CHAPTER IV

FEYNMAN- VERNON THEORY

There are problems im \- Ahilfeyeral non-relativistic quantum

systems are coupled togetHEFSSIL not geversesystéffi_is cqually important. One
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separates a problem into 1’/}; int re ng *s‘:-‘ and an environment of the

interesting system or a § ystem. A useful theory
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one uses to solve such gfeb = Feyiman: Vernomatheory™  The theory is

formulated by using Feyg “« istic quantum mechanics
where the behavior of the | iculdted in terms of its own
variables only, and the & be included in a general

class of functional, influen
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To make the discussion clear, supposing that the

InfMluence Function ;';';

e is a complete system

composed of a general quzﬁim system (non-rglativistic) whose coordinate is specified
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mgether thmugh%me interaction potgatial, which i ISy ir in general, a ﬁm&)on of g, x and

o QRARINTEINNA PHTED =

Hamiltonfan H- Holg)- Hi{x)- F(g.x.1) of the whole system, w He 15 &
Hamiltonian of the system of coordinate ¢ and /, for the heat bath, and forming the

wave equation as follows:

.
{Hﬂ(q] + H(x)+V(qg,x, f}} ylg,x.1)= fﬁ% wlq,x.1), (4.1)
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and then solving this equation for y{¢,x.7). If one knows the wave function y, then one
can know everything. But it is extremely difficult to solve this equation in general.
Moreover, it is not easy to eliminate the variable x and to equivalently include its
effects when describing everything directly in terms of ¢ alone. So we use Feyman's

formalism introduced in the previous chapter to solve this problem. Instead of a

Hamiltonian, we use the Lagrangias

(4.2)
where 1,(§.q.1) and . L Tl qurg e [Wesinteresting system and of the
heat bath respectively. 1

(4.3)

Then the propagator K{¢.. Y I system, when the interesting

fr"’l+
system goes from ¢, at 1 =3 10 =

(B2 A

‘the environment goes from x_ at

I=stoxgatr=35,ig
L

y'-' 7 | .':' ]

K(qs.xg:q..%,) S PPq(TE ; E—ji'{q.x,:)d:]- (4.4)
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I™0, the systemglq and x can be deswbed by the sets of wave ﬁmctmns ¢.(q) and
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to state (g, ) at final time S , and the heat bath x goes from state 7, (x,) at time s to

state y (xg) at time &, the amplitude for this case is

K W= qusdrﬁdQsdr:'ﬁ;(Qh)z; (x.*-'}K(QS'x.\"S:ql.-r*xsix)ﬂm(q:)xtx:) . {45)
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I""Q.sd‘? dx e dqdx dx; ¢, (qs) 1 1 (5545 2 1 (x5)
« K (g, x40, X )K(Gs . X5:4,.%,)0, () 2, (x,) 00 (g2 2. (X)) (4.6)

jdf_.hcf(,-"dx ol .:‘ 't

or in the form

P

af

: ,___-._q._:_. i }ZJ {1.¥}¢11|:{.f;']zf {I:]‘

ir Ir el (q.x.0) -1 }]1]?
« , ¥ g.x0) =g x't

ol S, o] |
-~ ¢m“.l’1 ] [ 7.- 4 {4?}

We see that in this equaty \hefiy bath can be eliminated by

integration as follows

& 1
jx,{x Y (x% ]exp E;:'“," : -l df[l'{q.rJ]—I'{q',x',JJ]J}

(48)
Y |

This integral is depend on pa a fiinctional of paths g(r) and

g'(t) and we represent 1t¢:- q{f} g (1} 8. after eliminating all variables of the

s v, e b d mm UYL SN

We then Wﬂ[Ean forPrpui

qmmn‘imummmaﬂ

e é:wsmwg-)exp{;[mq} - Au(q'}]}F[qﬂq']
(9090 (02 DagDq'dy dg’dg s dqs . 4.9)

F[q{f I, q"(e‘}] can be written in terms of the propagator as follows
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.f DgDq' EXP;J;ll"a{fﬂ - Aplq) - j difqlr) - q‘(r)]l'lr}}
= Klgs.5:9,.9)K" (g% S:4:.9) (4.14)

which has two path integrals. One is

K q:‘S;q“r‘-} . N s, v. ; " fq{j)r(f)l {4 15]

(s34 S — |
and the other is
I .l'{r‘_ll (4.16)

Each integral is over pat shall call the expression

(4.14) the double path inte y the forriliEg. (4. s so a double path integral).

But now we suppose the potel b¥ its probability distribution P;

[1(1)]D¥(r). Then the probability € stem ¢ going from ¢,(q,) to

¢, (q). given by E -f3 13} could be calculated for e .;':, Then we have to

average over all 1) - Eal

LA

P [ Frfu glﬂﬂ'qadq,dw " (g )b, (45 (a5.494.9,.92) 00 (a,)0n(a))

MNYNINYINT e
Q‘W’fﬁfﬁﬂ'ﬁ‘fﬂ [ TIYETR

s i Jesol 1 40t~ )~ [ Tot) -0 O]t 0)

xDg(1)Dg" (1) DV (1) . (4.18)

In this form we can do the integral over }{s) first. That is
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Flatn.g'] = Irhsdrfsc&,ctr: 27 () (XK, (xg.x )KG (x4, x7)
B NEAT M AR (4.10)

where the subscript ¢ in K mean that the propagator K contains the effect of a potential
1(q.x1) acting on x during the time interval s </ <.§  In the expression qu{f].q'{f}]

as shown in Eq.(4.10), /¢(7).q'(4 alwhose form is dependent upon the
a9} HW/ e
physical system x, the initial and"indl States of S flde Re coupling between ¢ and x If

isnoi ion belWESHTPERES: theh /- AGESHOFEBNtain vari &
there is no interaction betwCER I aadE = variable ¢ and ¢'. and

I is reduced to the probabilitzs : .t.» 15 st sstate 7, (x,) to 7, (xc).
For system g il i ¢ tentia™i(1) rather than system x.

its action is /

H.p W\

1‘4— P .’_'
-2

G

The transition amplitude of state ,,-Hj“.«— 1t g ¢, (¢ ) attime s is

\
\
| (411)
N

Kom .[dif_u.-l = 1 JJ'#.JILL (4.12)

¥
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4 mmwumm 8

[exp h{"iu{ff} Ay (q') - Idf[cﬁf} q’hi}lir}hm{ff Yalgl).  (413)

This expression involves the path integral
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Ha()-a'()]= | ‘-’-"‘P{ o) -40)] "(f}d'}ﬂ'- [FO)Pr() (4.19)

which is called the characteristic function, !
To summarize, the behavior of the interesting system in any environment can
be discussed in terms of a double path Efalflike Eq.(4.9), where /' is a property of

W

the environment. / containg_al ects 37 o nyironment which influence the

h“emsﬁﬂg 5}’5135“- We can :'.n:.-..u-..._.:. “ 1) @ lh:e term _mﬂmal force”
‘ e Bfedis of the surrounding which

which when used in classi
influences the system a@ e can only analyze the
motion of an interestingg®y {fonment by coordinate ¢
provided that we know & # prodiced (\{h&, endiconment. The equation of
motion of ¢ alone in classi Cjianics, Nawtlin'g ¢ \- of motion mg = f(1), is
the rough analogue of E€.(40). Mhereas & \ % w-'- 5nds to the calculation of

the force fir) produced by fhe i§€at by if A heat baths which produce the
' - ‘
same force f{r) on g are eq ~-v’;":fé¢: E b e analogue is only rough; say, /-

contains the entire effect of therhisar=bath’
o et \-_'-

o the change in behavior of the

en‘-"‘irﬂﬂmﬂﬂt r'ESUItin - “-l-'""—"‘"_"""—""'_T::‘f," 1 e e : CIH,SSical fﬂrﬂe_ﬂ-“}. !.

would correspond V 3 ’ function of time, but

H | Jgrit

what it would be for € il possible motic

of the obijgct. The force of a given

heat bath depends,in generilan the motion ofgbe motion of the interesting system, of

e e b V3 1 o e e e o

interest ¢ ¢ -

RN INANINEIAY
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The General Properties of the Influence Functional

There are several properties of the influence functional which are of interest
and very useful in practice. These properties can be derived from the definition of
influence functional,

Flg.q) = ) v di;, 5 0K (xtx)) 7, (x,) 27 (x),

(4.20)
i) Influence functional h
(4.21)
This can be seen directly {
i) Some physical situations Gre WeEeriain t of interest, but we know their

probability to occur. Supposiag Sk ation which is not of interest

]

and the correspongilie nfluence finctional = F ‘ bability ., then the

effective influence fifelo

vy

= ApF = (F) (4.22)

AUtANININEINS

If the final stalg! of heat, for example. is not of intgrest and we dogpt measure on

o RS NS Y] BN

mvoiwng the x variables, the sum over the influence functional for each possible

final state leads to the average influence functional of the type

Fyp= 2w, = (F)
I
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iii) If the surroundings contain several sub-systems which do not interact with each
other, but they all act on the interesting system, then the total influence functional is
equal to the product of the influence functional of those sub-systems. Then we can

write

(4.23)

where k represents the an be seen directly from Eq

(4.20).

iv) For the problem in On system is arbitrary. these

states are all summed o¥f

’ AVN ; N I 1 > s then the influence
‘ "~.
Qu WU\ for 1 >s  We can analyze
ke "’I \ |
. \ %

functional does not depedd

this property as follows K ,i(.'c ek ) i8

exp[%j{dh’.] . (4.24)
We set gl/) = q’if}' t‘*... I dd side of (4.20) is

[ {
e scbeta e, 2 s L (e K e Sy, 9) K o S 9) () v )

- AUNINYNINYING

Because all of theqluawz functions y , [is:' form the cumpiete onhonur{l’al set, the sum

o QA IR TR IR TR0 8 e

expressmlg becomes:

Vebe et et 8 (xg - xt) K, (x6.8:x, ) K] (x5, 82x008) 27 (%) 7, (x,).

After integration with respect to the variable x{, one can get
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Jadegae e, K, (xg.80x,,8)K ) (xg, Sixt08) 27 (x2) 2, ().

By using the property of the propagator K the integration with respect to x; equals
the Dirac delta function &(x, —x’) so that this expression can be written in the

form:

AT

We integrate this las nd using the normalized

condition ) 7 "(x2) 7

which is independent of «

Influence Functiona agd S
Y )
For an environisep W'pazticles, one can not know

time. One has to use

statistical mechH ﬁnmthi(w ﬁﬂm mechanics all
information of uﬁ E]e’i it@ approximated to

point out expln‘.:ltlj-,r the significance of ifluence functigpal to study quantum statistical

o) WA NGO FH B R o

system {ﬂle interesting system ¢ plus the heat bath x) in the coordinates

detail information such™d pasitions of each particle at amy

representation as follows -

p (gxq.x)= (vlg.x)vw (q'.x)) (4.26)



where (g, x) is the wave function of the complete system for one of the systems, an
ensemble of systems each representing one of the possible states of the ¢, x system.
The density matrix o (q.r;q’,r'] contains more information of the heat bath, on the
other hand we do not measure any properties of the environment, so we eliminate its

coordinates by integration. Then o [ ek '] reduces to density matrix p [q,q‘}

which contains information of the interesting/Sy€jem.in terms of its coordinates only,

by the relation

pla,.a;) =

=7 : . F ‘ . | “ x"”) . ':4_21}
Atthetime/=5%
pelgs.qi.s) = MO @I W S vl gt xi. ) (428)

.l" :"",'. ! "
We know from chapter 111 thet th 7 . ¥g,8) can be written in terms

of the wave function ‘. | , '
wlgs.xe.8) = PRIT: Wkl

dF

e "“’"ﬁ 'U’ET“II‘VI’E]?’ISW BN
ﬁ‘maaﬁ‘&mﬁwﬁ‘fw‘%

Then the term (p‘{qb,r-; )yt lgh,xk, H]) is equal to
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(I dq ey’ dx dx'DgDq'DxDx’ “P{%[ Ay (q) - A, {‘f’)] }

x exp{%[rizfx} —Ap(x) + A4,(q.x) - 4, tfftx'}]}w{q,.r;.x)ur'(q;.r;.s), >

- Jag ety oo £ 4,600 o]}

K (%553 784 Wl j'

L]

and
(w(g,.x..5

hence,

Lol X g5 X *. y: _'! A, [q‘}] }

q x-*fix:J,{q,,x‘;q:.x_:]. (4.28)

j x K,

xaud,

gt

o G A PRI g e v

each other and their wave f‘unctmns can be spl:t into wave ﬁ.mctmn of individual

:::“W"mmmm phanEra s

Therefore, one writes
wlg,.x,.5) = @lg,)x(x,) (4.29)

and we get



55

p. = (0" @)x " (xDe(g,) x(x)
= (0" (@)t 2" ()2 (x,)
= pl4,.4}) pelx,.x)) . (4.30)

Inserting Eq.(4.30) into Eq.(4.28) , one obtains

Py f‘!p-\};:q;,.r;. } =

Y. a) P, (x,.x0) . (431)
So the expression of o,

Pl eyt (432)

where

F; ""W !
f ; “;{-::-‘E;i P (- »{ff]“-’iu“f'}]}

(RN 2

Sy g5, . )—J-dn
\ (4.33)
"".'

If we write

o Jﬁww ﬂﬁ%’ﬂﬁ"’ [ R
ammngmumw LN

(‘f\«‘f;n‘h q;) XDy’ EX[J [Ar:(‘:f) A,,{t‘j"}] f Fg.q") . (4.35)

then

We see that ./ looks like the propagator K. Then we can say that ./ is the propagator
of the density matrix, if there is a transition of density matrix p, (¢, .q!) at initial time
1 = 5 to the density matrix p,(qq.q%) at the final time r =8, Moreover, ./ contains

the effect of the heat bath x which influences the interesting system ¢ = We see that we
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include all effect of the heat bath in a functional /(¢,¢'), an influence functional,
which we have discussed in the previous section.

Again we can describe the behaviors of the interesting system ¢in terms of its
variables only as Eq.(4.33) or (4.35).
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