CHAPTER III

FEYNMAN PATH INTEGRAL IN QUANTUM MECHANICS

In proceeding to evaluatc;& && J/g‘ , the basic ideas of constructing the

Feynman path integral wﬂﬁnted ‘,1 th . We present in this chapter the
mathematical formulatiorrﬂl‘!ﬁ-'r ftum:mee Mfomatlon or the propagator,

in the form of a path integr

ﬁon, we apply this method to the harmonic

oscillator.

Feynman Propagator [3

If a particle moves from oﬁ'{,@m to r point there are many possible paths

which the particle caStake l'n‘fcmfs of c% . ha?c

ich presses the condition that

¥
-

s, when we consider the

particle as a point, tﬁE ‘.' S A DANCItle 0 -
determines a particular ,?}th frorn or sibe @hs. For simplicity, we will

restrict ourselves to the case-of a particle maying in one dimension. Thus the position

at any time caﬂeue% ,cgbiq & mi w %ul lﬂtﬁme By the path, we

therefore mean a funcuon x(t).
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Ifa parncle starts from the point x, at an initial time t, and goes to the final point
Xp at time ty, there will be many possible paths in which the particle can travel. For

each path there exists the action S,
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th
S =f ELe. x.ty; 3.1
t

particle can travel is tha at is to say, the value of S is

unchanged in the first o ified. This particular path

x( t) is called the classica

In the next chapter, cal action of random systems,

which is quite difficult. ¢ familiar with a simple system of
classical action, which can e more difficult determination of

the classical action of rand ination of the classical action of a

harmonic oscillator Wi

For a harmonic oscillator, the Lagrangian i

ﬂ‘uﬂ’mﬂ Swenns

= m-(x -m}

Q‘Fﬂﬂﬂﬂim UA1INYINY

therefore

t
s - [ "3l arst)a
t
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Suppose the path x( t) is varied from X by an amount &x(t). The end points Xa
and x, are fixed, that is

8x(t) = &(tp) = O (3.2)

-

must yield a minimum value of

Sis
(3.3)
Hence
2x &xdt; .= 0
Thus
x &x dt} = 4
pEStlhe . -

ml- fzfaxdt-mzfzi Bth} = 0.
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Thus

(3:5)

(3.6)

ary condition x( t,) = x, and
X( ty) =Xy to eq. (3.6) and'm armonic oscillator equal to
t, - t,, We can obtain

m[ (T)X(T)-X(0)X(0) ff x(x+0?x )dt”
. oo

Y
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and since

Differentiating eq. (3.6) with respect to t, 'we obtain

r?
i

X (t) ="Aacos @t - Basinot (3.8)

Substituting eq. (3.6) wyéy( ~048d t = T and €q. (3.7) when t = 0 and t = T into
eq. (3.7), and also making ée of he values of A and B, we obtain

Su V4 | %‘{COS g;,;;(;xg + X0 )= 2x,xs | (3.9)
?@ Y § : f
i r _:" ﬂ ./4"‘

r

e b

-

=

# |‘.._;"',' F ¢ .,4
Thus we can obtain the classical action of theiar‘monic oscillator.
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After discussing, the pat-h__in' which a p;rticle can move from a to b from the

R ol il

classical point of view/and showing how the classical pa;l;a!'nd classical action can be

found, we will next look at this from the iuantum mechanieal point of view.

Quantum mechanics deals with probabilities; that is, it states that we cannot
specify the position of a particle, we can,only know-the probability.of its being found in
a given place.” The probability that a particle will be found to have a path x( t ) lying
somewhere within the space time continuum is the absolute square of a probability
amplitude. The probability amplitude is associated with the entire motion of a particle
as a function of time, rather than simply with the position of the particle at a particular
time. Thus when we consider the path by which the particles goes from a to b, we must
specify how much each trajectory contributes to the probability amplitude K(b, a). It is

not just the particular path of extreme action which contributes; rather, it is thecase that™
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all the paths contribute. The contribution @ [x( t)] from a single path depends on the

classical action for that path in units of #.

Gx(t)] = constexp[;ii-S{x(t) }]

e
>

The amplitude K(b,a), is thus the sum over all tfajectories between the end points a and

b of contributions @ [x(t)}s

21 B[ x(t)]

K (ba) 4

“‘overall |
r paths.from.a to b
K (b,8) f=f 5 412> 4 deonst exp[—i- S{x(t) )] . (3.10)
j , overialls f
paths from a‘n&'ﬂ

.

22420,

We have thus described the physical ideas coneerned-in the construction of the
- r

amplitude for a pamc;etxo reach a particular point in spaée afi_q.ume by closely following
its motion in getting tté:re. So if ' we want to find the Iéi'obability amplitude of the
particle going from a to b; we.have to carry out the sum in eq. (3.10). But the number
of paths from a to bis infinite, so eq. (3.10) is very difficult to work with. Another
method and more efficient method of computing the sum over all’paths will now be

described.

We choose a subset of all paths by first separating the independent time into small

interval, € . This gives us a set of successive times ts B, 13 e between the values t,
and ty, where t; . ; = t;+ €, At each time t; we select some special point x; and
constructing a path by connecting all the points so selected to form a line.  This

process is shown in Fig. 8. It is possible to define a sum over all paths constructed in
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this manner by taking a multiplc integral over all values of x; for i between 1 and n-1,

where
ne = | 8 to ty &L = t,
xo F—
By using this method,
K(b,a) (t)}]dxldxz---dxn.l.

(3.11)

We do not integrate x, or x;, bt ,. the fixed end points x, and x;,. In order

to achieve the correct measure, eq. (3.11) must be taken in the limit € — 0 and some

— 3

normalizing factor A%y ided in order that the limit of

U

’ cachsfﬁwaﬂ%’wmm
K‘“ﬁm&ﬁﬁﬁr&ﬁ‘ﬁﬁ“’?ﬂ‘éﬂfﬁ“ e

(3.12)

Eq. (3.12) can also be written in « less restrictive notation as

K(ba) = N[f constexp{jS{x(t)}}.Z(_path).
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This is called a path integral and the amplitude K(b,a) is known as the Feynman

propagator.

Fig. 8
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the form of path integral. It will now be shown that the propagator in this form can
also be derived directly from the Schrodinger's equation. The time-dependent

Schrodinger's equation is
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We can define the one-electron Green function of this equation as the solution of

[iﬁ% - H]G(?,f";t,t') = 8(T-T7)8(t-t").

4

f">. 3.13)

Let us divide the ti : it 1 equal small subintervals, so that

B

j actor

)
14)

Accordu'a uﬂlgomxﬂumm &Lﬂcﬂ ﬁert a complete set of

states between each air of factors

AN SN ANY1AY
o de) - [ e,

(5
(e[ ) - )

(3.15)

fa-2 >d1—"n-2
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We now consider the Hamiltonian of the system in the position representation

"
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Therefore

%+V(E’)”d§

(3.17)
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p2

.iE
We now replace 1 >m

#

+V(T) } by the corresponding exponential; the error

introduced here is O ( €2), so that the total error from all the n factors can be neglected.

Eq. (3.17) thus becomes

ﬂumﬂﬂ@}giﬂﬂ’lﬂ)ﬁ;m
* ARIANINUNMINYIAE

<fi+1

(I“EH')' s (2nﬁ)3(2 m“p{l%(r” )

2 %—V(f’)}




28

Substituting for eq. (3.18) in eq. (3.15), we obtain

_n-l — = \2
e gy 3 T )2 e
Qe iy h:,nA” fp[’f |t V<f>}]

§ = m
Whee 2 2nifie |

In an obvious notation

It can be shown tEt zhe fin fun@on (3.19) of Schrodinger's

equation has exactly the same form as the Feynman propagator (3.12). The latter can

e it in o b b 4 W‘M e acloegining o s chape.

As a simple example of how to obtaui‘G ey h) written in thexform of eq. (3.20),
.m&mam&mma Nneae

For afree electron L = %1 2 , therefore by using eq. (3.19), we obtain

o =k e - \2
GF,FI; t’ = hm-l— ex 1€ m_(ri+l'ri)
( = ) e-—»OAfj I pl:ﬁi=02 €
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JLﬁﬂ?=aﬁ=?ﬁ

The calculation is carried out by direct integrations as follows:

Since exp a(ro 1)%2+b(F

_§‘
‘*

e\ wifie |3 im (= = )2
-r,.. cﬂ'W  ‘ eXp Zﬁm (rz 1’0)2}

XP{—ab—(rz ro)z}

we have

1

._.-__ —
- S— N ‘

_
Multiplying the result @ ( €Xp —( X3 - xl } and integrating over T 3,

.o ﬂ'lJH’ZI'VIW]ﬁWEI']ﬂ‘i

il fw%«aﬁmﬂmqwmﬁ%

5 [(Eri‘é(nf))m“ [2ﬁ<2 y(F2- “”2]

m_\32 Wiy =32
(21ti exP[Zﬁs(rs ) ]df'z
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: - 2mh( 2€) o s
x (Zniﬁr?k)) (77 u3im€) CP[Zﬁ(3e)(r °)2]
= (Zniﬁr?Ss))m [2ﬁ(3e)( F°)2]‘

In this way a recurring proc\ * ,)hshed by which, after (n-1) steps, we
obtain

since ne =

Since thﬁl%ﬂc&lpﬁg %\E}mlﬂﬂ 8 Eqnﬂ ‘%‘ this path is therefore

completely fixed! Consequently any gath r(t) can be written in t&x}ns of the classical

et R RO YR O PR B i s

I(t) = FAT)+¥(T)

and the path differential 3| 7" ()| can be replaced by 3[ 7 () ]. This s, instead
of defining a point on the path by its distance T( t) from an arbitrary coordinate axis as

formerly, we now define it by its deviation y'( T) from the classical path, as shown in
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Fig. 9. Since any path 1'(T) and the classical path T.(t) must reach the same end

points,

y(0) = y(r) = 0

In between these end points

L = a(1)T 1)r2(1)+d(1)r(1)
T (

1)+f(1),

r

&qi:f*' b4

Y/ 1\
B - - R

the integral for the action can

i
P
i

e
P et ‘l:f‘ir"‘-'# Z /N

S[T(r)]

ey

r oy : Ge 1}
fjﬁ a(t)|r c(x)+2'rc(r)y(r)+'y (1) + | &t

ﬂ'LIEJ’J VIEJ'V]‘?WEJ’}ﬂ‘i
RS

collected, the resulting integral vanishes. All that remain are the second-order terms in

y. Thus

t

S[f’(‘c)] = Sc1+f[a(1)§’2+b(1)§’§r’+c(1)§"2

0
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\\\\ v
Fig. 9 //g \\\ g from the classical path.
Thus the Green function ¢ ﬁ

'"_.—P /) ..e“

G(T, Fl; t) & @:*_::::.:.';-;::.:::::_:::;', b(1) )-’. y

T &8 ¥

m oy ﬁ] Haly (o).

+C(1)y

ﬂUEJ’JV]EJVIiWEI’]ﬂ‘i

Since the integral over paths ¥ (1) does not dcpend upon the classmal path and all

P S T PR 0

0

0 .
: \
G(T,T,t) = cxp(ﬁisd)N[ CXP[%{I [a()72+b(0)7 7
0

re(u)y2]an}] 27 (0]
(3.22)
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Consequently it can be seen that the path integral (3.20) which was specified by the
distance T (1) from an arbitrary coordinate axis, and which depends upon the end-
point positions, can be reduced to a product of two functions one of which does not

depend upon the end-point positions. The new product depends upon the classical

r”)difficulty, and a path integral depending
Z.

action which can be obtained without :
b4

Add

Using the method which h JugflE:’ = dcs =

e

. _-r‘;-' o W
product of two function, B pa L.
™

A

Syt e S tene v

at the beginning of this chapter, we can write

2
Sq = -0 {coscot(x’ +x2)-2xx'}.
2 sin wt
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We have therefore to evaluate the remaining path integral

0

exp ij m('yz w? y2 )de -2[5'(1)],
fiJo 2

!l//

which we will later call F ﬁ of evaluating F(t). One is to

expand y( 1) as a Fourx( -V \

“a_ Qin /4
n
e %

a, instead of functions of y

at any particular time T . ‘ f ' 10d for evaluating F( t) is given by

......

Thus the ume-dﬁendent Green function of thé-harmonic oscillator is

uEJ'JWEWﬁWEHﬂﬁ )
G(T,T;t) = (exp cost (x"2+x2)+2x"x
AR IWTIRIaD

In the next chapter, the Feynman averaged propagator of two-dimensional

electron gas with random potential in transverse magnetic field will be investigated.
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