CHAPTER III
MONTE CARLO METHOD

The Monte Carlo method was developed by von Newmann, Ulam, and Metropolis

at the end of Second World War to study the diffusion of neutrons in fissionable material.
The name “Monte Carlo”, chosen bece 156 xtensive use of random numbers in the
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Basis Principles of Monte Carle Method

The basis of Monte Carlo computer simulation for fluids is a method first
prdposed by Metropolis. The principle Monte Carlo calculations under consideration are
based on pair potential functions, implementing the assumption that only two body forces

are to be considered, i.e. linear additiv ven for the total configurational energy E(v)

(3.1)
where v is a configuration 1 the system
Average propertics determine under canonical ensemble
conditions with volume V at a ture T. The average of any quantity of
interest <F> canb
T ‘ D(—E(W) kT
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exp(=E(v)/ kT)dv
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where denotes a volume’ element in three dimensional phase. If the starting
conﬁgua W}aﬁm “Mq%mﬂ};}a&mm over many
orders of ,nagmtude would be needed for the intergrand exp(-E(v)/kT), show in eq.(3.2).
This is the main principle of the general Monte Carlo method, which is however, not

practicable.



Conditions of Calculations

3.1 Metropolis Monte Carlo Method

The above principle was modified by Metropolis et al. in 1953 (3) based on the

g: idea of importance sampling. In e N configurations are not randomly
% generated by they are chosex \‘ » P(v) and they are evenly weighted
4 with P(v). After taking 2 o number-of.space points M. eq.(3.2), can be
? approximated by the “I \\

)/kT)
f <F> = (3.3)
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The probability P(v) in ’J;;: ate Clo method is given by a Boltzmann
;, factor i f ) :

ﬁ P(v) o ep(—v)/k'lﬂ (3.4)

” Then eq.(3.3) cﬂtuﬂ go a snmple expressm E!,] n i
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where Fi denotes the value of the property F of the system after the ith configurational
change.
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3.2 Defining the cube size

The cubic box is duplicated throughout space to form an infinite lattice. It
contains all investigated particles. This box simply forms a convenient axis system for

measuring the particles. The length of the cubic box L(A), which holds N, particles for m

W,

where D denotes the exp 1/d¢ nsits \\ . ~ in g/cm’® at the temperature and
pressure which the si iong have béen ? i \\

species, can be calculated as

(3.6)

p is the ionic or atomic weight of

species P

3.3 IheA-n oun

The amount @partlc es have'been” estigat@ in the system is limited by the

computer efﬁc:e@;y Theﬁ‘dhlt will be more‘accurate whenever an increasing number of

gl]i‘nwﬂ nSidered as weil as accuracy.
The systems have been fofild wﬁj«aj ﬁ ’L‘]W()irﬁ ﬁ/ g the most suitable
condltlo’ﬂ ‘i

particles are p



25

3.4 The starting configuration

The starting configuration in the Monte Carlo simulation of all particles has often
.been generated randomly. However, the particles should be throughout the cube so that the
system will be equilibrated very fast. Therefore, the shortest distance between particles lyin

can be calculated by

(3.7

If the simulati eration is more often used.

An idea of the comput, ’ 5.t enhance the ability of small systems to
simulate the behavior lof large | ique iders a certain basis region,

R

usually a cube containé a ce 25 "Then imagines that all space is

I 4 .
filled by periodic image of this basic unit. In this way, ofie can consider configurations of

e ennd ey Wmﬂ'ﬁ’“" ee
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The cubic box is replicated throughout space to form an infinite lattice. In the
simulation, as a molecule moves in the original box, its periodic image in each of the
neighbouring boxes moves in exactly the same way. Thus, as a molecule leaves the central
box, one of its‘ images will enter through the opposite face. There are no walls at the

boundary of the central box, and no surface molecules. This box simply forms a
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convenient axis systera for measuring the coordinates of the N molecules. A two-
dimension version of such a periodic system is show in figure 3.1. The duplicate boxes are
labeled A, B, C, etc.. As particle 1 moves through a boundary, its images, 14, 1g, etc.
(where the subscript specifies in which box the image lies) move across their corresponding
boundaries. The number density in the central box (and hence in the entire system) is

conserved. It is not necessary to store, the coordinates of all images in a simulation (an

‘infinite number), just that of the c le :entral box. When a molecule leaves the

ed to the image just entering. It is

sometimes useful to pi n.the two dimensional example) as

being rolled up te fo torus or doughnut, when there is
no need to consider \ ystem nor any image particles.

This correctly represe
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analogy exist for a three-dimgnsional
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Figure 3.1 A two-dimensional periodic.
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3.6 Minimal Image Convention

The heart of Monte Carlo programs involves the calculation of the potential
energy of a particular configuration. To calculate contributions to the potential energy
involving molecule 1, one assume pairwise additivity. The interaction between molecule 1
and every other molecule i in the s1mulat10n box must be included. There are N-1 terms in
this sum. However, in principle th Tte een molecule 1 and images i, , ig, etc.
lying in the surrounding ~ vbe m& well. This is an in finite number of

terms, and of course it i actice. For a short-range potential

energy function, and o sestrict this summation. Consider

molecule 1 to rest at e size and shape as the basic

molecules 2 , 3 and 8.. T mg‘ﬁque ~which; i

QeHEg natural consequence of the periodic

y Metropolis et al (3).

boundary condition, was first usgd/rai fee

(A | - =

3.7 The .spherzcal cut—oﬁ
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In the finimal i image convgnnon the calculatnon of the eg.ptentlal energy due to
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calculation for a system of 1,000 particles. A further approximation significantly improves

this situation. The largest contribution to the potential comes from neighbours close to the

molecule of interest, and for short-range interactions, a spherical cutoff can be applied.

This means setting the pair potential ;) to zero for r; 21, where r, is the cutoff
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distance. The dashed circle in figure 3.2 represents this cutoff, and in this case molecules
2, 3 and 8c contribute to the interaction with 1, since their centers lie inside the cutoff,
whereas molecule 3¢ does not contribute. In a cubic simulation box of side L, the number

of neighbours explicitly considered is reduced by a factor of approximately 41’ /3L%, and

this may be a substantial saving. The introduction of a spherical cut-off could be a

perturbation is very smalil.
The cutoff dista for consistency with the minimal

f . » p . 12

image convention, an easing potential terms, e. g. 1/r

or exponential terms.
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Figure 3.2 The minimum image convention in a two-dimensional system.
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3.8 The long-range interactions

A long-range interaction is defined as one in which the spatial interaction falls off
no faster than r® where d'is the dimensionality of the system. In another meaning,  long-
range interaction is one in which all the particles lying outside the cutoff sphere of a given

dipole-dipole and charge-quadrupole

particle. The charge-charge, char -dipole,
interactions are the examples o 3 i? ]
serious problem for the com puite f ulatio

eraction. Long-range interactions are a
ir range is greater than half the box
length. So far, the Ew. iorifield method (23) have been two

widely used methods . handle the problem of long-range

interaction. The E ectly consistent with periodic

boundary conditions i ning the interaction between a
particle and all its peri | T ! eaction field method introduced without the
assumptioh of the periodi ¥ ol ule peyond the cutoff sphere of radius
| dielectric constanf; therefore, any

charge lying inside the cutoﬁ’ sphg@_‘zm}l pola the continuum and create a reaction field
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The Ewald sum procedure is the oldest one which is perfectly consistent with
periodic&%aq ax@ ﬁmr&}cﬁﬁfq Qew&%aﬂi&nﬂy summing the
interaction’ between a particle and all its periodic images. Due to the periodic conditions,

“the potential energy per particle for a svstem interacting through a central force type

potential is given by
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Y= -ﬁz 2 4(rij+Ln) ; (€R))

n j<i
where the summations is to be taken over all the molecular pairs (i,j) within the simulation

box, and the cell vectors n extend to the infinite lattice.

In this technique the summation in equation (3.8) is actually attempted by thinking

i
rgctzon f eId method
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The re@tlon ield method was mtroduced without the assumption of the
penodloa Wd“a& \&ﬂ:ﬁym ﬁ%ﬂﬂ Wm ﬂnﬂecules seyond the
cut-off sphere of radius R from a center charge q; as forming a continuum with a given
dielectric constant €. Any charge q; lying inside the cut-off sphere will polarize the
continuum and create a reaction field at the center. From electrostatic theory, that reaction

field can be shown to be



31

1-&¢ 9%
Fr=g)==-s == (3.10)
8F aein R
2
where rj is the position vector of the charge qj
Steps of Calculations
Consider a syst a basic cube of side length L at T
Kelvin with infinite cube algorithm consists essentially in
iterating the following st e 3.3. A summary of procedures
which are carried out is t
1.) Determine an initi ' ) ) th . s chosen by which the positions of the N

particles are generated r

2.) The computer the

according to equation (3

3.) The computer ch uﬁ ‘ i he particle which will Be
determined to@vﬁl‘ % iﬂgi;ﬁﬂam succession according to
the following prescription : ’ 2 v
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Figure 3.3 The calculating steps of Monte Carlo Simulations.
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where o is the maximum allowed displacement, which for the sake of this

argument is arbitrary, and &, &, and €, are random numbers between -1 and 1. The
maximal allowed displacement must be chosen with some cares. If it is too large, most of
the moves will be forbidden. If it is too small, the configuration will not change enough. In
either case it will take longer to reach equilibrium. If the particles are moved to a new

position, one at a time, and a sphere after such a move happens to overlap with another

position, and repeat this step.

If the move ¢

other side according t

4.1) If the movq'l ownhxll in energy ( AE < 0 ), then probablhty of state v is

geir than sy %%Jwﬁl%ﬂ R e

configuration is accepted
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.2) If the move is uphill in energy ( AE >0 ), the move which is accepted with a

probability P(v), can be readily expressed as the Boltzman factor of the energy difference.
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P(v) = exp(-AE/kT) (3.12)
where k is the Boltzmann constant and T is the temperature in Kelvin,

To accept a move with a probability of exp(-AE/kT), a random number E, is

generated uniformly between 0, : . The random number is compared with

ve is accepted, the next procedure is

performed by returning :
return to its old positioh.

step 3. :

averaged deviation of@e oca t of particle from the values characteristic for

the bulk. This function for the N particles system in configuration v is obtained with r; as

AUEINBNINEINT
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where N(r) is the average number of particles in the spherical shell of width dr at a radial

(3.13)

distance r from the central particle. p is the number density of the system of the pair of the

particles in the cubic volume V. Based on the radial distribution functions, solvation shells



can be derived from the peaks pronounced over the standard level, and the first solvation

number is obtained by the integration of the function up to the first minimum.

The average number of particles within a sphere of a given radius can be

determined by

(3.14)

where r, is often cho scond minimum in g(r).
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