THE FEYNMAN AVERAGED PROPAGATOR

Introduction <

It is well known tbat/when ahigh ;ntensny magnetic field is applied to a two-
dimensional electron gaWe olectron energy spectrum becomes completely discrete and

the density of states beoomes hlghly su%gular The scattering of the electron by

r'J

impurities, surface roughness, etc.-leads to'a broadening of these singularities.
y

Theoretical results for the DQS of‘tms systei’r&m a high intensity magnetic field were

‘-J

first obtained by Ando and Uemura [l]m the basis of a self consistent Born
-

approximation (SCBA) The DOS versus energy curve thamed by them consists of

half ellipses centered-{g the Landau energies separated byqegons of vamshmg DOS,
shown as a dashed lin¢ in Fig. 10. I-fowever, because of the sharp edges of the
elliptically shaped.speetral-lines which constitute the DOS, the theory of Ando and

Uemura breaks down in the case of overlapping levels.

Theoretical predictions concerning the broadening of the Landau levels (LL's)
were then proposed by Gerhardts [26]. He expressed the Green function of an electron
in the presence of random impurities and a magnetic field in terms of the Feynman path
integrals and obtained an approximate formula for the propagator at the lowest order
cumulant expansion. He formulated the cumulant expansion in the position
representation in which both the free propagator and the average propagator are

diagonal. He obtained a Gaussian distribution of the DOS without the shortcomings
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which lead to the breakdown of the theory of Ando and Uemura. Both the theories of
Ando and Uemura and of Gerhardts essentially predict the DOS for sufficiently strong
magnetic fields, the LL's are energetically well separated and the DOS is zero

exponentially small in the gap between the Landau levels.

W 2.

EXPERIMENT
2.2mev

DOS (solic i;e) which fits 2DES data
B = T (ref. e oG hort - range interaction

, h @ = 8.7 meV. (Figure from

Fig. 10

Ref. 14.)
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A number of recent expenmen!é 57 10, 12]showever, indicété strong evidence

for an bkt kit DO RAREUAR e

that thcre 1s a substantial DOS lying between Landau levels not obtained in existing
calculations [1, 18, 19, 37]. This effect is seen in both GaAs - Ga;  AlAs

heterostructures and MOSFET's.

Recent theoretical investigations of the Landau broadening have been made by

several groups. Wegner [21] succeeded in calculating exactly the DOS for the case of a
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Gaussian white-noise distribution for the random impurity potential corresponding to
zero-range impurities. Most theories consider the electrons interacting with disorder
having an interaction in the zero-range. Typically they use the white-noise model in

which the variance W(T -T’) = <V(T)V(T’)>-<V(T)> 2of the fluctuating

potential V( T") has zero correlation length,
Wy (Tn)es Wl 0 ) Slrmrds) 4.1)

None of these theories predicts.a significa:_ht DOS lying between the LL's.

4 |

The aim here is to sh0w that broad L'S, sand a significant DOS between LL's can
be obtained in a simple and consxstent man.ner from a simple model of disorder. The
essential point is to keep the correlauon ledg:h L, of disorder finite from the outset

[27, 28] and to combine it w1th a thcory that:isvahd for broad LL's which can overlap.
: : ‘“4‘“
We represent here thc dlsorder by a Gaussian variance

e -

Wl Y=t (71O /LZ} 4.2)
rt L2 ,

The disorder is then characterized by a strength W(L ). We.determine the DOS
in the presence of the disorder (4.2) and obtain a substantial DOS/between the LL's for
appropriate, physical choices of W and L. The method is very similar to the procedure
that Sa-yakanit et al. [32, 33] used in three dimensions to explain the origin of Urbach
tails in optical absorption near band edges. As before we solve for the DOS using the
path integral method, which at present appears to be the best method for obtaining
arbitrary L disorder. A model that we use to calculate the DOS will be introduced in

next section.
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Model of a Random tem

We now consider a single electron confined to the xy plane, moving among a set

of rigid impurities and in the presence of an arbitrary strong magnetic field

V x A along the z axis. A is th or potential. The electron sees a fluctuating
potential V(T) so that hg / isH = Ho + V(7)) where
Hy = (p + eA e Bm"ﬁh\o-‘s)anqce is modeled by the Gaussian
function (4.2). For ex i disorder mpurmes located at random
points R i in the plan jnl\wnte e fluctuating potential as

4.3)

where v(?- R i) qu-“;"'-.':‘“ rity at position R ; and N is

the number of electrog in ai ty of@ectrons is, p = N/A. The

propagator describing theimation of the electron in this system satisfies Schrodinger's

g ﬂummmwmm
TRADAHHAI AR, o,

The propagator, which we choose the symmetric gauge A = (-By,0,0) can be

expressed in terms of a Feynman path integral as



e 2

t
K(f",f-’;t,{ﬁ'}) = [D(?(t))cxp[if d‘t{%(kz(t)+°yz(‘t)
fJo

N —_
+olx(0)y (1)-y (0% () - 3 V(;-Ri)}]
i=1

@.5)

bt where D(T(t)) denote arried out with the boundary

conditions T(0) =T ity distribution of the scattering

potentials is assumed

(4.6)

As point out first by Edward Iyaev.[30], the average of (4.5) over all

configurations can be per i |
Y )

t.(R) )lTJ
‘Ll smw 7113

B(7(%))exp i d’tm{xd,t)+y (%)

’Q‘WWMﬂﬁ mm

o(x(t)y (t)-y (0 (1))

+pfdf'{cxp(;-ﬁi-J;td‘cv(f'(T)'ﬁ) IH

@.7)
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In the limit of high density p — oo and weak scattering v — 0 so that pv2 remains finite,

expression(4.10) is simplified to

t
R(7.mn) = z(r(r))exp['f e {x*(t) +y (1)

!l//

==af—sx)y(r) y (1)x(1)))
"'"‘"--L

dedoW ( i"('li)-f'(CS))}

4.8)

where the mean potential energy has as zero and W denotes the correlation

function, defined as .

w ( It

1:R) (f(s)-R)

ﬂumwﬂmwmm
R

in terms of an action S as

4.9

..u

‘Bl re) = fl(?(t))cxp[iS], 4.10)
fi
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where S is defined by

t t
S =%1f {x2(1)+92(1)}dt+“—‘2@j {x(t)Y('c)-y(t):i(t)}dT

Zﬁ
9

2
A f “Azdo W(T(1)-T(0))drdo

4.11)

o

.1

and ® = eB/mc is the y{at’rcm frequency. For an impurity potential having the

Gaussian form, r£r. - g _
/8- 9\
v(rtofif od _uexp( <_>2R__) @12
| ...J.'.' t-fl‘ l
V ".‘:“:Jr*

= il

where u is another paramctcr mtroduced 1rf bfder to tak:; care of the dimension of

expression (4.12), tl;& correlation function can be wrigten as expression (4.2),
L denoting the correlatlon length of the random system given by L2 =27 and
W)= pn u. In (4.8) the statistical nature of the random scatterers is now contained
in the correlation function W. | This correlation'may be interbrcted as a two-body
interaction. The path integral in (4.8) describes anelectron propagating in free space
under an interaction W. The averaged propagator (4.8) cainot-be reduced to
Schrédinger's equation or to any differential equation. Therefore the precise
interpretation of this equation cannot be made. Nevertheless we can interpret the

"averaged propagator” in (4.8) as an "averaged electron” moving in a physical system .
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roximate Averaged agator

In the previous section, the average propagator representing the average motion of

an electron in a transverse magnetic field in random potential was expressed in terms of
o,

W te method for obtaining the average
propagator is presented. Theq\ resent investigation is similar to

that developed by Feynmwm &o@

a path integral. In this section,

into (4.3) the action can be

(4.13)

where & = \Q U/EJ ’g Z]tlﬁ‘lllrﬁ w E‘! Ct;]ussmn vanance, has the
dlmens m t—’g? ﬁﬁqTr gg e have to find
an appro:qmate expression for e follow the work given in Ref. ﬂS] by writing

expression (4.10) as

’

KT Tt = KO(F,F';t)<exp

i(s -so)}>so (4.14)

where Ko (T, T:t) = fD(?(T))exp{%—So} ; (4.15)
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is the propagator of a free electron moving in two dimensions in the transverse

magnetic field B and Sy is expressed as

t

(x(0)y () -y()x (1)} dr

(4.16)
Hence the averaged (

4.17)
Because of thc translanonal inyariance s S and So, the diagonal part of the

R(0.G1) = Ko(O, g_,t)<exp F(S-So)]) . (@18

ﬂUS?ﬂBW§W8 ng
From (4.1 ﬁve expand the av fuin the ri ﬁht hand side in a cunialant series [42],

1NN 1IN E

R(0.00 = K00 0em[L(s-So)s+{1) L {(5-50)2)s

-(s-So)% }+--]
4.19)



Ki1(0,0;t) = Ko(0,0;t)exp[ (S-So)s, ]

S -

2 t t
= KO(O,O;t)cxp[--z%z-If (W(f’(‘t)-?(c)))sod'cdc}.

0JO
(4.20)

.,

The average (W(T (1)- 1ently evaluated by making a

Fourier decomposition

(1)-T(0))})sod%

@21

where W (L)

4.22)

The average on the by using a characteristic

functional(see Feynm . .mer getting the average of

exp ( i-k.-( r-) ) in (4‘%1) and perfomxinit’hc k- integration, expression (4.20)

g ﬂ‘iJEJ’W!%JWﬁWEJ']ﬂ‘ﬁ

< 0.8 57) FORIUNNIINYINY
: wey (1], ansn($ele-ol))sin($le-l) |
w2 f'[| |

dtdo
Wont? 1, L mo sin &

(4.23)
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(4.23)
5 % t = Jp.—. __@.t__ i i
where Ko (0,0;1) = I ( 4 m) (4.24)
2
Let Ep = #iwand E = #%/2mL? th associated with localizing an electron
within the correlation length. Then, using i pe
the double integral in (4. 4 ‘ sle integration. We obtain

Ki(0.0:0) = 1+8i%g<t,y>}"dy}
(4.25)

- — {;
where g(ty) E sin 2 s 1 m (4.26)

AULANYNITNYNT

Finally, wg obtain an approximate averaged | propagator whiq\,arise from the use

ot GAEND T B SR O DAL b i

the density of states.
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