DISCUSSION AND CONCLUSION
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the propagator (4.5) representing the motion of an electron in this system is obtained

and is expressed in the Feynman path integral representation as
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In the limit of weak v — 0 and dense p — oo scatterers so that pv2 = finite, the average
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propagator reduces to a simple expression (4.8)
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In order to obtain approximate Tiressions for the average propagator we
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for the second-order approximation respectively. Here B;; is given as

B = i—sintSij-[g(Ti-tj)-g(’ti-Gj)-g(Gi-fj)+g(Gi-Gj)]
: ‘

Having obtained the approx1mate ge propagators, the density of states, n(E)
can be calculated by using (5.5). | \i

} terest is given to con51denng the

density of states for the -,4‘cu la imation average propagator.
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exponential part which cannot be performed analytically. It can be calculated
numerically by the Monte Carlo method (appendix ). However, the result obtained by
this numerical integration is not sufficient to obtain a refined result of the density of

states, because the values of the second cumulant can be very large and unphysical.
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nclusion

We did not meet with success while obtaining the result of the numerical
calculation when we went to the second-order cumulant approximation. The technique

of Simpson's rule is one way that can be used for numerical calculation, but it is not

optimal here since it takes m’uﬁ.\ }?]e than the Monte Carlo method.
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series, then we get
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Approximating expression (6.2) by the first cumulant, we get

A = exp[-ﬁi—(S-So)so}. 6.3)

Perturbation theory is applicable if the efféct of the random action, ( S - Sp ), is very

small. Suppose the random action is very srﬁaﬁ compared to 7. Then the expression

(6.1) can be expanded as 4
. I‘I_l . 2
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i - fi
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Approximating expression (6.4} accordi_'_ﬁgf to the first-order perturbation
¢ sk el

approximation, we get

A exp[i(S-So)so] i (6.5)
- ﬁ

Comparing between (6.3) and (6.5), then we can say that the first-order cumulant
approximation'is-similarto:the-firstsorder perturbation@approximation £ We cannot say
they are equivalent, because the random action, ( S - Sg ) in the cumulant expansion
depends on a parameter, &I'_ and we do not know how large this is and cannot prospect
anything from the result of a perturbation theory. Since the result from the first
cumulant approximation can compare very well with experiments, we can say it is
useful. The cumulant expansion for the first-order is accurate since we can get the

observed physical density of states. The second-order cumulant calculation is not
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accurate since we get an unphysical density of states. We need to get all cumulants,
which is not possible. There is no reason why the second-order cumulant

approximation should give an accurate density of states.
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