RESULTS

Effect of the Carrier Types

Six types of water-soluble carriers had been used, i.e. PEG 4000, PEG 6000, PEG 20000, mannitol, urea and PVPP. The amount of the carrien used was fixed to the ratio of $1: 2$ as compared to the drug. The solid dispersion systems were prepared using two methods; fusion and solvent methods. The codes for all nine solid dispersion preparations and IBU used in this step were as follaws:

Code

Solid dispersion preparations/IBU

R1 1:2 IBU:PEG 4000 solid dispersion, fusion method
R2 1:2 IBU:PEG 6000 solid dispersion, fusion method
R3 1:2 IBU:PEG 20000 solid dispersion, fusion method
R4 $\quad 1: 2$ IBU:PEG 4000 solid dispersion, solvent method R5 $\quad 1: 2$ IBU: BEG 6000 sofid dispersion solvent method R6 1:2 BU: PEG 20000 solid dispersion, solvent method
 R9 1:2 IBU:PVPP solid dispersion, solvent method R10 IBU

1. Characteristics of Ibuprofen Solid Dispersions

1.1 Fusion Method. The carriers which could be used to prepare the IBU solid dispersions by fusion method
were limited to only the PEG series owing to the low melting point of IBU. Once IBU was added to the molten carrier (except for the PEGs), evaporation occurred. The IBU-PEG melts were visually clear, homogeneous liquid. When dried, they were all white, stable masses which could be pulverized to yeild dry, nonsticky white powder.
1.2 Solvent Method. All six types of watersoluble carrier mentioned above had been used to prepare IBU solid dispersions by solvent method. The IBU-mannitol and IBU-PVPP solid dispensions prepared by solvent method were nonsticky white powder which were easy to manipulate. Products yeilded from the IBU-PEG systems were somewhat waxlike and more difficult to pulverized. The IBU-urea dispersion was crystalline white pówder and easy to pulverized as well.

When compared, fusion method was relatively easy to be prepared, less time consuming and more economical than solvent method. Despite the fact that sublimation of IBU did occur whileomximg IBU with most molten carriers except for the PEGs, the appropríate carriers could be selected and solid dispersion withogobd caharacteristtic could be obtained.
2. Assay of Ibuprofen and Ibuprofen in Solid

Dispersions

The percentage contents of IBU and IBU in each solid dispersion systems were shown in Table 3. The IBU contents were between 98.86 and 102.24%

Table 4 Size Distribution Data of IBU and Various Solid Dispersion Systers (R1 to R9)

Table 4 (cont.)

1:2 IBU: PEG 20000, Fusion Hethod (R3)				
Sieve Nuiber (Passed/Retained)	Sieve Opening(acil)	Wt Retained (Frequency) (g)	Percent Frequency (\%)	Cu⿶ulative \%Frequency
0/20	7840	3.51	14.27	14.27
$20 / 40$	420-840	10.51	42.72	56.99
$40 / 60$	250-420	3.74	15.20	72.20
60/80	177-250	1.47	5.98	78.17
80/Receiver	(177	5.37	21.83	100.00
$\text { TOTAL } \quad 24.60 \quad 100.00$				

1:2 IBU:PEG 4000, Solyent Method (R4)

Sieve Number (Fassed/Retained)	Opening (arci) (Frequency) (g)	Percent Frequency!	Cumulative \%Frequency
$0 / 20$	$7840 \quad 0.27$	1.10	1.10
20/40	420-840 6.65	28.98	28.07
$40 / 60$	250-420 4.59	18.52	46.69
$60 / 80$	177-250 $\quad 2.68$	10.87	57.57
$80 /$ Receiver	(177 10.46/a	42.43	100.00
	TOTAL $\quad 24.65$	100.00	

1:2 IBU:PEG 6000 , Solvent Method (R5)

Sieve Nu䣲er (Passed/Retained)	Sieve 	Wt Retained (Frequency) (g)	Percent Frequency (\%)	Cumulative \%Frequency
$0 / 20$	>840	1.38	5.56	5.56
$20 / 40$	420-840	10.79	43.51	49.07
$40 / 60$	250-420	4.64	18.71	67.78
$60 / 80$	177-250	1.92	7.74	75.52
80/Receiver	(17	6.07	24.48	100.00
	total	24.80	100.00	

Table 4 (cont.)

1:2 IBU:Mannitol, Solvent Method (R7)

3. Particle Size Determination.

Size-distribution data of $I B U$ and $I B U$ solid
dispersion systems were presented in Table 4. The mode which is the maximum in the size-frequency curve of IBU particles occurred at the size that was less than 177 mcm (passed through sieve No. 80). The same results were obtained with IBU-PEG 4000 (solvent method), IBU-PEG 6000 (both method), IBU-mannitol, IBU-urea and IBU-PVPP (solvent method) systems. The mode/size of IBU-PEG 4000 (fusion method) was $420-840 \mathrm{mcm}$ to which the percent particles in this size group was 34.44 while the percent particles in the size group of less than 177 mcm , which was the next frequent-size group, was 32.78 . For IBU-PEG 20000 systems, either fusion or solvent method, the mode sizes were also 420-840 mcm. This may be due to the fact that the higher the molecular weight of PEGs, the harder were their characteristic. So, after pulverized, the mode of yeilded products of IBU:PEG 20000 systems were somewhat larger than other systems. 9 ?

The dissolution profiles of all nine preparations were depicted in Figures 1-3. The statistical comparisons of IBU dissolved from various IBU solid dispersions (R1 to RlO) at various times using one-way ANOVA (Analysis of Variance) were presented in Table 5. Student's t-test were used to compare the concentrations of $I B U$ dissolved from each solid

Figure 1 Dissolution profiles of ibuprofen solid dispersions, using 1:-2 ratio of PEGs as the carriers, fusion
method

 ∇ RIO, IBU (control)

Figure 2 Dissofution profiles of ibuprofen solid dispersions, using $1: 2$ ratio of PEGs as the carriers, solvent method

∇ RIO, IBU (control)

Figure 3 Dissolution profiles of ibuprofen solid dispersions, using 1:2 ratio of mannitol, urea and PVPP as the carriers, solvent method

 ∇ Rlo, IBU (control)

Table 5 The Statistical Comparisons of IBU Concentrations Dissolved
from Various IBU Solid Dispersions (R1 to R10) at Various
Times Using One-way ANOVA

Table 6 The Concentrations of IBU dissolved from IBU Solid Dispersions (R1 to R9) and Pure IBU (R10) at Various Tines

Average data of at least 3 deterninations are represented and S.D. are given in parentheses

* = Statistically significantly higher than those of IRU (R10) (p<0.10)
** $=$ Statistically significantly higher than those of IBU (R10) (p(0.05)
dispersion preparations at various times to the dissolution of IBU itself. The results were presented in Table 6.

The results revealed that the $I B U$ in all nine preparations dissolved faster than pure IBU (R10) which was used as the control. According to Figure 1 which presented the dissolution profiles of $I B U$ solid dispersions dispersed in the PEG series prepared by/ the fusion method, all three preparations gave significant higher concentrations of dissolved IBU during the first 60 minutes ($p<0.10$, t-test). Rl produced the quickest/dissolution rate and the highest concentration of IBJ whigh could be obtained within 45 minutes were $34.079 \mathrm{mgg} / \mathrm{ml}$. The highest concentrations of IBU obtained from $R 3$ and $R 2$ Were 31.723 and $31.462 \mathrm{mcg} / \mathrm{ml}$ respectively while the highest concentration obtained from Rlo was only $20.725 \mathrm{mcg} / \mathrm{mI}$. However, after 60 minutes these three preparations yielded nearly equal concentrations of dissolved IBU.

From Figure 2 which demonstrated the dissolution profiles of $\mathcal{F}: 2$ IBURPEGS spaid daspersions oprepared by solvent methad, R4 gave higher concentrations of dissolved
 dissolution profiles followed by subsequent lower concentrations of IBU dissolved than R6 and R5 after 60 minutes. After 30 minutes $R 6$ showed higher concentrations of dissolved IBU than the other preparations (significantly higher than Rl0 at 30 and 60 minutes ($p<0.10$, t-test).

According to Figure 3 which illustrated the dissolution profiles of 1:2 IBU:other carriers (mannitol, urea and PVPP) solid dispersions prepared by solvent method, R8 exhibited highest concentrations of dissolved IBU among the three preparations throughout almost all the range of the study and yielded significantly (p<0.l, t-test) higher IBU dissolved than Rlo throughout the range of the study. Although R9 seemed to produced nearly the same average concentraion of dissolved IBU as R8, its dissolution rate within the first 30 minutes of the experiments was much slower than R8.

Due to the aboye dissolution results, RI, R6 and R8 were chosen for further situdies by means of varying the ratio of drug:carriers in the preparation of solid dispersions in order to find the solid dispersion system which give the most promising in the improving of IBU dissolution.

Effect of the Amount of Carriers Used

Threj preparatipos with the best dissolution
properties, RI, $R 6$ and $R 8$ were selected and the ratio of IBU: carriers weren varied ass $192, h^{1,3^{3}}$ gand, $1: 4 \%$ Hence, nine solid dispersion systems were prepared and compared to pure IBU at this step. The codes used for each preparations and IBU were as followed:-

Code
Solid dispersion preparations/IBU
Pl l:2 IBU:PEG 4000 solid dispersion, fuison method
P2 1:3 IBU:PEG 4000 solid dispersion, fuison method
P3 1:4 IBU:PEG 4000 solid dispersion, fuison method
P4 1:2 IBU:PEG 20000 solid dispersion, solvent method
P5 1:3 IBU:PEG 20000 solid dispersion, solvent method
P6 1:4 IBU:PEG 20000 solid dispersion, solvent method
P7 l:2 IBU:urea solid dispersion, solvent method
P8 1:3 IBU:uxea solid dispersion, solvent method
P9 1:4 IBU:urea solid dispersion, solvent method
Plo IBU

All nine pyeparations newly prepared at this step had the same external characteristics as those obtained from the 1:2 ratio previously prepared

The percentage content of TBU and IBU in each systems of solid dispersion were presented in Table 7. The IBU contents were between 99.40 and 101.61%
 systems (Pl to P9) were shown in Table 8. The mode sizes
 dispersipn, solvent method) were less than 177 mcm (passed through No. 80 -mesh). The mode size of P4 was $420-840 \mathrm{mcm}$ to which the percent frequency was very closed to the percent frequency of the size group of less than 177 mcm .

Dissolution studies of all nine preparations, R1 to R9, and pure IBU (Plo) were performed. Table 9 presented

Table 7 Percentage Content of $I B U$ and $I B U$ in Solid Dispersions, Pl to Plo

		IBU Content (percent)	
Preparation	\ldots	2	Average \pm S.D.
P1	100.94	100.60	100.77 ± 0.17
P2	101.29	100.69	100.99 ± 0.30
P3	99.89	100.18	100.04 ± 0.15
P4	100.62	100.23	100.43 ± 0.20
P5	100.30	99.76	100.03 ± 0.27
P6	99.60	99.50	99.55 ± 0.05
P7	100.88	101.19	101.04 ± 0.16
P8	101.92	101.29	101.61 ± 0.32
P9	99.45	99.55	99.40 ± 0.08
P10	100.84	100.61	100.73 ± 0.12

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Table 8 Size Distribution Data of Various Solid Dispersion Systems (PI to Pq)

Table 8 (cont.)

1:2 IBU:PEG 20000, Solvent Method (P4)

Table 8 （cont．）

1：2 IBU：Urea，Solvent Method（P7）

Sieve Number （Passed／Retained）	Sieve Opening（配）	Wt Retained （Frequency）（g）	Percent Frequency（\％）	Cululative \％Frequency
$0 / 20$	＞840	0.31	0.64	0.64
$20 / 40$	420－840	2.25	4.64	5.28
40／60	250－420	－ 7.43	15.31	20.59
$60 / 80$	177－250	10.38	21.38	41.97
80／Receiver	（177	28.16	58.03	100.00
TOTAL 48.53				
Sieve Number Sieve Wt－Retained Percent Cumulative （Passed／Retained）Opening（acti）（Frequency）（g）Frequency（2）\％Frequency				
$0 / 20$		0.0	0.10	0.10
20140	420－840	－0．97	1.97	2.07
$40 / 60$	250－420	4.22	8.58	10.65
60180	177－250	8.58	17.43	28.08
80／Receiver	（177	35.39	71.92	100.00
TOTAL ${ }^{49.21} \quad 100.00$				
Sieve Number Sieve Ht Retained Percent Cualative （Passed／Retained）Opening（䚓面）（Frequency）（g）Frequency（\％）\％Frequency				

Table 9 The Concentration of IBU Dissolved from IBU Solid Dispersions (P1 to P9) and Pure IBU (P10) at Various Tímes

Table 10 The Statistical Comparisons of IBU Concentrations Dissolved from Various I8U Solid Dispersions and Pure IBU (P1 to P10)
at Various Tiees Using One-way anova

Table 11 The Pairwise Statistical Comparisons of IBU Concentrations Dissolved From IBU Solid Dispersions (P1 to P9) at Various Times Using Student's t-test

Figure 4 Dissolution profiles of ibuprofen solid dispersions, using different ratios of PEG 4000 as the carriers, fusion method
$\begin{aligned} \text { Mey: } & \text { Q } 9 P 1 ; 10: 2 \text { IBU:PEG } 4000 \\ & +\mathrm{P} 2,1: 3 \text { IBU:PEG } 4000\end{aligned}$

Figure 5 Dissolution profiles of ibuprofen solid dispersions, using different ratios of PEG 20000 as the carriers, solvent method

Figure 6 Dissolution profiles of ibuprofen solid dispersions, using different ratios of urea as the carriers,
solvent method

Figure 7 Comparison of the dissolution profiles of ibuprofen solid dispersions of different carriers with the
same amount of carrier, $1: 2$

Key: + Pl, IBU:PEG 4000, Fusion method
P9 OfP4, 9 FB : PEG 20000, Solvent method
\triangle P7, IBU ${ }^{\circ}$ Urea, Solvent method

Figure 8 Comparison of the dissolution profiles of ibuprofen solid dispersions of different carriers with the
same amount of carrier, $1: 3$

Key: +6 R2, IBU:PEG 4000 , Fusion method
P9\% Re, IBU:PEG 20000, SOIvent method
ข

Figure 9 Comparison of the dissolution profiles of ibuprofen solid dispersions of differentcarriers with the same amount of carrier, 1:4

Key: + P3, IBU:PEG 4000, Fusion method P 4σ P6, IBU:PEG 20000, Solvent method $\triangle P 9$, IBU:Urea, Solvent method

the dissolution parameters of Pl to Plo in the term of concentrations of IBU dissolved at various times. Table 10 presented the statistical comparisons of IBU concentrations dissolved from various IBU solid dispersions (P1 to Plo) at various times using one-way ANOVA. Table ll demonstrated the pairwise statistical comparisons of IBU concentrations dissolved from IBU solid dispersions (Pl to PG) at various times using student's t-test. The dissolution profiles of all preparations were illustrated in Figures 4-9.

According to Figure 4 which presented the dissolution profiles of $1: 2,1: 3$ and $1: 4$ ratios of IBU:PEG 4000 solid dispersions prepared by fusion method (P1, P2 and P3 respectively), there werésignificant differences ($p<0.10$, t-test) of the dissolved IBU concentrations at 5 minutes between P1 and P2 and between P2 and P3, but no significant difference $(p>0.10)$ was found between $P 2$ and $P 3$. There were no statistical differences ($p>0.10$) observed among these three preparations from 11 minutes through the end of the

From Figure 5 which illustrated the dissolution profiles of $1: 2,4 ? 3$ and 14 ratios of IBU:PEG 20000 solid dispersions prepared by solvent method (P4, P5 and P6 respectively), the only significant difference (p<0.05) of the dissolved IBU concentrations found was between P4 and P6 at 11 minutes. After that, there were no statistical differences $(p>0.10)$ of $I B U$ concentrations dissolved among all three preparations through 180 minutes.

Figure 6 exhibited the dissolution profiles of $1: 2$, 1:3 and l:4 ratios of IBU:urea solid dispersions prepared by solvent method (F7, P8 and P9 respectively). As can be seen, there were entirely no significant difference ($p>0.10$) of IBU concentrations dissolved from these three preparations.

Comparisons of Different Carriers Used in Solid Dispersion

 Preparations at the Same Ratio
The 1:2 Ratio

Figure 7 showed the dissolution profiles of IBU solid dispersions of different carriers; PEG 4000, PEG 20000 and urea, at the same $1: 2$ ratio ($\mathrm{P}, \mathrm{P}, \mathrm{P} 4$ and P 7 respectively). The results showed that the IBU concentrations obtained from Pl and P4 at 11, 15 and Zofinintes were significantly different ($p<0.10$). There were statistical differences ($\mathrm{p}<0.05$) between PI and P 7 in the term of dissolved IBU concentrations throughout the first 30 minutes of the dissolution profiles. A significant difference ($p<0.10$) of the dissolved 1 BU concentrations was also found between

Figure 8 demonstrated the dissolution profiles of IBU solid dispersions of different carriers; PEG 4000 , PEG 20000 and urea, at the same $1: 3$ ratio (P2, P5 and P8 respectively). The data revealed that within the first 15 minutes, there were significantly differences ($p<0.10$) of

IBU concentrations dissolved from P2 and P5. Between P2 and P8, the dissolved IBU concentrations were statistically different ($p<0.10$) throughout the first 20 minutes of the dissolution profiles. A significant difference (p<0.05) of dissolved IBU concentrations was also found between P5 and P8 at 11 minutes.

The 1:4 Ratio

Figure 9 presented the dissolution profiles of IBU solid dispersions of different carriers; PEG 4000, PEG 20000, and urea, at the same $1: 4$ ratio ($\mathrm{P} 3, \mathrm{P} 6$ and P9 respectively). The results showed significant differences ($\mathrm{p}<0.10$) in concentrations of IBU dissolved from P3 and P9 throughout the first 30 minutes Stortistical differences ($\mathrm{p}<0.05$) of the dissolved IBU concentrations were found between P3 and P6 at 5 and 11 minutes. Comparing P6 and P9, there were significant differences ($\mathrm{p}<0.10$) in concentrations of IBU dissolved from PG and Pg during 11 to 45 minutes.

In conclusion9/among thefIBU solid dispersions with varying ratids of the drug to the carrier, there was no significant difference in concentrations of TBU dissolved among all ratios varied in all types of carriers used in this study except for the first 5 minutes of the IBU:PEG 4000 system. It was likely that among the carriers used, the PEG 4000 was found to gave the superior dissolution of IBU from solid dispersions over the other carriers, especially during the first 20 to 30 minutes. The $1: 4$ IBU:PEG 4000
solid dispersion prepared by fusion method (P3) was selected for stability testing due to the assumption that if there was higher amount of carrier in the solid dispersion, the effect of aging could be more clearly detected than those systems having lower amount of the carrier. If the content of IBU and the dissolution characteristics of this solid dispersion do not change with time, the solid dispersions of those systems which containing the lower amount of carriers should be stable as well. P3 was also used as a representive in the study about the effect of/particle size on the dissolution rate of IBU from solid dispersion.

Effect of Particle Size on Dissolution Rate

The effect of partigle size on dissolution rate was studied using 1:4 IBU: PEG 4000 solid dispersion prepared by fusion method (P3). Dissolution profile of the portion which pass through No 80 -mesh was compared to that of the unseived portion. As a reference, dissolution tests of IBU, sieved through No. 80-mesh, and unsieved, were also performed. Codes
 Code
 IBU

1:4 IBU:PEG 4000 solid dispersion prepared by fusion method, passed through No. 80 -mesh 1:4 IBU:PEG 4000 solid dispersion prepared by fusion method

Table 12 showed the dissolution parameters of $S 1$ to S4 in the term of concentrations of IBU dissolved at various times and the results of the Student's t-test. The dissolution profiles of all portions tested were presented in Figure 10. There was no significant difference in the dissolution profiles between $S 1$ and $S 2$, except for the concentrations of IBU dissolved at 180 minutes which was significantly different ($\mathrm{p}<0.05$, t-test). IBU concentrations dissolved from $S 3$ were significantly higher ($p<0.10$, t-test) than those dissolved from/ S 4 within the first 30 minutes followed by insignificanty different ($p>0.10$) through the end of the dissolution profile.

It can be concluded that for pure IBU, the dissolution rates were not significantly different whether the drug particles weresjeved through No. 80 -mesh sieve or unsieved. But in the case of $1: 4$ IBU:PEG 4000 solid dispersion prepared by fusion method, the portion which passed through No. 80-mesh gave higher dissolution rate and concentrations dissolved cof f ABE than the unsieved portion in the firstepart of the dissolution profile.

Aging of the Best. Prepanation. 9 ? d

Effect of storage on dissolution of $1: 4$ IBU:PEG 4000 solid dispersion prepared by fusion method (P3) was studied. The percentage content of IBU and P3 after kept outside the desiccator for a period of time were presented in Table 13 and 14 respectively. Very little decreasing of the IBU

Table 12 Concentrations of IBU Dissolved from Pure IBU and IBU Solid Dispersions (S1 to 54) at Various Times

Concentration (ecg/al) at time (min)						
Preparation	5	15	30	60	120	180
51	0.954	5.932	13.265	20.804	24.030	28.664
	(1.18)	(2.92)	14.62)	(15.79)	(3.64)	(1.55)
						++
52	1.251	7.692	14.073	20.805	24.952	25.273
	(0.80)	(2.11)	(2.01)	(11.52)	(1.45)	(1.30)
53	26.528	31.028	5.487	36.859	38.688	39.717
	\{1.53)	(2.12)	13.42)	(3.92)	13.98)	(4.35)
54	19.523	23.635	29.123	32.591	35.982	36.059
	(1.56)	11.	(2.03)	(0.91)	(1.49)	(1.15)

Average data of 3 deterninations areifepresented and 5.0. are given in parentheses
$++=$ Significantly different (p (0.05), compared to 51

* = Significantly different $\langle\beta<0.10\rangle$, compared to 53

$\pm z=$ Significantly different (p (0.05), compared to 53

Figure 10 Comparison of the dissolution profiles of ibuprofen solid dispersions with different particle sizes, using l: 4 ratio of PEG 4000 as the carrier, fusion

\diamond S3, 1:4 IBU:PEG 4000 solid dispersion, passed through No. 80-mesh
\triangle S4, 1:4 IBU:PEG 4000 solid dispersion

Table 13 Percentage Content of IBU after Kept Outside the Desiccator for a Period of Times

Time		IBU content (percent)	
$(w k)$	1	2	Average \pm S.D.
0	100.84	100.61	100.73 ± 0.12
2	100.48	100.81	100.65 ± 0.17
6	100.41	100.79	100.60 ± 0.19
10	100.19	100.55	100.37 ± 0.18

Table 14 Percentage content of IBU in P3 (1:4 IBU:PEG 4000 Solid Dispersion Prepared by Fusion Method) after Kept Outside the Desiccator for a Period of Time

จุหาลงกรณ์มหาวิทยาลัย

Table 15 Statistical Comparisons of Percentage Content of IBU and IBU in P3 after Kept Outside the Desiccator for a Feriod of Time Using One-Way ANOVA

1:4 IBU:PEG 4000 solid dispersion, Fusion method

F

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย
content were detected at the $2 \mathrm{nd}, 6$ th and 10 th weeks of storage outside the desiccator for both pure IBU and P3. Their statistical comparisons using ANOVA were shown in Table 15. There was no significant difference ($p>0.10$) of IBU content at the mentioned time from the beginning. The same result was obtained for $P 3$.

Dissolution test of IEW and P3 were performed at the
same time as that their percentage contents were determined.
Codes of each preparations/ar IBU after kept outside the desiccator for a certain time were as follow:-

Code Solid dispersion preparations/IBU

TI IBU
T2
IBU, kept outside the desiccator for 2 weeks
T3 IBU, kept outside the desiccator for 6 weeks
IBU, kept outside the desiccator for 10 weeks
1:4 IBy:PEG 4000 solid dispersion prepared by fusion method (P3)
1:4 IBU:PEG 4000 solid dispersion prepared by fusion method, ckept foutside the desiccator for
2 weeks
fusion method, kept outside the desiccator for

6 weeks
1:4 IBU:PEG 4000 solid dispersion prepared by fusion method, kept outside the desiccator for 10 weeks

Figures 11 and 12 showed dissolution of IBU and of P3 after kept outside the dessiccator for a period of time. Table 16 showed the dissolution parameters of $T 1$ to $T 8$ in term of concentrations of IBU dissolved at various times. The statistical comparisons of $I B U$ concentrations dissolved from $T 1$ to $T 4$ and $T 5$ to $T 8$ at various times using ANOVA were presented in Table 17 and 18 nespectively. There were no statistical difference ($p>0.10$, ANOVA) for both $I B U$ and P3 dissolution parameters, The Student's t-test in Table 16 indicated that there were no significant difference between IBU concentrations dissolved at various times between $T l$ and T2, T3, T4 and between T5 and T6, T7, T8 except for the IBU concentrations dissolyed at 180 minutes from $T 1$ and $T 4$ ($\mathrm{p}<0.10$).

In conclusion, the storage for 10 weeks did not affect the content and dissolution characteristic of IBU and 1:4 IBU:PEG 4000 solid dispersion prepared by fusion method.

ศูนย์วิทยทรัพยากร

 จุฬาลงกรณ์มหาวิทยาลัย

Figure 11 Dissolution profiles of ibuprofen after kept outsjde the desiccator for period of time Key: \square Tl, 0 week

Table 16 Concentrations of IBU Dissolved from Pure IBU and IBU Solid Dispersions (II to T8) at Various Times

Table 17 The Statistical Comparisons of IBU Concentrations Dissolved from
Various IBU Solid Dispersions (Ti to T4) at Various Tifes Using
One-way ANONA

Table 18 The Statistical Comparisons of IBU Concentrations Dissolved from
Various IBU Solid Dispersions (T5 to T8) at Various Times Using
One-way anova

