2

]
.

We summarize all the fixed points in the Table 5.4. We define new parameters as

A ≡
(
9γ + 3

√
−3 + 9γ2

)1/3
,

B ≡ −γ2 − 3
√
6
γ

λ
.
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Point y∗ v2∗ w∗ u∗ wtot Existence Stability

A1 1
A
+ A

3
1− y2∗ 0 0 − 1√

3
6 γ − 1√

3
6 γ 6 0 γ > 0

A2 −1+i
√
3

2A
− (1−i

√
3)A

6
1− y2∗ 0 0 γ 6 1√

3
0 6 γ 6 1√

3
γ < 0

A3 −1−i
√
3

2A
− (1+i

√
3)A

6
1− y2∗ 0 0 No |γ| 6 1√

3
|γ| > 1√

3

B1 γ
3
+ 1

3

√
9−B −2

3
γy∗ 0 0 -1 Figure 5.3(a) Figure 5.3(a)

B2 γ
3
− 1

3

√
9−B −2

3
γy∗ 0 0 - No Figure 5.3(b)

Table 5.4: The properties of the fixed points for the coupling model (I). Note that,

x∗ =
√

2
3
y∗ at the fixed points.
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• Fixed points A

These fixed points are (x, y, v, w, u) = (
√

2/3y∗, y∗, v∗, 0, 0), where

y3∗ − y∗ −
2

3
γ = 0 and v2∗ = 1− y2∗.

There are three solutions for y∗

1

A
+

A

3
,−1 + i

√
3

2A
− (1− i

√
3)A

6
and − 1− i

√
3

2A
− (1 + i

√
3)A

6
.

We will consider each solution to y∗.

• Fixed points A1

These fixed points correspond to

y1∗ =
1

A
+

A

3
.

They exist when

− 1√
3
6 γ 6 0,

while they are stable when

γ > 0.

That is they are not stable.

• Fixed points A2

These fixed points correspond to

y2∗ = −1 + i
√
3

2A
− (1− i

√
3)A

6
.

They exist when

0 6 γ 6 1√
3
,

while they are stable when

γ < 0.

Thus they are not stable.

• Fixed points A3
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These fixed points correspond to

y3∗ = −1− i
√
3

2A
− (1 + i

√
3)A

6
.

They exist when

|γ| 6 1√
3
,

while they are stable when

|γ| > 1√
3
.

Again they are not stable.

• Fixed points B

These fixed points are (x, y, v, w, u) = (
√

2/3y∗, y∗, v∗, 0, 0), where

y2∗ −
2

3
γy∗ −

(
1 +

√
2

3

γ

λ

)
= 0 (5.32)

and

v∗ = ±
√

−2

3
γy∗.

We see that the solutions to y∗ depend on the potential. We will consider both of

the potentials.

For the exponential potential, from (4.40) we have λ = η. Then y∗ has two

solutions

y∗ =
γη ±

√
η
(
3
√
6γ + 9η + γ2η

)
3η

. (5.33)

• Fixed points B1

These fixed points correspond to

y1∗ =
γη +

√
η
(
3
√
6γ + 9η + γ2η

)
3η

=
γ

3
+

1

3

√
9−B.

The existence condition and the stability of these fixed points are shown in the

Figure 5.3 (a).

From (5.19) and (5.32) the total equation of state at these fixed points is

wtot = −1,
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Figure 5.3: This figure shows the region of stability (red, shaded) and exis-

tence (blue, shaded) in the (γ, η) parameter space for the exponential potential

V = V0e
−ηx. The violet region indicates the compatible region of two conditions.

Dashed line represents the point that the energy parameter ratio of dark energy

to dark matter is 7:3. Figure (a) and (b) correspond to y+ and y− solution respec-

tively.
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therefore the three-form field at these fixed points acts as the cosmological constant

like the previous models. From (5.17), we obtain

ΩX =
9η + 2γ2η + 2γ

√
η
(
3
√
6γ + 9η + γ2η

)
9η

.

From (5.21), the density parameter for the cold dark matter at these fixed points

is

Ωc = −
2γ2η + 2γ

√
η
(
3
√
6γ + 9η + γ2η

)
9η

.

Therefore the ratio of the dark energy to the dark matter is

ΩX

Ωc

= −
9η + 2γ2η + 2γ

√
η
(
3
√
6γ + 9η + γ2η

)
2γ2η + 2γ

√
η
(
3
√
6γ + 9η + γ2η

) .

To solve the coincidence problem we require ΩX/Ωc = 7/3, that is

η =
400

√
6γ3

243− 840γ2 .

This is represented by the dashed line in the Figure 5.3 (a). At these fixed points,

there is the matter dominated period as shown in the Figure 5.4. Therefore at

these fixed points the coincidence problem can be solved.

Figure 5.4: (a) shows the evolution of the dynamical variables for the fixed points

B1 in extension the coupling model with exponential potential. We use γ = −0.56

and η = 400
√
6γ3/ (243− 840γ2) for this simulation. The red line represents

the energy parameter of dark matter (Ωc), The blue line represents the energy

parameter of dark energy (ΩX) and The green line represents the energy parameter

of radiation (Ωr). (b) shows the evolution behavior of the total equation of state

parameter by using the same parameter with (a).
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• Fixed points B2

These fixed points correspond to

y2∗ =
γη −

√
η
(
3
√
6γ + 9η + γ2η

)
3η

=
γ

3
− 1

3

√
9−B;

however, they do not exist. Therefore, we are not interested in them.

For the Gaussian potential, from (4.40) we have λ = 2ηx =
√
8/3ηy and

(5.32) becomes

y2∗ −
(
2

3

)
γy∗ −

(
1 +

γ

2ηy∗

)
= 0. (5.34)

Figure 5.5: This figure shows the region of stability (red, shaded) and exis-

tence (blue, shaded) in the (γ, η) parameter space for the Gaussian potential

V = V0e
−ηx2

. The violet region indicates the compatible region of two conditions.

Dashed line represents the point that the energy parameter ratio of dark energy

and dark matter is 7:3. Figure (a), (b) and (c) correspond to three solutions of

equation (5.34).

Then y∗ has three solutions. The properties of all the fixed points are shown

in the Figure 5.5. That is the fixed points for the Gaussian potential can also

solve the coincidence problem.



Chapter VI

Conclusions and discussions

In this thesis, we investigate the possibility of the three-form field to drive

inflation and to be dark energy. We find that the three-form field can drive inflation

without the slow-roll conditions. This is different from the scalar field for which

the slow-roll conditions play an important role in inflation. In the context of dark

energy, the three-form field can act as dark energy. However, only the three-form

field alone cannot solve the coincidence problem. In order to solve the coincidence

problem we need to couple the three-form field to the dark matter. In this thesis,

we study four types of the couplings.

In the coupling model (I), there are three types of the fixed points. The

fixed points A are not stable. Although the fixed points B are stable, they cannot

solve the coincidence problem since they give the dark energy dominated universe.

For the fixed points C they can solve the coincidence problem as shown by the

dashed line in the Figure 5.1 (a). However, there is no matter dominated period

as shown in the Figure 5.1 (b).

For the coupling model (II), there are two types of the fixed points. The

fixed points A are not stable as in the model (I). The fixed points B are stable,

however they cannot solve the coincidence problem since they give the dark energy

dominated universe as in the model (I).

In the coupling model (III), there are three types of the fixed points. The

fixed points A are not stable. The properties of the fixed points B are the same as

in the previous models. That is they cannot solve the coincidence problem since

they give the dark energy dominated universe although they are stable. For the

fixed points C they give ρ̇c = 0.

For the coupling model (IV), there are two main types of the fixed points.

All of the fixed points A are not stable. For the exponential potential, the fixed

points B1 are stable. They can solve the coincidence problem, represented by

the dashed line in the Figure 5.3 (a). Moreover, they give the matter dominated
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period in agreement with the observations. The fixed points B2 do not exist. For

the Gaussian potential, the fixed points can also solve the coincidence problem as

shown by the dashed line in the Figure 5.5 (a) and (b).
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Appendix A

Calculation of Einstein tensors

The Ricci tensor can be expressed as

Rµν = ∂αΓ
α
µν − ∂νΓ

α
µα + Γα

βαΓ
β
µν − Γα

βνΓ
β
µα, (A.1)

where Γα
µν is the Christoffel symbol given by

Γα
µν =

1

2
gαβ(∂µgνβ + ∂νgβµ − ∂βgµν). (A.2)

The metric tensor and its inverse in the FRW metric (2.1) take the form

gµν = diag(−1, a2(t), a2(t), a2(t)), (A.3)

gµν = diag(−1, 1/a2(t), 1/a2(t), 1/a2(t)). (A.4)

Using the FRW metric (2.1), we can obtain all components of the Christoffel

symbol,

Γ0
00 =

1

2
g0β(∂0g0β + ∂0gβ0 − ∂βg00)

=
1

2
g00(∂0g00 + ∂0g00 − ∂0g00)

=
1

2
g00∂0g00

= 0, (A.5)

Γ0
0i =

1

2
g0β(∂0giβ + ∂igβ0 − ∂βg0i)

=
1

2
g00(∂0gi0 + ∂ig00)

= 0, (A.6)
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Γ0
ij =

1

2
g0β(∂igjβ + ∂jgβ0 − ∂βgij)

=
1

2
g00(∂igj0 + ∂jg00 − ∂0gij)

= −1

2
(−∂0a

2δij)

= aȧδij, (A.7)

Γi
00 =

1

2
giβ(∂0g0β + ∂0gβ0 − ∂βg00)

=
1

2
gij(∂0g0j + ∂0gj0 − ∂jg00)

= 0, (A.8)

Γi
j0 =

1

2
giβ(∂jg0β + ∂0gβj − ∂βgj0)

=
1

2
gik(∂jg0k + ∂0gkj − ∂kgj0)

=
1

2a2
δik∂0a

2δkj

=
ȧ

a
δij, (A.9)

Γi
jk =

1

2
giβ(∂jgkβ + ∂kgβj − ∂βgjk)

=
1

2
gil(∂jgkl + ∂kglj − ∂lgjk)

= 0. (A.10)

Then we can derive the Ricci tensors

R00 = ∂αΓ
α
00 − ∂0Γ

α
0α + Γα

βαΓ
β
00 − Γα

β0Γ
β
0α

= −∂0Γ
i
0i − Γi

β0Γ
β
0i

= −3∂0(
ȧ

a
)− Γi

j0Γ
j
0i

= −3(
aä− ȧ2

a2
)− 3(

ȧ

a
)2

= −3(
ä

a
− ȧ2

a2
+

ȧ2

a2
)

= −3
ä

a
, (A.11)

R0i = ∂αΓ
α
0i − ∂iΓ

α
0α + Γα

βαΓ
β
0i − Γα

βiΓ
β
0α

= ∂jΓ
j
0i − ∂iΓ

j
0j + Γα

jαΓ
j
0i − Γj

βiΓ
β
0j

= 0, (A.12)
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Rij = ∂αΓ
α
ij − ∂jΓ

α
iα + Γα

βαΓ
β
ij − Γα

βjΓ
β
iα

= ∂0Γ
0
ij + Γα

0αΓ
0
ij − Γ0

βjΓ
β
i0 − Γk

βjΓ
β
ik

= ∂0(aȧ)δij + Γk
0kΓ

0
ij − Γ0

kjΓ
k
i0 − Γk

0jΓ
0
ik

= (aä+ ȧ2)δij + 3
ȧ

a
aȧδij − aȧδkj

ȧ

a
δki −

ȧ

a
δkj aȧδik

= (aä+ ȧ2)δij + 3ȧ2δij − ȧ2δij − ȧ2δij

= (aä+ 2ȧ2)δij. (A.13)

Now, we can find the Ricci scalar by contracting the Ricci tensors,

R ≡ gµνRµν

= 3
ä

a
+

3

a2
(aä+ 2ȧ2)

= 6(
ä

a
+

ȧ2

a2
). (A.14)

The Einstein tensors can be obtained.

G00 = R00 −
1

2
Rg00

= −3
ä

a
+ 3(

ä

a
+

ȧ2

a2
)

= 3
ȧ2

a2
, (A.15)

G0i = R0i −
1

2
Rg0i

= 0, (A.16)

Gij = Rij −
1

2
Rgij

= (aä+ 2ȧ2)δij − 3a2(
ä

a
+

ȧ2

a2
)δij

= (aä+ 2ȧ2)δij − 3aäδij − 3ȧ2δij

= (−2aä− ȧ2)δij. (A.17)

We can raise a lower index of the Einstein tensors by using the inverse metric

tensor

G0
0 = g0µGµ0

= g00G00

= −3
ȧ2

a2
, (A.18)

Gi
j = giµGµj

= gikGkj

=
1

a2
δik(−2aä− ȧ2)δkj

= (−2ä

a
− ȧ2

a2
)δij. (A.19)
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Appendix B

Equations of motion of an n-form field from the

variational principle

B.1 n-form field

We consider an n-form field A in 4-dimensional spacetime with the action

SA =

∫
d4x

√
−g

[
R

16πG
− 1

2(n+ 1)!
F 2 − V (A2)− 1

2n!
ξA2R

]
, (B.1)

where Fµ1...µn+1 ≡ (n+ 1)∇[µ1Aµ2...µn+1] and A2 ≡ Aµ1...µnAµ1...µn . The equation of

motion of the n-form field is obtained by using the Euler-Lagrange equations

∂L

∂Aµn
−∇µ

(
∂L

∂(∇µAµn)

)
= 0, (B.2)

where the Lagrangian of the n-form field L is given by

L = − 1

2(n+ 1)!
F 2 − V (A2)− 1

2n!
ξA2R. (B.3)

Each term in (B.2) can be computed as follows.

∂L

∂Aµ1...µn
= − dV

dA2

∂(Aα1...αnAβ1...βngβ1α1 ...gβnαn)

∂Aµ1...µn
− ξR

2n!

∂(Aα1...αnAβ1...βngβ1α1 ...gβnαn)

∂Aµ1...µn

=

(
−V ′ − ξR

2n!

)
(gβ1α1 ...gβnαn)

∂(Aα1...αnAβ1...βn)

∂Aµ1...µn

= −
(
V ′ +

ξR

2n!

)
(gβ1α1 ...gβnαn)(A

α1...αnδβ1
µ1
...δβn

µn
+ δα1

µ1
...δαn

µn
Aβ1...βn)

= −
(
V ′ +

ξR

2n!

)
(Aµ1...µn + Aµ1...µn)

= −
(
2V ′ +

ξR

n!

)
Aµ1...µn .
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Since

∂L

∂(∇µAµ1...µn)
= − 1

2(n+ 1)!
(gβ1α1 ...gβn+1αn+1)

∂

∂(∇µAµ1...µn)
(Fα1...αn+1F β1...βn+1)

= − 1

2(n+ 1)!
(gβ1α1 ...gβn+1αn+1)

[
Fα1...αn+1

∂

∂(∇µAµ1...µn)(
n+ 1

(n+ 1)!
(∇β1Aβ2...βn+1 + ...)

)
+ F β1...βn+1

∂

∂(∇µAµ1...µn)

(
n+ 1

(n+ 1)!
(∇α1Aα2...αn+1 + ...)

)]
= − 1

2(n+ 1)!n!
(gβ1α1 ...gβn+1αn+1)

[
Fα1...αn+1

(
δβ1
µ δβ2

µ1
...δβn+1

µn

)
+F β1...βn+1

(
δα1
µ δα2

µ1
...δαn+1

µn

)]
= − 1

2(n+ 1)!n!

[
Fα1...αn+1(gµα1 ...gµnαn+1) + F β1...βn+1(gβ1µ...gβn+1µn)

]
= − 1

2(n+ 1)!n!
(Fµµ1...µn + ...+ Fµµ1...µn)

= − 1

n!
Fµµ1...µn ,

we have

∇µ

(
∂L

∂(∇µAµ1...µn)

)
= − 1

n!
∇µFµµ1...µn .

Then the equation of motion (B.2) can be written as

∇µFµµ1...µn = (2n!V ′ + ξR)Aµ1...µn . (B.4)

Variation of action (B.1) yields

δSA =

∫
d4x

[√
−gδ

(
− 1

2(n+ 1)!
F 2 − V (A2)− 1

2n!
ξA2R

)
+δ

√
−g

(
− 1

2(n+ 1)!
F 2 − V (A2)− 1

2n!
ξA2R

)]
. (B.5)
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In order to calculate the right-handed side of (B.5), we consider

δF 2 = δ(Fµ1...µn+1Fν1...νn+1g
µ1ν1 ...gµn+1νn+1)

= Fµ1...µn+1Fν1...νn+1δ(g
µ1ν1 ...gµn+1νn+1)

= Fµ1...µn+1Fν1...νn+1 [(g
µ2ν2 ...gµn+1νn+1)δgµ1ν1

+(gµ1ν1gµ3ν3 ...gµn+1νn+1)δgµ2ν2 + ...+ (gµ1ν1 ...gµnνn)δgµn+1νn+1 ]

= Fµ1µ2...µn+1Fν1ν2...νn+1(g
µ2ν2 ...gµn+1νn+1)δgµ1ν1

+Fµ1µ2...µn+1Fν1ν2...νn+1(g
µ1ν1gµ3ν3 ...gµn+1νn+1)δgµ2ν2

+...+ Fµ1...µn+1Fν1...νn+1(g
µ1ν1 ...gµnνn)δgµn+1νn+1

= Fµ1µ2...µn+1Fν1ν2...νn+1(g
µ2ν2 ...gµn+1νn+1)δgµ1ν1

+Fµ2µ1µ3...µn+1Fν2ν1ν3...νn+1(g
µ2ν2gµ3ν3 ...gµn+1νn+1)δgµ1ν1

+...+ Fµn+1µ2...µnµ1Fνn+1ν2...νnν1(g
µn+1νn+1gµ2ν2 ...gµnνn)δgµ1ν1

= Fµ1µ2...µn+1Fν1ν2...νn+1(g
µ2ν2 ...gµn+1νn+1)δgµ1ν1

+Fµ1µ2µ3...µn+1Fν1ν2ν3...νn+1(g
µ2ν2gµ3ν3 ...gµn+1νn+1)δgµ1ν1

+...+ Fµ1µ2...µnµn+1Fν1ν2...νnνn+1(g
µ2ν2 ...gµnνngµn+1νn+1)δgµ1ν1

= (n+ 1)Fµ1µ2...µn+1Fν1ν2...νn+1(g
µ2ν2 ...gµn+1νn+1)δgµ1ν1

= (n+ 1)Fµ1µ2...µn+1F
µ2...µn+1
ν1

δgµ1ν1 . (B.6)

Similarly, we get

δA2 = nAµ1µ2...µnA
µ2...µn
ν1

δgµ1ν1 . (B.7)

Next we compute the variation of the metric δgµν . Since

gµλgλν = δµν ,

then

gµλδgλν + gλνδg
µλ = 0

gµλδgλν = −gλνδg
µλ

gαµg
µλδgλν = −gαµgλνδg

µλ

δλαδgλν = −gαµgλνδg
µλ

δgαν = −gαµgνλδg
µλ. (B.8)

Next we will find δ
√
−g. To do this we use the fact that for any square matrix M

with nonvanishing determinant

ln(detM) = Tr(lnM), (B.9)
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where we use the fact that exp(lnM) = M . The variation of (B.9) gives

1

detM
δ(detM) = Tr(M−1δM). (B.10)

For the metric gµν , we get

δg = g(gµνδgµν).

Using (B.8), we get

δg = −g(gµνgµαgνβδg
αβ)

= −g(δναgνβδg
αβ)

= −g(gαβδg
αβ). (B.11)

Finally, we obtain

δ
√
−g = − 1

2
√
−g

δg

=
g

2
√
−g

gµνδg
µν

= −1

2

√
−ggµνδg

µν . (B.12)

Now we compute the variation of the Christoffel symbols δΓα
µν :

δΓα
µν =

1

2
δ
[
gαβ(∂µgνβ + ∂νgβµ − ∂βgµν)

]
=

1

2

[
δgαβ(∂µgνβ + ∂νgβµ − ∂βgµν)

+gαβ(∂µδgνβ + ∂νδgβµ − ∂βδgµν)
]
,

and ∂µδgνβ,

∂µδgνβ = −∂µ (gνρgβγδg
ργ)

= −(∂µgνρ)gβγδg
ργ − gνρ(∂µgβγ)δg

ργ − gνρgβγ∂µδg
ργ.
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Then, we get

δΓα
µν =

1

2

[
(∂µgνβ)δg

αβ + (∂νgβµ)δg
αβ − (∂βgµν)δg

αβ + gαβ(−(∂µgνρ)gβγδg
ργ

−gνρ(∂µgβγ)δg
ργ − gνρgβγ∂µδg

ργ − (∂νgβρ)gµγδg
ργ − gβρ(∂νgµγ)δg

ργ

−gβρgµγ∂νδg
ργ + (∂βgµρ)gνγδg

ργ + gµρ(∂βgνγ)δg
ργ + gµρgνγ∂βδg

ργ)]

=
1

2

[
(∂µgνβ)δg

αβ + (∂νgβµ)δg
αβ − (∂βgµν)δg

αβ − (∂µgνρ)δ
α
γ δg

ργ

−gαβgνρ(∂µgβγ)δg
ργ − gνρδ

α
γ ∂µδg

ργ − (∂νgβρ)g
αβgµγδg

ργ − δαρ (∂νgµγ)δg
ργ

−δαρ gµγ∂νδg
ργ + (∂βgµρ)g

αβgνγδg
ργ + gαβgµρ(∂βgνγ)δg

ργ + gαβgµρgνγ∂βδg
ργ
]

=
1

2

[
(∂µgνβ)δg

αβ + (∂νgβµ)δg
αβ − (∂βgµν)δg

αβ − (∂µgνρ)δg
ρα

−gαβgνρ(∂µgβγ)δg
ργ − gνρ∂µδg

ρα − (∂νgβρ)g
αβgµγδg

ργ − (∂νgµγ)δg
αγ

−gµγ∂νδg
αγ + (∂βgµρ)g

αβgνγδg
ργ + gαβgµρ(∂βgνγ)δg

ργ + gαβgµρgνγ∂βδg
ργ
]

=
1

2

[
(∂µgνβ)δg

αβ + (∂νgβµ)δg
αβ − (∂βgµν)δg

αβ − (∂µgνβ)δg
βα

−gαβgνρ(∂µgβγ)δg
ργ − gνβ∂µδg

βα − (∂νgβρ)g
αβgµγδg

ργ − (∂νgµβ)δg
αβ

−gµβ∂νδg
αβ + (∂βgµρ)g

αβgνγδg
ργ + gαβgµρ(∂βgνγ)δg

ργ + gαβgµρgνγ∂βδg
ργ
]

=
1

2

[
−(∂βgµν)δg

αβ − gαβgνρ(∂µgβγ)δg
ργ − gνβ∂µδg

αβ

−(∂νgβρ)g
αβgµγδg

ργ − gµβ∂νδg
αβ + (∂βgµρ)g

αβgνγδg
ργ

+gαβgµρ(∂βgνγ)δg
ργ + gαβgµρgνγ∂βδg

ργ
]
.

In the above equation, we make use of the metric compatibility ∇ρgµν = 0, to

show that

∂ρgµν = Γλ
ρµgλν + Γλ

ρνgµλ. (B.13)

Therefore,

δΓα
µν =

1

2

[
−Γλ

βµgλνδg
αβ − Γλ

βνgµλδg
αβ − gαβgνρΓ

λ
µβgλγδg

ργ − gαβgνρΓ
λ
µγgβλδg

ργ

−gνβ∂µδg
αβ − Γλ

νβgλρg
αβgµγδg

ργ − Γλ
νρgβλg

αβgµγδg
ργ

−gµβ∂νδg
αβ + Γλ

βµgλρg
αβgνγδg

ργ + Γλ
βρgµλg

αβgνγδg
ργ

+gαβgµρΓ
λ
βνgλγδg

ργ + gαβgµρΓ
λ
βγgνλδg

ργ + gαβgµρgνγ∂βδg
ργ
]

=
1

2

[
−Γλ

βµgλνδg
αβ − Γλ

βνgµλδg
αβ − δαλgνρΓ

λ
µγδg

ργ − gνβ∂µδg
αβ − Γλ

νρδ
α
λgµγδg

ργ

−gµβ∂νδg
αβ + Γλ

βρgµλg
αβgνγδg

ργ + gαβgµρΓ
λ
βγgνλδg

ργ + gαβgµρgνγ∂βδg
ργ
]

=
1

2

[
−Γλ

βµgλνδg
αβ − Γλ

βνgµλδg
αβ − gνρΓ

α
µγδg

ργ − gνβ∂µδg
αβ − Γα

νρgµγδg
ργ

−gµβ∂νδg
αβ + Γλ

βρgµλg
αβgνγδg

ργ + gαβgµρΓ
λ
βγgνλδg

ργ + gαβgµρgνγ∂βδg
ργ
]

=
1

2

[
−Γβ

µλgβνδg
αλ − Γβ

νλgµβδg
αλ − gνβΓ

α
µλδg

λβ − gνβ∂µδg
αβ − Γα

νλgµβδg
λβ

−gµβ∂νδg
αβ + Γρ

βλgµρg
αβgνγδg

λγ + gαβgµρΓ
γ
βλgνγδg

ρλ + gαβgµρgνγ∂βδg
ργ
]

= −1

2

[
gνβ∇µδg

αβ + gµβ∇νδg
αβ − gαβgµρgνγ∇βδg

ργ
]
. (B.14)
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From (2.3), the variation of the Ricci tensor is

δRµν = ∂αδΓ
α
µν − ∂νδΓ

α
µα + Γα

βαδΓ
β
µν + δΓα

βαΓ
β
µν − Γα

βνδΓ
β
µα − δΓα

βνΓ
β
µα

= ∂αδΓ
α
µν + Γα

αβδΓ
β
µν − Γβ

αµδΓ
α
βν − Γβ

ανδΓ
α
µβ

−∂νδΓ
α
µα − Γα

νβδΓ
β
µα + Γβ

νµδΓ
α
βα + Γβ

ναδΓ
α
µβ

= ∇αδΓ
α
µν −∇νδΓ

α
µα

= −1

2

[
gνβ∇α∇µδg

αβ + gµβ∇α∇νδg
αβ − gαβgµρgνγ∇α∇βδg

ργ
]

+
1

2

[
gαβ∇ν∇µδg

αβ + gµβ∇ν∇αδg
αβ − gαβgµρgαγ∇ν∇βδg

ργ
]

= −1

2

[
gνβ∇α∇µδg

αβ − gµρgνγ�δgργ
]
+

1

2

[
gαβ∇ν∇µδg

αβ − δβγ gµρ∇ν∇βδg
ργ
]

=
1

2

[
gαβ∇ν∇µδg

αβ − gµρ∇ν∇γδg
ργ − gνβ∇α∇µδg

αβ + gµρgνγ�δgργ
]
. (B.15)

The variation of the Ricci scalar is

δR = δ (gµνRµν)

= gµνδRµν +Rµνδg
µν

=
1

2

[
gµνgαβ∇ν∇µδg

αβ − gµνgµρ∇ν∇γδg
ργ − gµνgνβ∇α∇µδg

αβ

+gµνgµρgνγ�δgργ] +Rµνδg
µν

=
1

2

[
gαβ�δgαβ − δνρ∇ν∇γδg

ργ − δµβ∇α∇µδg
αβ + δνρgνγ�δgργ

]
+Rµνδg

µν

=
1

2

[
gαβ�δgαβ −∇ρ∇γδg

ργ −∇α∇βδg
αβ + gργ�δgργ

]
+Rµνδg

µν

= gµν�δgµν −∇µ∇νδg
µν +Rµνδg

µν . (B.16)

From (B.5) we obtain

δSA =

∫
d4x

[√
−g

(
− 1

2(n+ 1)!
δF 2 − V ′δA2 − ξR

2n!
δA2 − ξA2

2n!
δR

)
−1

2

√
−ggµν

(
− 1

2(n+ 1)!
F 2 − V (A2)− 1

2n!
ξA2R

)
δgµν

]
=

∫
d4x

√
−g

[(
− 1

2(n+ 1)!
(n+ 1)Fµµ1...µnF

µ1...µn
ν δgµν −

(
V ′ +

ξR

2n!

)
nAµµ1...µn−1A

µ1...µn−1
ν δgµν − ξA2

2n!
gµν�δgµν +

ξA2

2n!
∇µ∇νδg

µν − ξA2

2n!
Rµνδg

µν

)
−1

2
gµν

(
− 1

2(n+ 1)!
F 2 − V (A2)− 1

2n!
ξA2R

)
δgµν

]
=

∫
d4x

√
−g

[(
− 1

2n!
Fµµ1...µnF

µ1...µn
ν −

(
nV ′ +

ξR

2(n− 1)!

)
Aµµ1...µn−1A

µ1...µn−1
ν

−ξA2

2n!
Rµν

)
− 1

2
gµν

(
− 1

2(n+ 1)!
F 2 − V (A2)− 1

2n!
ξA2R

)]
δgµν

−
∫

d4x
√
−g

ξA2

2n!
[gµν�δgµν −∇µ∇νδg

µν ] .
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By integrating by parts∫
dnx

√
−gAµ (∇µB) = −

∫
dnx

√
−g (∇µA

µ)B + boundary terms, (B.17)

δSA becomes

δSA =

∫
d4x

√
−g

[(
− 1

2n!
Fµµ1...µnF

µ1...µn
ν

−
(
nV ′ +

ξR

2(n− 1)!

)
Aµµ1...µn−1A

µ1...µn−1
ν

−ξA2

2n!
Rµν −

ξ

2n!
gµν�A2 +

ξ

2n!
∇µ∇νA

2

)
−1

2
gµν

(
− 1

2(n+ 1)!
F 2 − V (A2)− 1

2n!
ξA2R

)]
δgµν

= −1

2

∫
d4x

√
−g

[(
1

n!
Fµµ1...µnF

µ1...µn
ν +

(
2nV ′ +

ξR

(n− 1)!

)
Aµµ1...µn−1A

µ1...µn−1
ν

+
ξA2

n!
Rµν +

ξ

n!
gµν�A2 − ξ

n!
∇µ∇νA

2

)
+gµν

(
− 1

2(n+ 1)!
F 2 − V (A2)− 1

2n!
ξA2R

)]
δgµν

= −1

2

∫
d4x

√
−g

[
1

n!
Fµµ1...µnF

µ1...µn
ν +

(
2nV ′ +

ξR

(n− 1)!

)
Aµµ1...µn−1A

µ1...µn−1
ν

+gµν

(
− 1

2(n+ 1)!
F 2 − V (A2)

)
+

ξ

n!

(
A2Rµν + gµν�A2 −∇µ∇νA

2 − 1

2
RgµνA

2

)]
δgµν

= −1

2

∫
d4x

√
−g

[
1

n!
Fµµ1...µnF

µ1...µn
ν + 2nV ′Aµµ1...µn−1A

µ1...µn−1
ν

−gµν

(
1

2(n+ 1)!
F 2 + V (A2)

)
+

ξ

n!

[
nRAµµ1...µn−1A

µ1...µn−1
ν + (Gµν + gµν�−∇µ∇ν)A

2
]]

δgµν . (B.18)

The energy momentum tensor of the n-form field is derived by

Tµν = − 2√
−g

δSA

δgµν
, (B.19)

which can be written as

Tµν =
1

n!
Fµµ1...µnF

µ1...µn
ν + 2nV ′Aµµ1...µn−1A

µ1...µn−1
ν − gµν

(
1

2(n+ 1)!
F 2 + V (A2)

)
+

ξ

n!

[
nRAµµ1...µn−1A

µ1...µn−1
ν + (Gµν + gµν�−∇µ∇ν)A

2
]
. (B.20)
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B.2 Scalar field

The action of the scalar field is given by

S =

∫
d4x

√
−g

[
R

16πG
− 1

2
gµν∇µϕ∇νϕ− V (ϕ)

]
, (B.21)

where V (ϕ) is the potential of the scalar field. The equation of motion of the

scalar field is obtained by using

∂L

∂ϕ
−∇µ

(
∂L

∂(∇µϕ)

)
= 0, (B.22)

where L is the Lagrangian of the scalar field given by

L = −1

2
gµν∇µϕ∇νϕ− V (ϕ). (B.23)

We will compute each term of (B.22) as follows.

∂L

∂ϕ
= −dV

dϕ

∂L

∂(∇µϕ)
= −1

2
gαβ

[
∇αϕ

∂(∇βϕ)

∂(∇µϕ)
+

∂(∇αϕ)

∂(∇µϕ)
∇βϕ

]
= −1

2
gαβ

[
∇αϕδ

µ
β + δµα∇βϕ

]
= −1

2
gαβ∇αϕδ

µ
β − 1

2
gαβδµα∇βϕ

= −1

2
gαµ∇αϕ− 1

2
gµβ∇βϕ

= −1

2
∇µϕ− 1

2
∇µϕ.

= −∇µϕ

∇µ

(
∂L

∂(∇µϕ)

)
= −�ϕ,

where we introduce the covariant d’ Alembertian operator as

� ≡ ∇µ∇µ. (B.24)

Now we arrive at the equation of motion

�ϕ− dV

dϕ
= 0. (B.25)
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For the FRW metric (2.1) we have

�ϕ = ∇µ∇µϕ

= gµν∇µ∇νϕ

= gµν∇µ∂νϕ

= gµν∂µ∂νϕ− gµνΓλ
µν∂λϕ

= −ϕ̈− gijΓ0
ij∂0ϕ

= −ϕ̈− 1

a2
δijaȧδijϕ̇

= −ϕ̈− 3Hϕ̇. (B.26)

Then the equation of motion of the scalar field in the spacetime (2.1) is

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0. (B.27)

The energy momentum tensor of the scalar field is derived by

Tµν = − 2√
−g

δS

δgµν
. (B.28)

The variation of the action (B.21) is

δS =

∫
d4x

[√
−gδ{−1

2
gµν∇µϕ∇νϕ− V (ϕ)}+ δ

√
−g{−1

2
gµν∇µϕ∇νϕ− V (ϕ)}

]
=

∫
d4x

[√
−g{−1

2
δgµν∇µϕ∇νϕ} −

1

2

√
−ggµνδg

µν{−1

2
gαβ∇αϕ∇βϕ− V (ϕ)}

]
=

∫
d4x

√
−g

[
−1

2
δgµν∇µϕ∇νϕ− 1

2
gµνδg

µν{−1

2
gαβ∇αϕ∇βϕ− V (ϕ)}

]
=

∫
d4x

√
−g

[
−1

2
∇µϕ∇νϕ− 1

2
gµν{−

1

2
gαβ∇αϕ∇βϕ− V (ϕ)}

]
δgµν . (B.29)

Therefore, from (B.28) we obtain the energy momentum tensor

Tµν = ∇µϕ∇νϕ− gµν

[
1

2
gαβ∇αϕ∇βϕ+ V (ϕ)

]
. (B.30)
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Non-vanishing components of the energy momentum tensor are

T00 = ∇0ϕ∇0ϕ− g00

[
1

2
gαβ∇αϕ∇βϕ+ V (ϕ)

]
= ϕ̇2 +

1

2
gαβ∇αϕ∇βϕ+ V (ϕ)

= ϕ̇2 +
1

2
g00∇0ϕ∇0ϕ+

1

2
gjj∇jϕ∇jϕ+ V (ϕ)

= ϕ̇2 − 1

2
ϕ̇2 + V (ϕ)

=
1

2
ϕ̇2 + V (ϕ), (B.31)

Tii = ∇iϕ∇iϕ− gii

[
1

2
gαβ∇αϕ∇βϕ+ V (ϕ)

]
= −a2(t)

[
1

2
gαβ∇αϕ∇βϕ+ V (ϕ)

]
= −a2(t)

[
1

2
g00∇0ϕ∇0ϕ+ V (ϕ)

]
= −a2(t)

[
−1

2
ϕ̇2 + V (ϕ)

]
= a2(t)

[
1

2
ϕ̇2 − V (ϕ)

]
. (B.32)

The energy density and pressure of the scalar field are

ρϕ = −T 0
0

= −g0µTµ0

= −g00T00

= T00

=
1

2
ϕ̇2 + V (ϕ) (B.33)

pϕ = T i
i

= gijTji

= giiTii

=
1

2
ϕ̇2 − V (ϕ). (B.34)
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B.3 Three-form field

For the FRW metric (2.1), the timelike component of three-form field is nondy-

namical. This can be shown by observing that

Fαµνρ = 4∇[αAµνρ]

=
4

4!
(∇αAµνρ −∇αAµρν +∇αAρµν −∇αAρνµ +∇αAνρµ −∇αAνµρ

+∇νAαµρ −∇νAαρµ +∇νAραµ −∇νAρµα +∇νAµρα −∇νAµαρ

+∇µAναρ −∇µAνρα +∇µAρνα −∇µAραν +∇µAαρν −∇µAανρ

+∇ρAανµ −∇ρAαµν +∇ρAµαν −∇ρAµνα +∇ρAνµα −∇ρAναµ)

=
1

3!
(6∇αAµνρ + 6∇νAαµρ + 6∇µAναρ + 6∇ρAανµ)

= ∇αAµνρ +∇νAαµρ +∇µAναρ +∇ρAανµ

= ∂αAµνρ − Γλ
αµAλνρ − Γλ

ανAµλρ − Γλ
αρAµνλ + ∂νAαµρ − Γλ

ναAλµρ

−Γλ
νµAαλρ − Γλ

νρAαµλ + ∂µAναρ − Γλ
µνAλαρ − Γλ

µαAνλρ − Γλ
µρAναλ

+∂ρAανµ − Γλ
ραAλνµ − Γλ

ρνAαλµ − Γλ
ρµAανλ

= ∂αAµνρ − Γλ
αµAλνρ − Γλ

ανAµλρ − Γλ
αρAµνλ + ∂νAαµρ + Γλ

ανAµλρ

−Γλ
νµAαλρ − Γλ

νρAαµλ + ∂µAναρ + Γλ
νµAαλρ + Γλ

αµAλνρ − Γλ
µρAναλ

+∂ρAανµ + Γλ
αρAµνλ + Γλ

νρAαµλ + Γλ
µρAναλ

= ∂αAµνρ + ∂νAαµρ + ∂µAναρ + ∂ρAανµ, (B.35)

and

∇αFαµνρ = ∇α∂αAµνρ +∇α∂νAαµρ +∇α∂µAναρ +∇α∂ρAανµ

= gαβ∇β∂αAµνρ + gαβ∇β∂νAαµρ + gαβ∇β∂µAναρ + gαβ∇β∂ρAανµ

= gαβ∂β∂αAµνρ − gαβΓλ
βα∂λAµνρ − gαβΓλ

βµ∂αAλνρ − gαβΓλ
βν∂αAµλρ − gαβΓλ

βρ∂αAµνλ

+gαβ∂β∂νAαµρ − gαβΓλ
βν∂λAαµρ − gαβΓλ

βα∂νAλµρ − gαβΓλ
βµ∂νAαλρ − gαβΓλ

βρ∂νAαµλ

+gαβ∂β∂µAναρ − gαβΓλ
βµ∂λAναρ − gαβΓλ

βν∂µAλαρ − gαβΓλ
βα∂µAνλρ − gαβΓλ

βρ∂µAναλ

+gαβ∂β∂ρAανµ − gαβΓλ
βρ∂λAανµ − gαβΓλ

βα∂ρAλνµ − gαβΓλ
βν∂ρAαλµ − gαβΓλ

βµ∂ρAανλ

= −∂0∂0Aµνρ − gijΓ0
ij∂0Aµνρ + Γi

0µ∂0Aiνρ + Γi
0ν∂0Aµiρ + Γi

0ρ∂0Aµνi

−∂0∂νA0µρ − gijΓ0
jν∂0Aiµρ − gijΓ0

ij∂νA0µρ − gαβΓλ
βµ∂νAαλρ − gαβΓλ

βρ∂νAαµλ

−∂0∂µAν0ρ − gijΓ0
jµ∂0Aνiρ − gαβΓλ

βν∂µAλαρ − gijΓ0
ij∂µAν0ρ − gαβΓλ

βρ∂µAναλ

−∂0∂ρA0νµ − gijΓ0
jρ∂0Aiνµ − gijΓ0

ij∂ρA0νµ − gαβΓλ
βν∂ρAαλµ − gαβΓλ

βµ∂ρAανλ.(B.36)
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Note that we have made use of the homogeneity and isotropy of the universe so

that ∂iAµνρ = 0. Consider a timelike component ∇αFαij0,

∇αFαij0 = −∂0∂0Aij0 − gklΓ0
kl∂0Aij0 + Γk

0i∂0Akj0 + Γk
0j∂0Aik0 + Γk

00∂0Aijk

−∂0∂jA0i0 − gklΓ0
lj∂0Aki0 − gklΓ0

kl∂jA0i0 − gαβΓλ
βi∂jAαλ0 − gαβΓλ

β0∂jAαiλ

−∂0∂iAj00 − gklΓ0
li∂0Ajk0 − gαβΓλ

βj∂iAλα0 − gklΓ0
kl∂iAj00 − gαβΓλ

β0∂iAjαλ

−∂0∂0A0ji − gklΓ0
l0∂0Akji − gklΓ0

kl∂0A0ji − gαβΓλ
βj∂0Aαλi − gαβΓλ

βi∂0Aαjλ

= −∂0∂0Aij0 − gklΓ0
kl∂0Aij0 + Γk

0i∂0Akj0 + Γk
0j∂0Aik0 − gklΓ0

lj∂0Aki0

−gklΓm
l0∂jAkim − gklΓ0

li∂0Ajk0 − ∂0∂0A0ji − gklΓ0
kl∂0A0ji

+Γk
0j∂0A0ki − gklΓ0

lj∂0Ak0i + Γk
0i∂0A0jk − gklΓ0

li∂0Akj0

= −∂0∂0Aij0 − gklΓ0
kl∂0Aij0 + Γk

0i∂0Akj0 + Γk
0j∂0Aik0

−gklΓ0
lj∂0Aki0 − gklΓ0

li∂0Ajk0 + ∂0∂0Aij0 + gklΓ0
kl∂0Aij0

−Γk
0j∂0Aik0 + gklΓ0

lj∂0Aki0 − Γk
0i∂0Akj0 + gklΓ0

li∂0Ajk0

= 0. (B.37)

From (3.18) its equation of motion is

∇αFαij0 = 12V ′(A2)Aij0, (B.38)

we obtain

12V ′(A2)Aij0 = 0, (B.39)

which is an algebraic constraint. This implies Aij0 = 0.

Consider a spacelike component ∇αFα123. From (B.36) we have

∇αFα123 = −∂0∂0A123 − gijΓ0
ij∂0A123 + Γi

01∂0Ai23 + Γi
02∂0A1i3 + Γi

03∂0A12i

−∂0∂2A013 − gijΓ0
j2∂0Ai13 − gijΓ0

ij∂2A013 − gαβΓλ
β1∂2Aαλ3 − gαβΓλ

β3∂2Aα1λ

−∂0∂1A203 − gijΓ0
j1∂0A2i3 − gαβΓλ

β2∂1Aλα3 − gijΓ0
ij∂1A203 − gαβΓλ

β3∂1A2αλ

−∂0∂3A021 − gijΓ0
j3∂0Ai21 − gijΓ0

ij∂3A021 − gαβΓλ
β2∂3Aαλ1 − gαβΓλ

β1∂3Aα2λ

= −∂0∂0A123 − gijΓ0
ij∂0A123 + Γ1

01∂0A123 + Γ2
02∂0A123

+Γ3
03∂0A123 − g22Γ0

22∂0A213 − g11Γ0
11∂0A213 − g33Γ0

33∂0A321

= −∂0∂0A123 − gijΓ0
ij∂0A123 + 3Γ1

01∂0A123

+g22Γ0
22∂0A123 + g11Γ0

11∂0A123 + g33Γ0
33∂0A123

= −∂0∂0A123 + 3Γ1
01∂0A123.
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From (3.21), we get

∂0A123 = ∂0
(
a3X

)
= a3Ẋ + 3a2ȧX

∂0∂0A123 = a3Ẍ + 3a2ȧẊ + 3a2ȧẊ + 3a2äX + 6aȧ2X

= a3Ẍ + 6a2ȧẊ + 3a2äX + 6aȧ2X.

Therefore, we have

∇αFα123 = −a3Ẍ − 6a2ȧẊ − 3a2äX − 6aȧ2X + 3
ȧ

a

(
a3Ẋ + 3a2ȧX

)
= −a3Ẍ − 6a2ȧẊ − 3a2äX − 6aȧ2X + 3a2ȧẊ + 9aȧ2X

= −a3Ẍ − 3a2ȧẊ − 3a2äX + 3aȧ2X.

From (2.19) and (2.20) we have

ȧ = Ha
ä

a
= Ḣ +H2.

Then

∇αFα123 = −a3Ẍ − 3a3HẊ − 3a3(Ḣ +H2)X + 3a3H2X

= −a3Ẍ − 3a3HẊ − 3a3ḢX − 3a3H2X + 3a3H2X

= −a3(Ẍ + 3HẊ + 3ḢX). (B.40)

From (3.18) we obtain the equation of motion of the field X

∇αFα123 = 12V ′(A2)A123

−a3(Ẍ + 3HẊ + 3ḢX) = 12V ′(A2)a3X

Ẍ + 3HẊ + 3ḢX = −12V ′(A2)X

Ẍ = −3HẊ − 3ḢX − 12V ′(A2)X.

Consider V ′(A2)

V ′(A2) =
dV

dA2

=
1

6

dV

dX2

=
1

6

dV

dX

dX

dX2

=
1

12X

dV

dX

=
1

12X
V,X , (B.41)
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where V,X ≡ dV/dX. Therefore, we get the equation of motion of X as

Ẍ = −3HẊ − 3ḢX − V,X . (B.42)

From (B.20), each component of the energy momentum tensor of the three-form

field is

T00 =
1

3!
F0µ1µ2µ3F

µ1µ2µ3

0 + 6V ′A0µ1µ2A
µ1µ2

0 +
1

48
F 2 + V (A2).

From (B.35)

F0µ1µ2µ3F
µ1µ2µ3

0 = F0ijkF
ijk
0

= gilgjmgknF0ijkF0lmn

= gilgjmgkn (∂0Aijk + ∂jA0ik + ∂iAj0k + ∂kA0ji) (∂0Almn

+∂mA0ln + ∂lAm0n + ∂nA0ml)

= gilgjmgkn (∂0Aijk) (∂0Almn)

= gilgjmgknϵijkϵlmn

(
a3Ẋ + 3a2ȧX

)(
a3Ẋ + 3a2ȧX

)
=

1

a6
δilδjmδknϵijkϵlmn

(
a6Ẋ2 + 6a5ȧẊX + 9a4ȧ2X2

)
= ϵijkϵijk

(
Ẋ2 + 6HẊX + 9H2X2

)
= 6

(
Ẋ + 3HX

)2
, (B.43)

F 2 = FµνρσF
µνρσ

= 4!F0123F
0123

= 4!g0µg1ig2jg3kF0123Fµijk

= −4!g11g22g33F0123F0123

= −4!
1

a6
F0123F0123

= −4!
1

a6
(∂0A123) (∂0A123)

= −4!
1

a6

(
a6Ẋ2 + 6a5ȧẊX + 9a4ȧ2X2

)
= −24

(
Ẋ + 3HX

)2
. (B.44)

Therefore, the (0, 0) component of Tµν is

T00 =
(
Ẋ + 3HX

)2
− 1

2

(
Ẋ + 3HX

)2
+ V (A2)

=
1

2

(
Ẋ + 3HX

)2
+ V (A2). (B.45)

The (i, j) component of energy momentum tensor is

Tij =
1

3!
FiµνρF

µνρ
j + 6V ′AiµνA

µν
j − gij

(
1

48
F 2 + V (A2)

)
.
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Observing that

FiµνρF
µνρ
j = 3Fi0klF

0kl
j

= 3g0µgkmglnFi0klFjµmn

= −3gkmglnFi0klFj0mn

= −3gkmgln (∂0Akil) (∂0Amjn)

= − 3

a4
δkmδlnϵkilϵmjn

(
a3Ẋ + 3a2ȧX

)(
a3Ẋ + 3a2ȧX

)
= −3a2ϵkilϵkjl

(
Ẋ + 3HX

)2
= −6a2

(
Ẋ + 3HX

)2
δij, (B.46)

and

AiµνA
µν
j = AiklA

kl
j

= gkmglnAiklAjmn

=
1

a4
δkmδlnϵiklϵjmna

6X2

= a2ϵiklϵjklX
2

= 2a2X2δij, (B.47)

we can rewrite

Tij = −a2
(
Ẋ + 3HX

)2
δij + 12V ′a2X2δij − a2δij

[
−1

2

(
Ẋ + 3HX

)2
+ V (A2)

]
= a2

[
−1

2

(
Ẋ + 3HX

)2
+ 12V ′X2 − V (A2)

]
δij.

From (B.41) we get

Tij = a2
[
−1

2

(
Ẋ + 3HX

)2
+ V,X X − V (A2)

]
δij. (B.48)

The energy density and pressure of the three-form field are given by

ρX = −T 0
0

= −g0µTµ0

= −g00T00

= T00

=
1

2

(
Ẋ + 3HX

)2
+ V (A2) (B.49)

pX = T i
i

= gijTji

=
1

a2
δija2

[
−1

2

(
Ẋ + 3HX

)2
+ V,X X − V (A2)

]
δij

= −1

2

(
Ẋ + 3HX

)2
+ V,X X − V (A2). (B.50)
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