CHAPTER 111

FEYNMAN PATH INTEGRALS

The concept of the aiplifeelance e probability amplitude plays an
important role in quantum me::h #nown that quantum mechanics deals
with probabilities. by ni h ':3 ole picture in general,
because the law of &Mk R B! Jthe classical probability
theory of Laplace. In ‘ t we cpt -‘ robability amplitude of an

event where its absnlute‘ uare is equal to.yn: probability of that event., and the
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supposmg, we have a pamcle of mass m which moves in one-dimensional space-time.
At time ¢ =1, its coordinate is at x =x,, and in the later time / =1, it arrives at
x=x, In general, the particle may be acted on by a potential I'(x,7) which is the
function of coordinate and time. It is well known that all information about the

dynamical properties of the particle is contained in the classical action Al x(1)] which is



the functional of the path x(1), and can be defined by the following equation' ""'*!
]
Alx(n)] = _rf,(.i-, x, 1)t (3.1
ta

where

(3.2)

In classical me point from the initial point

along the path which g ‘minimum, know as the
principle of least action. g pattfie@lled theglassical path. By use of the

calculus of variation to va offon i ¢ \ slymakes 54 = 0_ this leads to

(33)
X

The solution of this eq ation 15 Kn 8ical Path x.(1) of the moving
W ¥ |

particle. By substituting tPe classical path mtu the Eq.(3 1), the result is the action
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path integral. Athis point we have scussed the motion of the particle in the region
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mechanics, it has many paths between two points which the particle can use in order to
travel from one point to another point. Each of those paths has some probability
amplitude associated with it. The probability amplitude of any path is a complex
number where its absolute square is probability of that path; in addition, it has the
assumption that the probability amplitude of each path has the same magnitude, but



different in phase which is equal to the action of that path in the unit of /. If we
represent the probability amplitude of the path x{r) by ¢[x(/)], then

[ x(1)] = const &' A (3.4)

move between these positigs
(3.5)
which we shall call a pith

(3'5) shows the superposition
\

of amplitude of all possibl

t,) and (x,.z,), then

u'

If we have a point (x_.1, 15 ] d points (x

we have

(3.6)
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property of agamr K is formally analn;:,ous to the Chapman-K&lmogolov
P P J'y p

equa ﬁgﬂﬂn Wﬂ&tﬁcﬂthat K here
stands for the pro lll'ij" amplitude which 1s a complex number. For non-local actions

which represent the memory effects, the above equation does not hold, but the path
integral in Eq.(3.5) is still a meaningful concept and can be used to discuss the

quantum mechanics of these actions.

The wave function w(x,f) has the meaning of the total amplitude for a particle
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to arrive at (x./) in space-time from the part in some situation, and its absolute square
is the probability of finding the particle at the point (x.7) in space-time. We can see
that K( x,,,f_.,;.rd.f,)= w(x,.1,) is actually a wave function, if we lose all knowledge

of the particle at (.ra,:,). The propagator K{x,,,:,,,xm a} gives more information

particle came Emm[:cu.f,], > can | Halerl) _relation between (x,./,) and

w(x,.1,) as following

WX fort, >1, (3.7)

This relation implies tha

For an infinitesimal time integ#% % > ;‘_ an§how that the wave function

in Eq.(3.7) satisfies Schrodingerg
(3.9)

where H is the Hamiltonifnagperator, and K gust also satisfy a Schrodinger equation
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~K(b.
fr (B.a), H,,Kfﬁcr}“ dr>le (3.10)
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where H,, is a Hamiltonian operator operating on x, only. The function K defined by

a path integral in Eq.(3.5) is defined for #, > ,. The function is not defined for 1, <7,

. but with the help of following condition,

Klb.a)=0 for 1, <1, (3.11)
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it is evident that Eq. (3.10) is also satisfied for 7, <1, , but not for at the point 1, =1,
because K(h,a) is discontinuous at 1, = r,. From the result of Eq.(3.8), the derivative
of K(h,a) with respect to 1, gives a delta function in the time multiplied by
E(x,, —.ra). Hence K(b,a) satisfies

cK(b,a)_

i
c,

=X, )0(t, - (3.12)

It is clear that the quant wetifis a ki mction for the Schridinger

equation which *&i: Y Sghng \34 ion has the propery
d [ . £/

_E{‘[IF yale) =0, the cong®
4

relation in equation (38

(3.14)

where t, > 1, >1_.

When cﬂ u Ej g nﬂmﬁﬂ Hﬂdﬂaince the propagator

can be expand to the following expangion

‘lﬁﬂﬂ\iﬂ‘iﬁumﬂﬂﬂmﬂﬂ

K(:h'ﬂ‘htxﬂ!‘:r} ze"?[— 'F‘.rl“h f ]]wn{x )w.u{xb:l {3|SJ

say, in terms of a complete set of the energy eigenfunction y, (x) of the Hamiltonian

operator. This expansion is known as Feynman - Kac expansion theorem !



How to Calculate K

The previous section shows that the important quantity is the propagator K.
In this section we shall introduce some techniques to calculate the propagatorXk,
particularly, for the case of Lagrangian having the following form

(3.16)

introduced by Fevnman as

into N subintervals which

I
{(3.17)
and the corresponding discrg
\ (3.18)
This can say that at eadf e al p@int x . and then construct a

¥ dF

path by connecting all thedamnts so selected w1th straight lines. So the action A can be
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and the propagator K{b.a) can be rewritten as

‘C—-J"t,:
Klb.a)= tim [..J evmax l'[{,t (3.20)
s 1 = ‘.

."L —rr
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2 [ im 2]
K(b.a) = (znmf) exH Sp7 (% %) | (:20)

which is the propagator of a free particle.

For the of the variables appear up to the second
degree in an exponent, it has sc ghniques which help to compute the
sum over all paths in certai discussion more definite, consider

L= a5 gl A A N : (3.27)

and the action

=T [a{r}fr" ,

fu

We wish to determine

Y (3.29)

/] [
the integrals which go m&[x X ) to ( ,,'j Let x_(r) be the classical path

roven e BRI I TIABIN UG ovined fom o

Hamiltonian's pﬂnmple We have bgen using A_ ands for A[: the action of

cusicop RGP FD MR Mﬂ’ﬂﬂ%&ﬂﬁ B ot 5.0

and a deiation 7(¢) from x(1) as

xe) = x (1) +nle) (3.30)
with the condition

nlt,) =0 =nls,) (3.31)
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Inserting Eq.(3.30) in Eq.(3.28), we get

A= fh[m':f + b, x, +ex] + e +ex,+ fldi - J:"'[mj" +hiim +cn’|dr
o i

+ I:” [(20 -+ bx.d)ri + (b, + 2ex, + )t (.32)

Considering the last integf ‘ LB 32), we integrate 77} in
this integral by parts ganishes. Notice that the first
integral in Eq.(3.32) is #f€ s fallows

(3 34)

} ly constant x_.(1] ,so

N o

Since at the time 8

Dx(t) = Dnlr). He 'V

{&a Fli,, dj"'" (3.35)

ﬂUEl’JVIEWﬁWEI’]ﬂ'i
Wl a\?ﬁm‘;wyﬂw’]q qﬂlﬂn {ﬁ B (3.36)

Eq.(3.35) is very powerful to calculate K which the form of the Lagrangian is Eq
(2.27) . This is because it is not difficult to calculate the term classical action A, and

the prefactor F(r,, .t,) can be evaluated as follows



1Y @4 Y
Hi,.t,) = (“ﬁ) [-&h&aJ , (3.37)

Actually, the propagator which is expressed in the form

‘ 1 f!; . - (3.38)
J'f

is called the Van Vlec-Pay fﬂ"‘"""" Ye ni or techniques to evaluate the

prefactor, for instance. _aPande T (55011 waf-Fourier series we can also

evaluate the terms prefag
ii ) Harmonic

A Lagrangian of a I

with the bound v he
ary S

the equation of motiorTfor

i

Audangyisheans

A solution of s equation, the clasi;cal path x_ ':r"l which is Sub}ect to the boundary

~R/RI ﬂ“@‘ﬁﬁmﬂmﬂT 188

{ x, sinalr, =r}+:,,sma){r- J] (3.41)

Inserting x_(1) in Eq.(3.41) to Eq.(3.39), and taking the time integral from /, to ¢, we

can find A, as

Liens
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mie

A = Tsinal [(x +r,,)cosm? 2X x,,] (3.42)

-

Using Eq.(3.37) we find that

i3
. J . (3.43)

Thus, inserting Eq.(3.42) Mt o BgIRI_the propagator Alh.a) of a

Kib.a) =| 5— et ' Gaw
iii) Forced harmonic
Supposing that th me it E%sUb-section i1)) is driven by an
external force fir). The Lt ar M
(3.45)

The equation of motiofs

ﬂummnmmn'ﬁ ity
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sinw(t, ~1)  sine(r—1,)
T B ¥ e
sinmi’ stnawl

mmsmm? Idr[@{v Nsine(t, - s)sine(r-1,)

+0O(r - 5)sin m(f,, f)sina(s—1,)]£(s) (3.47)

xi(f)=x,
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where ©(s) is the Heaviside step function which is unity for 1 >0 and zero for

otherwise. The classical action for x_(/) is

ma
2sinewl’

e =

[I{rj +x; ) cosal’ - 2x,x,

inwls-1, }J. (3.48)
The prefactor .’-'{I,,,

(3.49)

The propagator is

gt
=2 X

K{h,u]:[_'i o

Idtf{f]sm N =1, ) ——= dr }sma:{r,,—r)
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ammnmumfmmaa
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Statistical Mechanics

Now it is appropriate to point out explicitly the significance of the Feynman
path integral in a study of quantum statistical mechanics.”M*! The quantity important
isydensity matrix, the average of states which

in solving statistical mechanical problems
L N

\/ 1

We start this sectie discilssing! bricilisabouiensity matrix as follow = Any
defined by

describes the system over all ensei "

svstem can be described 5%

(3.51)

where |qﬂ> is an eigen t@yorthonormal set, and w, is

defined as follows

(3.52)

pli) at time 1 is el V

W

= *p{mu‘”’ (3.53)

pli) =

i the wﬂ«um %&I V-lﬁ B fohegor, e expecaion

value of () is gl

Qma\anm}um'mmaﬂ .

Because the trace is independent of representation, Tr( pO) can be evaluated

by using any convenient basis. The relation in Eq.(3.54) is an extremely powerful

relation to calculate the expectation value of any operator.
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Density operator has two important properties. Firstly, it is Hermitian, as is
evident from (3.1). Secondly, the density operator satisfies the normalisation condition

1 p) =1 (3.55)

and p follows equation of motion

(3.50)
In statistical meslffiC e e HObRD) T - system is in the state
described by an eigen
(3 57)
where f = o and Z is the § defined by the equation
(3 58)

. Rl
Thus, the density matrixas

AUEINEASINNT o
-ARIRINTUNNINYAY

- fEy
plex) = X0, (g (x)

={p,(x)g;x)) (3.60)
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where ( > represents the average over the ensemble. One can see that this is the

average of states which describe the systems in the ensemble. The trace of the density

matrix is

(3.61)
and the expectation value ot a

(3.62)
In the above

(3.63)
and

(3.64)
and ¢, (x) form a i 7 ,':'sf ty matrix o which is

unnormalized Eq (3. 60} splace t@

¥
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between the form of these two equations are in the argument of the exponential. If the
time 7, —¢, in Eq.(3.15) is replaced by -inf8, the result is the expression for the
density matrix. Finally, we can (not discuss in detail) write the density matrix as the

path integral
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Ang
plx.x) = TD;{::]exp{(-f h) d:r[{mf.?}.f'“’+l'{r}]}. (3.66)

il

This result gives the complete statistical behaviour of a quantum mechanical system as
a path integral without the appearance / so characteristic of quantum mechanics.

Notice that the variable u is not the real time in the usual sense (although it does have

a dimension of time), it is just a egsity matrix. However. we can

consider # as the time for a cgpiditepat . W awRiChhe system can go from initial

—

point (x(0),0) to the final poimiet® 1 G} TiEdensiyamatrix ofx, x’) is a sum of

contribution from each 1 . pasticular motion being the
Y

exponential of the time h for the path in the

equation. We see that i get Eq (3 60)

The partition function

7 = | dvdx 5(x - xWipl LEAE <2

[R—-—

2RI
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.

(3.67)

N — 7141
v X
The formulation : density mia & same ,l as the propagator K,

so techniques to calculate tie density matrix argyalso the same. Now we shall calculate

oy S UHFHE N INETNT
IRABARTALRITRBAND oo

f
A= rdn [{ma".?].i'" +{m!."}m"x"] (3.69)

fr



x_(n) must satisfy the condition 54 = 0, say
"
=- _rdn [ms ~me?’x] =0
"

so that x_(u) satisfies the equation

hence

We find that

= —————||x + X" )coshallf - 2xx’
"’slnhmﬂ_ﬁ ]

mm.wﬂuﬂ'mamwal’lr‘a‘
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So that the density matrix is

)] -
X DA snhang) T ?ﬁsmh mﬁﬁ
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(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

——[(x” +x') coshewh - .?xxl} (3.75)
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Finally , we calculate the partition function as follows

Z=L&dmﬂ
_[ mo ] malcoshwh — 1) }
~\2hx sinhwhf hsinhewhf

after integration we get the

(3.76)

AUt INENINeINg
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