Chapter 1

INTRODUCTION

Introduction

Nowadays, owing to t.heil; architecturally esthetics and
-

economic advantages,-cable suspended structures are being used widely
to meet the mcreﬁsmg demand ?f long span structures. Common examples
are suspended cﬁle roofs,, suspensmn and cable stayed bridges. In
these cable st.mchures, nonhneg.r response prevails even under working
load as a resu‘it of large disp]:_acements, and it is practically
impossible to solve t.he pgrtam}g governing differential equations

for even relatively slmple. ca.ble;_mf.fs.
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Suspensjon structures have the uniqtie characteristics that for

a given loading condition, finite dlsplacement.s occur which make the
deformed geometry “significantly-different from the undeformed one.
Thus, large 'eérrors ‘result-when @ linear analysis is used since there
is interdependence betw_een the internal forces “and the resulting
geometry necessary to maintain equi-librium. This behaviour 1leads to
mathematical difficulties because of nonlinear load-response
characteristics. Iterative methods of analysis are therefore needed to

solve the complicated problem.

Many iterative procedures have been presented for mnonlinear

cable problems. The most frequently used schemes are Newton-Raphson



method and its modified versions which are second order iterative
methods. Four well known techniques are the Underrelaxation l.net.hod'
(1), the average procedure (see e.g. (2)), the Krishna mod.if ied
Newton-Raphson method (3), and the Kar modified Newton-Raphson method
(4). They &e designed to accelerate the rate of convergence of the
solution. However, in some highly nonlinear cases these schemes may
even not converge to a solutiony and an incremental load procedure

must. be applied, demanding more combutation time.
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The stildy herein deals with analyses of geometric nonlinear
: \ %
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and Knudson (13) is used £o model the cables. The main objectives of

the study are: — e

1. te incorbbi‘até the ﬁin“bar elastic catenary element into

the well kno NONSAP PROGRAM (5) in order o increase its capability
of modelling c@le structures with curved ‘éatenax'y elenments;

2.. to présent a new iterative technique which effectively
improves .theé' 'rate’ of convergénce and stability of the numerical
solutions.of highly geometric nonlinear cable problems;

3. to inveét.igat.e and compare ‘the effectiveness of the
proposed iterative technique with some existing schemes in solving
cableA problems. Emphasis is placed on speed of convergence and

stability of the numerical solutions.



Assumpt.ions

The principle assumptions applied in this study are as follows

1. The material is assumed to be 1linear elastic obeying
Hookes’ law

2. The cable is slender and highly flexible. Thus, the
bending stiffness of cable elemen’;."is negligibly small so that the
cable is virtually a tension mémber.

3. The cable undergoes large displacement with a state of

small strain. Il
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Poskitt (6) jpresented the difference between the first order
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and the second order iteraiive methods and showed how to classify

them. He suggést.ed that in small nonl.ilefglff cases the first order

iterative metfi&ﬁs are satisfactory. As thé" degree of nonlinearity

increases, the sééond order iterative methods are more suitable.

Thornton and Brinstile (7) suggested an analytical procedure
f oi' sdlving three-dimensional suspension structures through a set of
nonlinear simultaneous algebralic equations based on a two-node
straight element. Two numerical methods were presented. The f irst.-
method is the method of connectivity that is numerically integrated.
The second method is the incremental load method where the equations

are solved at each incremental load level.

Baron and Venkatesar (8) studied the nonlinear geometric



problems of cable and truss structures based on small deformation and
large displacements. The geometric stiffness matrix of a twc; node
straight element was formulated from the changes in geometry resulting
from the rotations about the local axes. Four schemes for solving the
nonlinear' equations, viz., the secant stiffness matrix, a modified
secant stiffness matrix, the tangent stiffness matrix and the
combination of the secant and the tangent stiffness matrix were
presented. They concluded tha.t:} the use rof the tangent stiffness matrix
leaded to more rapid eonvergence of the solution.

Saafan (2) uses the finite deflection theory to obtain the
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solution of the suspension roof "']usmg two-node straight elements. The
tangent stiffness matrix vas oﬁ',amed as a partial derivative of the

end force vector with reebect f}'d':’each one of the end displacement. A
S 22l
test for the convergence was igtquduced, in addition. The average
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procedure was applied --t;o écceler:af,; the convergence rate because the

solution duri’;tfg"_the iteration oscillated a.;o\md the final nonlinear

solution.

Foster and Beaufiat (9) developed a program for analysing
the totsal 'system’of  cables |with) roof panels'modelled by two-node truss
eleménts and plane-stress triangular elements, respectively. Also,
they commented on the use 6f the accelerating factors to estimate - the
def lec;ted shape and demonstrated that computation ef fort. could be

reduced when the appropriate factors were used.

O’brien and Francis (10,11) solved for the deflection of a

suspension cable under concentrated loads by a process of successive



approximation for geometric compatibility. Cable sag was treated in an

exact manner because of the use of the catenary element.

Peyrot and Goulois (12) developed a procedure for the
determiné,tion of the end forces of a cable element by utilizing the
flexibility iteration of the catenary element. The 1local tangent

stiffness matrix was obt.amed/ ,lzy! introducing successively small
il
changes in the honzontal and vert.w&l projections of the element

chord length and é\f@luqt,ing oorresponding equilibrating forces.

Jayaraman c}’ Khdeon (13) present.ed a method to evaluate the

i

local tangent stif n?ba mat.rud>o£ a catenary element similar to that
of rat. (125, bu’g/ lﬁ an; explimt. form. Thus, the stiffness matrix

could be readily evz;ﬂuat.ed at ed{éh deformation state, leading to more
e j’,
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efficient scheme. 7 — =
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