CHAPTER YV

THE QUANTUM MECHANICAL MODEL

A problem of the particle mio% 'L\ 1

science. The Brownian moiGitieory hasde anding of such phenomena

af pptential field is the general theme
/7

underlying the theoretical appio roblems in physical and chemical

L, Ligete

¥ as interstitial diffusio R :\\ “"{\\ cal physics, macroscopic

quantum tunneling in | Sfuclear physics In the

previous chapter we ha Brownian motion and

consider some notions wii€h b this, chapter we shall discuss

further, the theory of quaj Lraf o Viya
i aad

=

Vernon theory is very uséful g sulidy sha pre
1-;

(TRIA I

\- . o
th integral. The Feynman-

Microscopic Model

E r——

Let us conside 2 155V moving in an external

-
i ]
i

potential [{g.1) which may depend explicitly on time. The r-d Lagrangian function /.

AN g nenns
AR1ANNTUIWIANYNA

The Brownian particle is suspend in a heat bath environment which consists of n

(5.1)

harmonic oscillators with mass m and coordinatex . The Lagrangian L, of a heat bath

is

2 .f‘I a .l" 3
Ly = Z[; mx; —Emwfxg) . (5.2)
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The Brownian particle coupled with the heat bath through interaction which is the

coordinate ¢ of the Brownian particle. The Lagrangian L, of this interaction is

n
L, =—qQ.c.%; , (5.3)
k=]

where ¢; is the coupling constant betvig ach of the harmonic oscillators.
; t /

To summarize, we sh# 'T‘-_ wiiotion phenomena by using a
model where the heat ballieaw¥hrgnt d m»— of n harmonic oscillators
coupled linearly to the cogud 4 . V' The Brownian motion
of the particle arises becs Lbath. Now, the complete

system under study is therej#fe ngian /. as follows

(5 4)
And the corresponding acrii}n
(55)
where we use x(1) for (x,(# (1), ...x, (1), sar .
ﬂ UYIN EWI?W 1
A=)d —Mq g0 - g3 x, + 2 (5.6)
Vel Mikiok Viak] V

A

We can write the density matrix p{q,,,q;,;x,,.r;.] at time ¢ = 0 for our system as

p(q,,,q:J:x,,.xa] = (W.(‘ﬂ:-xﬂ)'ﬂ“{‘ﬁnxu}) s (5.7)
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on at time > 0. From chapter 1V we know that the density matrix p(q,,,qa;x,,,x;,}
can be split into two parts, say the density matrix pﬂ(qﬂ,q:,) which describes the
Brownian particle only and p_.,[.r,,.x;,) for the heat bath only. In this case

p{qﬂ,q;,;xﬂ.x,;] is simply the form

e 9 1 (5.8)

This is an important initial comge "hal densitvsmateis of the whole system is in the
p : 3 ;

form

A g ) plx,.x ) (5.9)
The propagator Klq,.x, ..

1) explid | h), (5.10)

K -:,-'“.r

where the action A &f | g od ribes the behavior of

complete system, but -»-! are not nterested in the behavior!@f the heat bath. We want

access to the pﬁemes of the, Brownian partigle regardless of the specific behavior of

e e b R b e A g e e e pave

trace out the ﬁnalcuordmates of the hfat bath, in the other words we ha»e to mtegrate

QRGN TINS TR

matrix ofjthe reduced density matnix

Alg,.q,.u) = T, plq, 4., x,)

: (5.11)
= J'dr"dr;a[r" o x;]Aqn !qa;xﬂ “'Tlrl
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Bl qsu) = Vg Mg 4 d045) Paldnas ), (5.12)

where

Na,.q5:q90.95) = | Dato) Dge) expli /) Ayqln)] - A,,[q'{f]])] Flgtn.g1n] .
\I//, (5.13)

and

-"Illﬁf},q'{”] = .I‘fi"l-'.-,lf.r: "

S el et explie Al0] = 4[]}

(5.14)

The influence functional 4 B, h | effect of the heat bath

surrounding which is compg hich do not interact with

each other By using the pro ﬁ*ﬂw_"' fl ional in Eq.(4 23) of chapter

1V it leads us to calculate the influgnegs fr;rr:; Beach oscillator separately and then

the effective influencé Y lyence functional. The

influence functional o “ﬂ"';

dF

F [qt),q0)] = Lzhdxmdx dx’ Jb rﬂ,]ph o

@uﬂ@mﬂmjwﬂqnﬁ
ammﬁiiu ANy o

The two path integrals in this equation are conjugate to each other and they have been
calculated in Eq.(3.50) of chapter 1I. For our case, we have f(/) =¢() and the end
points @=0, b u. The density matrix of a harmonic oscillator has also been

calculated in chapter 111 but it is not normalized. To normalize the density matrix of
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the oscillator we divide it by the partition function of the oscillator. So, one gets the

density matrix p,,(r ;,,) of the j" oscillator as:

S

()[ _

Eﬂnh(m}ﬂﬂ -’2]

Substituting the result atrix of Eq.(5 10) into

Eq.(5.15) and then inte ' ! uives the result

.-'-'.[q{r':',q‘lﬂ] = exp*-l— ) v\ I = gl s]]{'. (517
# e § = - l\'\.‘ 2

where
a,lt-s) ; 7 {_f# Ar—s). (5.18)
e ‘ﬁ"ﬁfﬁﬁ ‘WET iiph 1138 ﬁ%’ =
influence functior@l is
/

f{qlr) 11:] = exp -ﬁﬂz[g?l u:nu gr,ds} gjl@ g',} (5.19)

in which the function e(r - 5) is

alt —s) = a,li—8) +ia, l1-5), (5.20)
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l‘-';

apli—s) = Zam r:mh cnsm (r-5) (5.21)

= 2mo, J:

a—sinw (1 -3). (5.22

(s)=g1s)] |

W —S)gls) -g1s)] . (523

Now if we have the reduced de. Sepw e /=10, the equation (5 12) and

(5.23) will give us its time develdi endenge on coordinates of the

heit bath environmen
| y l" d

srenusafl HHARBATN YN T
m RS I A

time f is ¢ r} is acted upon by an external force /(1) The action of this system is

A= Alq(n)] = 4,[q(0)] -jdf gl) Flr) | (5.24)
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where Aﬂ[q{!}] is an action of the particle which is not disturbed by the forces. The
characteristic of the force is a random process. No one can know it more explicitly as
a function of time, but we can only know its probability P[/(1)]DF(¢). More
specifically the probability density 7’[/(/)] is a Gaussian type of distribution. Now the

propagator of our system for each value of /(1) is a double path integral:
dil (1) - ff’(f}]f"{.f}}_ (5.25)

By reasoning of the ra Y W “‘\\ § average the propagator

(5.25) with the well f:it4 4 %0\ \ effective propagator

|II{J‘T|£I}!‘IH1"{|"J] I:br{]

Na,.q..q,.9,) =) L . v 2\ h .f:l]—A”[q'h]]L (3.26)

where @{O(7)] is the® &m-
(o] i &

|
glown) —L-'J.f-'{f] PlE(1)) e& r].df U{: ””J (5.27)

AUYINYNINYINT

The charactensts functional ¢[(J[r]]‘here is the yerage of all t E:ﬂf'e.cts of the
randamﬁrw q Mﬂ iﬂj ‘ﬂ “ % %l&’ﬂﬁeﬂﬁ&}amr of the
problem By averaging the random external force F(s) first. This form is more
convenient than calculating by average (5.25) directly because all of the moment mean

value, mean square value or correlation functional of /(r), etc., can be determined

directly from the characteristic functional ¢[Q(1)]. viz.,
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Sslon)
SO Lis

5° ¢[um]
SOs N '-’}

(F())=~i

(F(F(s)) = —i (5.28)

(5.29)

The characteristic functio al correspundmg with P[F (1)] caribe written in the form

ﬂuﬁrqmﬁmzml s-‘.i’l( ’j (5.30)
ARIANNTUNRIINGNE Y

By using §q.(5.28) one can get the results

(rin) =0,
(0 F(s)) = Wt —s) . (5.31)



This result is very familiar. The first equation shows that the average value of the
random force vanishes and the other show that W(s - s) in Eq.(5.30) is the correlation

function of the force.

The Propagator J . /
sigal ﬂ e e particle which has been

- tder the Brownian motion

"EV.AH: the quantum mechanical
iy

model. To do that w€ Tirgfin: /1 (5 30)back JnteNEq5.26). the propagator J
reads W N

-\ \‘I

Mg, .q' 4.4 \ I] - A,}[q’[:}}]
' -.\'}!.’_J!.r'l} (5.32)
v .~' J .

Eq.(5.32) is very sim giRaRypart that appears in the
exponent of Eq.(5 23} 4 Regardless 0 difference we s that the real part of Eq.

”’2“““‘“ﬁliiﬁiwjaﬁﬂ
(5.23) and W1 :n our discussion,
he g (t—s) must give the correlation @f forces in thesclassical regimey JNow we want

e RATHNI HUBALIHAR Bl i

between the stochastic forces acting on the classical Brownian particle. To do that we

investigate the behavior of ha (1 —s) for high temperature, say k7' = hw,. From the

Eq.(5.21), viz.,

e he,
ha (1 "]_ﬁz‘zmm, cmhzﬂ_cﬂsm,h s), (5.33)



and the limit of high temperature Eq.(5.33) becomes

ha gt —s) = Tz—cusm (r—s)+0(n°) (5.34)

Ffu;

to neglect the higher order term on’ ). the result is the classical correlation of forces

(535)
given by the classical theoryg F o Biobvnin: wh ch has been discussed in the
previous chapter  BefOre ks el fiEs O sider a continuum of
oscillators. Assuming th Wlcv) . then

=+ SBosalr—s) . (5.36)

Now, we come to the important_step.i hich condition is required to make

T
the quantum mechanigalmiodel reproduce the classic plof the Browning motion.

R

If we choose the Fuill i

'! i

quimiiigs o
e SRR T SR IR B e

(5.36) bedb

kT
he p(t—5) = 21 Tda: cosw (1 - s) (5.38)
i

Now we shall define the function A7) as
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I.' ]
Alr)= ;Tdmcoﬁmr. (339)

i

If O is large, say © — x, one can see (from Eq.(5.38)) that

Lls=

Alr) — dlr). (5.40)

By the help of the function Alz ), B

? ' H , rttlen in the form

—ﬂ-@ qu ‘I'I ]
One can see from Eq.(5 is large, say 2 — =,
Eq.(541) turns to Eq.(3 nechanical model which
is introduced in the previg W) shall recover Eq (5 35)
In other words, we shall re ik ’ nsie & the time much longer than

the typical time Q™' Th€ ph gl i frequency behavior of the

| ES LY
condition (5.37) which is ¥inp fiinisdedss iis fact is in harmony with the
P r ;'
classical theory of Brownian ‘mofil#ESines E ) 1% valid only when we consider
times longer than the typical relasé * 2rvoir.
So far, we havede $ite number of harmonic
oscillators. However, thd environment esellator can only{be considered as a proper

heat bath causing dissipatign.if the spectrum the environment oscillator is quasi-

aniassiofi Hﬁ?"%‘fﬂ%ﬁfﬂ 3 1 i e
AR Mﬂﬁ?ﬁlw}@ NYIQY o

Then Eq.(5.21) and (5.22) can be written as

aplt—s)= T— I{m}coth%?cosm[t = (5.43)
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r.x,l'.t—.*.']=—I€-@-Hm]5inmj[r-.ﬂ . (5.44)

]

Because the distribution of oscillators is already fixed by the condition (5.37), by using
this condition in Eq (5 43) and (5 44) «

v » wlt -5 . (5.49)

and

s/ — ) (546)

So, for the large 2 oped

sulh. (5.47)

=%

”’d{ S

_— ﬁamm namw Y119
J[q.mﬂmmwmw Y18 Y

].drj'd-. [qtn - q'{f]]dﬁ“ [q{ 5)+q'(s)] }

x exp -—Tdm-—mth m]dfj‘ds [g(1) —g(0)] cosalt—s) [q(s) - g s)]

(5.48)
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n
Y=3507 (5.53)
and the frequency shift Aw as
4y Q
Kot 2% (5.54)
T

M
< exp - —{ f

/ ) - i) |
_[.-*f- - / 'I N ) Icoslr —5) [¢ls) = g'(3)]

(5.55)
where we have introduced ¥ a

(5.56)
In other words A, .F AC al ITly) renormalized by the

subtraction of the harmamg, term with ﬁ-equency From now on we shall call it the

"“"“*"‘“'“""“Fiuﬂ’mtlﬂ’a‘%ltl‘"ﬂ’i
QW’]MH‘S‘N‘WV YIaY

So Eq,(Sjﬁ} can be written in the form

A, = Td{im -l:(rr)] : (5.58)
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The Fokker-Planck Equation

An expression for the propagator of the reduced density matrix of a particle
interacting with a heat bath of harmonic oscillators has been derived in Eq.(5.55). We
also showed that in classical limit, the real exponential of Eq.(5.55) reduces to the
characteristic functional of the stochastic force acting on the Brownian particle. At the

same time we gave a definite form for thg additional imaginary part of the integrand,

i.e the term involving gq. etc.. ingEg: 55 ¢ shall discuss this part of the
integrand and try to answer whefhes.thi Crflee®cpse. In other words we want

to know: is that term mmp DIE UM ="'_ e cfassie "‘-1;5;_;_1.!‘ n motion of a particle? In

/ e
/ o

Brownian particle we miust wffitg Wikt pace Tepresentation. That is

order to answer this questiog ~ equation of motion for the

density matrix in the classic 11 to the one of a classical
the only way we can cog Wphase-space distribution
in classical physics The y Mation from the Hilbert to

the phase-space is by using tj o function.

J = ==ty "
We shall start by writing E4EE53) wR i > Q2 >> haw,, £ being the cutoff

i |;I':"
Haaiiq0.q5) =1 i’ | |
L

]
- MY, ![q{f}q'(r] @ 9g'10) + g0 - q'(0)gle)] |

ﬂugjxp% EL[q( wy ﬂi (5.59)
JMNIUNAIINY L, .

kT >> haw, (high temperature) and still keep it quantal form. However, this is the way
to obtain an equation of motion for the reduced density matrix in the classical limit.
Later we shall take the appropriate measures in order to be consistent with this
approximation. We shall use Eq.(5.59) rather than (5.55) only to simplify our future
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expressions.

What we shall do now is to follow Feynman's procedure''"*! when he derives
the S  Gdinger equation from the functional integration formalism. The procedure
can begin by supposing that we have the reduced density matrix p{g, ,q;.r} at a time /

and wish to find its value ﬁ{qm. oo dibERAL 7+ & where £ = 0. By Eq.(5.12) we

have
PO B o MR T e A A N OOV (5.60)

The propagator J(g,., 74 wiitlen in a very simple form
when ¢ >0 To do® fOr small time intervals any
regular path can be ap “Winctional integration over
paths in short time int of the integrand times a

normalization constant. Thg

N, ..q.. anf,}*“exp

'.hfl] J'dt[ Mg® -1’ !-?J)

J (/) - q(0)q(0]- }

qlt —q’{r] bib (561)

All the mtegralﬂ uﬂtg' nﬂ m:jrr“dﬂx:] sflﬁ We know that
PIANIATRAUNAINGIAY <o

Using (5.62) in the expression for J(q,,g.q:_;:q, .q,‘], Eq.(5.60) becomes (see appendix
0



[ iMO] ig [ u,] MO
.lr e [ PRl +
Ala.g.1+¢)= _‘-dﬂd{} exp\l eh —n IS 2eh

is u,] iMy u,]( ;M;.-[ Q](
Saoy g T i '}1 ! L. &
a I'[" 2 N T

iMy ( r:n,} er( u,]( 2MykTe 2
M rer et b - . 1RRESE S ' A0 J‘ P, e Pl
= e (i Uiy I o

ROV / .
. ﬁ{q*{j,.q* B SO0 . (5.63)

where (), =¢., —-¢,. ' Expanding the Eq.

{5.63) one concludes th

a) The zero order aiion constant

(5.64)
b) The first order ter#f ingees us4 ired equation of motion for reduced
density matrix p in the semiclass
p 'v-: k ) 22
= o (a4
Aq) 2My kT
""} . [q—q] P (5.65)

ﬂuﬂ‘ﬂﬂwﬁwﬂwnﬁ

Once a we wish to em@zas:zc that Eq (5,65) is not the most general

equanmﬁ f!] ﬂqﬂ ﬂWﬂwq t} gj:{] a nterested in

gsomething more general we would not ha owed to wnte Eq.(5.59)

instead of Eq.(5.55) and the last term of Eq.(5.65) would involve a time integration (it
would depend on the past history of the system).
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Now we want to compare the master equation (5.65) to the equation for the
classical distribution in phase space. To do this we need now is the Wigner
distribution or the Wigner transform of 5 which defined by

J “{r——,x+*’§} (5.66)

In spite of presenting a purél™aeanial degcrip 1 system the Wigner distribution

\\\
R s

So if we take the Wignguffansf® g /m \\\ Il get (see appendic iii)

becomes very importa ni-classical region.  This is

because Wigner's the phase space of the system.

% il

: (5.67)
\ { p
where D =2MykT = n kT . vhig _..u.ﬁ ell-kown Fokker-Planck equation
2
describing the time development r—‘- gt fsform of the reduced density matrix
of the system. This isa puse intam me ation We know that w(x, p,1)

tends to the classical[p :'* we conclude that Eq.

i

(5.67) describe the tintg] dey Spac@distribution of a classical

Brownian particle whe : : — (). We also reahze that the t

side of (5.67) endent term in the

imaginary pma mm‘Mﬂ mﬂ jl:Sle‘lSlblhl}f of the

appearance of a force of the form in the c matmn of a ng particle.
ijabY )

What »ﬂhﬂq AR I 55) for the

propagat!r J is in total accordance with the equation believed to describe the classical

rd term on the right-hand

motion of a Browning particle. It also means that the choice made for p,(w)c (@) in
(5.37) 1s a very suitable one, allowing us to describe ./ solely in term of the

phenomenological damping constantr .
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