THE DENSITY OF STATES

In previous chapter an approx

obtained. In this chapter vious chapter to calculate the

na )%; for the averaged propagator was

density of states. Parti idering the behaviour of the

density of states with the ne adjustable paraineter and
comparing our results wit ushin and Timofeev [15].

The Density of States
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nE = V‘ZS(E-En), (5.2)
n=1

when E, is the energy of the nth eigenstate, V is the volume of the system. If the
system is disordered, we must average (5.2) over the statistical ensemble for the

random potential. It is convenient to consider the density of states in the form of (5.2),
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so that in order to apply the path integral method to (5.2), one converts the right hand

side into an integral form to get [38],

describing the propagati point T, being the vector

positions of the elec ator K is invariant under

translation of T, then

(5.4)
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Substituting expression (4.25) into (5.5) we get

n(E) = (A/mfi)Re| exp(d {(E-Ey)t+f(t))]dt
#
0

(5.6)
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where E, = (n+ %- ) # 0 are the electron energies for the LL's

and
1
) sin %
y) dy
in @
sin 5
The DOS in (5.6) cannd( ' o the complicated part in the
exponential term of K(0, 0; con: 'cr the behaviour of the DOS
by making a large-time ap alytic form
n® # forwl2er?)e Y ess|- (E-E,2/2r%]
5.7

where ny is a constan ;‘:‘::-’,:‘_ er is
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The width of the Gaussian I" is a function of magnetic field, through x = 7w /E =
(2e/fic) BL?, and of W(L ) and L through &1 = W(L)/ xL2. Clearly as I" — 0, n(E)

reduces to a sum of delta functions, n(E) = ng7%w, Z O (E-E,). Typically
n

observed [7-15] valuesof I' areI’ = 1meV or ' = 2meV at B = 5T (see
Fig. 10 in chapter IV )
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The limits of T are interesting. For low B or short L, x <4, T2 — & x /4 and
[ is approximately proportional to B2, as observed. Since €. x is independent of L,

the magnitude of I' is determined chiefly by the magnitude of the potential fluctuations

W(L) at moderate B. For large B and long L where x >>4, 2 — €L and T becomes

independent of B. The white-noise limitiis

T3 ( B.0Dw—— Llimrz(B,f) = g X

As was shown in Ref. [}A/ 32] FWN is propomonal to B2 and to W(O0). In this

12~ no AOW(0)

(5.9

The present n(E) in (5. g canfd!splay a:éhbstannal DOS between LL's depending

J

upon the values of W( L ). Thc vaiue of LEdepcnds upon thc origin of the disorder.
! il -
If it is due to screenqd charged 1mpur1t1es L w1ll be gpproxlmately equal to the

screening length. Thd rolc of L here is to set the energy_écalc via E; = #2/2mL2.
For L =100 A, E; =0.4meV. Let us assume, just to set scales, that E_L=1meV. Itis
convenient to represent n(E)in dimensionless-units with all energies scaled by Eyile.,

we define

so that

1/2 i exp(%(v’(n+%’)x)2 ) .

n=0

9

n(v) =
ol 2

(5.11)
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The dependence of the DOS for adjacent LL's on x for &{, = 1 is shown in

Fig. 11. The DOS bet.ween LL's is essentially zero at x = 4 but increases substantially
as x decreases to 2 (B = 1.5 T). Basically, as the spacing between LL's decreases a
significant DOS between LL's develops. In Fig. 12 we show the dependence of n(E)

on & forx =5. As & increases from I 10 5, a substantial DOS between the LL's

develops.
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Fig. 11 DOS fromeq. (5.11) Fig. 12 DOS from eq. (5.11)
forx=5and I < &LS 5.

for § =land2<x <4,
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We may make comparison with experiment by noting that the DOS in Fig. 12
for & =4 and x = 5 is very similar to that extracted from a de Haas-van Alphen
measurement by Eisenstein et al. [14] shown in Fig. 10. That is, our DOS for &L =4

and x = 5 reproduces the observes value [14] for which " = 2.2 meV at B = 5T

(Ao = 8.7 meV). We may use these values in Fz EL §L / (1 +4/x) to obtain Ep,

giving E; = 1.5 meV. This corresponds tod con" lation length L = 50 A and §L =10
meV. A substantial DOS between LL's 'ﬂlerefore follows readily from (5.8) or (5.11),

for reasonable values of L.and & .

However, the w1d5h’{ Qf every LL uequal which seems to contradict the direct

measurement of Kukuslyfn 3nd Tlm@feel’ usmg radiative recombination spectra of

.,

two-dimensional electrong .fn a MOS 1nvet§i'orr layer {15]. It is certainly a result of
using the long-time limit tha;rw?. obtz:un a vam%g:‘ which is independent of the Landau
index. To avoid such an approxiniﬁan num;cr.ical | integration can be used to evaluate

the integral in (5.6) ei(actly and then comparison with ej(genments can be done to

justify our expresswn;for n(E). It 1s known that opﬁ“Cal spectroscopy of two-
dimensional electrons makes it pOSS1ble to study the entire n(E) dependence and yield
n(Eg). In all other experiments;one determinesionly the thermodynamic DOS, i.e. the
quantity dn/dEg which is in general not equal to n(Eg). So it is more reasonable to

compare Qui' pumerical résults with-the miagnetooptic experiments.

To calculate the density of states from (5.6), we write

"WiE) = n0(2/7t)ZI dtReexp{2i[v/x-(n+%-)]t+f’(t)}
n=0J0

(5.12)
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where

t
' - -tsint ¢ 1
S L) 2ix gl‘fody[(x/4i)sint-cost+cosy]' e

where

with

ﬂwwm%’wmﬂ%m

awwaﬁﬂmumwmaﬂ
i n ke oG e lacEil] < (5.17)

The time integral is then performed by using Gaussian quadrature. Figure 13 shows
the DOS and its energy dependence from the radiation spectra obtained from the MOS
structure for n = 2.7 x 10'2cmr2 at T = 1.6 K in a magnetic field B =0 (figure 13,
spectrum 1) and B = 7 T perpendicular to the two-dimensional layer (figure 13,

spectrum 2, v =16, N < 4). From our expression in (5.14) by chooéing an
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appropriate & = 6.8 meV? with L = 97 A corresponding to
EL = ﬁz /2mL2 = 2 meV (using m = 0.2 m, as in the experiments), our numerical
results for the DOS can fit the expcrirﬁcnts very well as shown in Fig. 13 (broken
curve). Although our results for the DOS between LL' s seem to be a little lower than
those obtained in experiments by the magnﬂq@pﬁc method, they are acceptable because

of the tendency of peak-height increasing and peak-width decreasing as the Landau

index increases, and are in-good-agreement.
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Fig. 13 Curves 1 and 2 show the emission spectra of 2D electrons found for
T = 16K with B = O(spectrum 1) and B=7T, #Aw=4meV
(spectrum 2). Curve 3 (broken curve) shows the numerical result
for the DOS using &L = 6.8 meV? with L =97 A. The magnitude
of the DOSatB=0, ng = 1.6x 10 cm2meV-!, was  found

by equating the integrated emission intensity in spectra 1 and 2.
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Although the first cumulant approximation is sufficient to obtain an appropriate
DOS which compares very well with experiment [15], some results for the first
cumulant approximation as shown in Fig. 14 suggest that the approximate DOS can

take on negative values when the energies of the electron are higher, which is

unphysical. To overcome this, \%
".‘;;K

v,;/é()nsidcr going beyond the first-order

cumulant approximation. ‘
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Fig. 14 qpu Ejﬁ amu iuﬂ :lf ‘; coming from (5.6)
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attached to the curve are values of 1/x. Here the units are chosen such

-

thatm=1,e=1.



n r Cumulant A ximation

Approximating expression (4.19) by using the second cumulant, we have

Ki(0,0;t) = —1—{((3 S0)?)-(S-Sp) }]

(5.18)
From eq. (4.11) and (4.16
L. g WL — :
-8 = 5t doexpf (¥ )2/12]
t T 3 i 5
h. = L2 =y =
2,,iW(L)L | e[ H E A7) (o))
(5.19)

then we have
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(5.20)
also
: t t t
e e Skt B2
(S-S¢)* = 4%2{W(L))2fodtfodcfo(Zn)z exp( 7 )

t t 4 -, ’27 2
I d'c'f do’f dkzexp-k4L)
0 0 o (2m)



exp | iK-(F(1)-T(0))+ ik {F(v)-T(0))]
t t t t t e t -,
{W(L)}ZI Idc[ dt’[ do’f —JLI L
o '} 0 o -Jo(2m)%)y(2n)2

t 4
‘ xp{ijo dé?'(é)-ﬂ&)}
—— (5.21)
\\ ?‘h\ E-v)-8(E-0)] is the
| ‘.f and \\ , p-184) the characteristic

where f L)y =
generating function.

functional can be ex

- Gttt ¥ )g(é,ﬁ')?(é')}

3

- AU gﬂﬂﬂ?ﬂﬂgﬂﬂﬁ '
8( y U= st-‘(t ) H( )
ARIANNTUANING L

+sin@(e- g)smiH(é &)}CXP{ R

- Leos2{e-(5+8))-cos2(s-]5-81))

; (cosfza(g-g')-Jsin !51(5-&')'). (5.23)
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We employ the 2x2 matrices introduced by Papadopoulos [39] in his work on the

magnetization of harrhonically bound charges

] ( 7 (5.24)

et o 7 ising (5.25)

If we would like to exp. ilant until the n order of approximation, then we can

write the generating functi

F(t) =5 E[aced . (5.26)

]

So we have
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* ﬁzzki[g(tl 7) - 8(Ti- 6j) - g( ;- Tj) + g( 0 - 6; ) | k;

l—o

(5.27)

in general form. Next, we define

2 %
Bjj = L§;-———
: 4 2mmsm952’-¢-

[g(Ti-Tj)-g(ti-0))-g(0i-1j) +8(0i-0j)]



as a 2x2 matrix. Then { ( S - Sp )* ) can be written as

t t
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(5.28)
Here we consider only the
(S-S0
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‘and g(y

So we can write the second cumulant as

‘ ﬁé' t2 int 2r1 1 1 1
( S - So )2 =i ( szs n ) I dt; j d0'1 f d‘tzf d0'2
0 0 0 0




. 1 it : (5.29)
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From expression (5.18), The averaged propagator can be written as

1
Ki(0,0;t) = m4.le—
g By
i
[ do,
0
)y (5.30)
22
Finally, we can calculate the densit
it .
n@E=._ | T-an+unqm
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In expression (5.30), the integrals cannot be performed analytically. To avoid this
difficulty, we calculate them numerically. The method of numerical calculation is the
Monte Carlo method [40]. This is a technique which is best suited to the complicated

multidimensional integrals.

1o Evaluation of 140 /
valu n/ ] " —
The basic idea of/ is to. Sl the integral statistically, so

that, independently o o of : ral, the pling errors decrease as

1AN where N is the

d is sampled. The Monte

Carlo method for evalu ite xs basec iliar central limit theorem.

(5.32)

where X is a vector in n-dimensions and P (X)) is a probability distribution satisfying

mmndiﬁonﬂ‘MEJ’J‘VlEm‘ﬁ 4
awnmnmm b

fd“x Pen) = 1.

Note that there is an infinite freedom, which we will subsequently exploit, to

decompose the integrand of any multidimensional integral in the form of eq. (5.31).
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We will now try to approximate I by forming the average of N independent

samples of the probability distribution P ( X)

(5.33)

where throughout this c At — ! X ) indicates that the variable

X is sampled according tosthe fiinction P (X). to use such an average as a
controlled approximation for I, we need- 0'know 1 obability distribution for the

variable X, and especially how fi . | 2 ves for large N. To simplify

WA

notation, it is convenient to de e, thy ---mr an va ue unction g (X ) with respect to
the distribution P ( X) as follows ai.f‘f b \

(5.34)

- dc:nhiﬁ:obauﬂﬁ Y ;,EJ n{ﬂﬂ ’)] a ?each % is distributed
“ARARETSTIM AN A

p(X) = Hd“x,P(x,)B(l%I-z £(%) - x)

j=1

(5.35)
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Using the integral representation for the d-function, the probability distribution for X

may be written
p(X) = Hdnxlp(xl’)li dxexp(lmx le £(%;) )
i=1 f ji=
- el INAK - ’ yP(y)exp( m(-y-))}]
\
(5.36a)
where
F(A, X) X+ g (h (5.36b)
g0 'y’))}. (5.36¢)

For a specified value cy X we will perform the A mtegﬁ using the stauonary phase

approxxmatmnﬁdﬁm ﬁﬁ% vauwajr] mn X as (X). The
”“°“?ﬁ‘?i“ﬁ“a“ ATHMIANYNaY

- [d“yf(?)P(?)exp(-i'i(X)fm')
X = ig (A(X)) = -

fanyP(?)exp(-i'i(xmy))

(5.37)
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2
which implicitly defines 7L (X). Including the quadratic correction Q—F =
35 X(X)

g (A (X)), the probability distribution for large N is

s
(X) = |7 éxp (X(X)X) 1+0(lL1
P \ n i A }{ T (N)}

To display the X- dcpe/ p onent expli

(5.39)
‘ ’7'3‘ ». Expanding to second
8
A0y 18N
M adn 30l UM IngNAe

LR Sek i (5.40)
g(A=0)

solution A (X ) = 0
order around this pointm 7

(£2)p-(£)3



where we have differentiated eq. (5.37) with respect to X to evaluate dxc(i)i( ), Thus

p( X ) has a single maximum at X = (f)p and is monotonically decreasing away
from this point with curvature specified by the variance ( £2 )p -(f )% . No matter what
the distribution P ( X ), the function f (X), or the dimension n, for large N the average

eq. (5.33) becomes norma! N\

\ “Vf)! about I with standard deviation

5, a gene may be approximated

Note that the facg N irﬁevant for large N sd that one

1

effectively usesFT;ﬁ {gtﬂvaluate both %?’ZN “])ﬂ j
The )Jho e is t0.0 ﬁ:ﬁ h}g]hi:ﬁ ﬁm'ﬂy accurate to
withina-nﬁlac sap\ﬂnﬁﬁ ﬁen d, eE[ts such that

N
fd“xf(i’)P(Sc’) i IJ\T ¥ . KR <5
i=1
% e P(X)
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We must ask at the outset whether the Monte Carlo method is, in fact, as general
as this hope suggests. The answer, unfortunately, is no because of two distinct

fundamental limitations:

1.  The function must be domi

y positive.  If the integrals of the positive
uch larger in magnitude than their

ignal for all practical values of

which is unphysical. Thes unfah}@al T

“method is not approignate H’e\ﬁever', it shows the second-order cumulant
approximation is not usefut:Presumably > would hav f f:alculate all cumulants to
get a good physical resg‘t. It mu oV ever&at the first order cumulant

approximation is excellentagreement with experiments. We will have some discussion

d concusion [ A EJ NIN ‘W 48l
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