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The two-dimensional el systelns we consider 1n this thesis constitute only a

part of the large class of dyna cally twé»dlmensmnal systems (2DS) that have been

widely studied in the last two déc d¢s By-,dYnarmcally two-dimensional we mean that

the components of the systgf 1o mévc- in two spatial dimensions but have their

motion constrained in the t 'mcnsmn., Thus the wave vector is a good quantum

number for two dimension butanot forlﬁ'e third. These systems are not two-
el
dimensional in a strict sense, botﬁ because wave functions have a finite spatial extent in
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the third dimension ang becausc clectromagnctxc fields arei(not confined to a plane but

spill out into the thlrd.,d"&r)ensxon. Theoretical predictions fqr_xheahzed two-dimensional

systems must therefore be modified before they can be compared with experiment.

Two-Dimensional Eléctron Gas

The discovery of the quantum Hall effect was~the ‘result~of systematic
measurement on silicon field effect transistors-the most important device not only for
applications but also for basic research. The pioneering work by Fowler, Fang,
Howard and stiles(1966) has shown that new quantum phenomena become visible if
the electrons of a conductor are confined within a typical length of order nm. Their

discoveries opened the field of two-dimensional electron systems (2DES).



Two-dimensional electron systems can be realized in several classes of system.
One example is the electrons trapped on the surface of liquid helium below 4.2 K.
Since we cannot make the concentration of electrons too high in this system, chiefly
because the liquid surface cannot sustain too many electrons pressed to the surface by
an electric field, the electrons form a classiqa} gas with a Boltzman distribution. There
are two classes of system in which we can m'.agfaﬁ!eﬁenerate two dimensional electron
gas with electrons occupied up to a Fenni.znergyﬂEp;_:u. the surface of a semiconductor

g—
like silicon or gallium al"SfE}dG’W e thej surface is usually in contact with a material

which acts as an insulato 10, for a metal-oxide-semiconductor as shown in
F vj f 3

ructures-as shown.in Fig. 3.
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Fig. 2 Two - dimensional electron system in the metal-oxide-semiconductor
inversion layer. Here S and D represent source and drain
electrodes (usually n-type doped regions) respectively, Vg gate

| voltage and Eg Fermi energy. Bending in valence and conduction
bands is depicted together with wave function y (z) and density of

states n(E).
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When the bottom of the conduction band is pushed down below Ep near the

A MOS inversio yer conmsts

interface of p-type Si and SiO,, electrons are accumulated at the bottom of the
conduction band there. The electron system may be regarded as a two-dimensional
system, since the electrons are confined within the interface region and move relatively

freely along the interface. This type of MOS system is called an inversion layer,



because the carrier in this example is the electron while the bulk semiconductor is p-

type. The motion of an electron in this situation is described by Schrédinger's equation

Hy () = Ey(T) 2.1)
. ks .
where H - p2+V(2) | /. /. 2.2)
J

and m* is the effective mass-of the carrier, z is the direction perpendicular to the

interface and V(z) represcnts ;he boitom of the conduction band and a Schottky barrier

“f

of the oxide layer. If we 1§aore scattcrers or other imperfections in the system, the
motion within xy plane u’/ reef wrth thc Wavi'funcuon given by
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‘where f.(z) is the wave function in 4 potenfiAL‘well formcd by V(z) with a quantum

number n. For the bou_f)dstatc&quaxmzcd_\mhml(z),fn(z} has discrete energy levels

€1, €, ..., €. Since the. densuy of states for free electrons in thc two-dimensional space
is a constant, the total densny of states comprises a space of step functions as shown in
Fig. 2. When Eg <, (or, mbre precisely, when kT is smaller ithan ¢, - Eg or other
relevant energies), the electrons behave as a purely two-dimensional system. The
current withint the two-dimensional system is driven by a voltage applied across the two
electrodes denoted in Fig. 2 by S(source) and D(drain). The MOS system is quite
convenient in that the concentration (n) of 2D electrons can be varied in the same
sample in a range as wide asn ~ 0 - 10'3 cm? by varying the gate voltage, which

changes the degree of bending of the conduction band.



Two-Dimensional Electrons in Magnetic Fields

The quantum Hall effect was discovered on about the hundredth anniversary of
Hall's original work, and the finding was announced in 1980 by von Klitzing, Dorda
and Pepper [6]. It is found under certain conditions in an effectively two-dimensional
ng m eld B. We first take up the simplest
quantum problem, that of independent two difiensional spinless electrons in a
perpendicular magnetic - 1S, O quWandard stuff, but it will serve

\
: cth equation explicitly it is

‘particularly convenient are the

system of electrons subjected to a i

to establish the notation
necessary to choose a ga

Landau gauge, and the rotatior % fang ) i ﬁ%e. The latter gauge is most

1S

useful in the study of in u gauge, the vector potential A
A % i :: b ... ; ' L 2.4
The Hamiltonian of a ﬂg electron syster gnetic f@h is given by
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ger's equation for the wave function is, in the Landau gauge,




Wetake ¢ o ei*@ (y). Then
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Thus @ satisfies a shifted harmonic oscill.af;)quuation. We have introduced the

magnetic length 2

= )ﬁt?eB ) /i

which is a fundamcnté(/ c;ale of the prol%lem It is in the range 50-100 A and is

comparable which sevefal mhe‘r lengths o‘f the system. It is worth noting that £is
independent of material paramete;s. The: dtfferent oscillator levels are labelled by

n=0, 1, 2, ... and define the Landaulcvels These solutions are
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where H,, is a Hermite polynemial. The energy/levels are

E, = (n+128#%0, (n=8, 1,2 ..) 2.9)

independent of k and are called Landau levels with Landau index n (Landau and
Lifshitz 1977). The wave function in the y-direction is centred aty = ¢ 2x. If the y
dimensions of the system are confined to 0 <y < W we see that 0 <k < W/Z2. Letus
impose periodic boundary conditions y (X,y) = y(x+L,y). Thenk = 2np/L
with p an integer. The key aspect of this quantization is obviously the completely

discrete energy spectrum (Fig. 4), which is hard to conceive in normal bulk systems.
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If we apply a magnetic field to a three-dimensional system, for instance, an electron can
move freely along the direction of the magnetic field with the corresponding classical
orbit being a helix. The density of states of the 3D quantum system, is shown in Fig. 4,
comprises a series of continuous bands arising from the motion along the magnetic
field, unlike the two-dimensional case. In this sense the Landau quantization is perfect

in two dimensions. 'y
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Fig. 4 Density of states for two and three-dimensional electron systems in

magnetic fields.



Fig. 5 a Landau level in a two-
the number of circles of
ystem.
Together with the con 1tioﬂ:i§§&‘§1‘ 3 k £k this implies that for every Landau
level in a two—dimeq ional syster o cy (number of states belonging to the
level) is given by (Fi ——e

LW/ 2n £, (2.10)
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The number of states per unit area of a‘full Landau level is

QWWMﬂ‘iﬂJﬂJ‘Wﬂﬂmﬂﬂ

Ng = 1/2n¢® = eB/#c . (2.11)

In this idealized model, then, the electronic energies lie in equally spaced but
highly degenerate levels. The spacing and degeneracy are inversely proportional so that

if the degenerate states were broadened into a uniform distribution, the density of states
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of the distribution would be Ng/#%® = m*/2r#2, which is just the density of states

of free electron of mass m* in two dimensions.

We take this opportunity to remark that the states y are extended in the x
direction, but confined in the y direction; prever because of the massive degeneracy,
linear combinations of states w exist which ée’ ﬁnﬁned in both directions: they are

>
localized. Applied electric field and/or 1mpur1ty ‘potentials lift the Landau level

degeneracy and with it the/”ﬁ/;’cfgdbrgﬁto choose between extended and localized states.

X

If a Landau level 1s full 't};c Fermi level must lie in the gap between occupied

levels. Itis plausible that t i g‘o scagtterijxgt ‘We denote the filling factor v, by
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v = N'B i 215&? (2.12)
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This dJmensmnless quannty 1nd1cates the filﬁng of Landay levels, e.g. v = 3.0 means

that only the lowest thréé Landai levels are full: Y]

-

Impurity Effect (Random §ystems)

So far, we have concentrated on the free system. In real, $ay, semiconductor
systems, there always eXists rafidomfiess arising from impurities and the roughness of
the semiconductor interfaces. In the presence of randomness, the hamiltonian is given

by

H = Hy+ VD)
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where V(1) is the random potential. The system is dominated by the dynamics of the
centre coordinate (X, Y) of cyclotron motion. The equation of motion for (X, Y) is

given by

i ox
@2.13)
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which follows directly from.the commutation relation
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where (&, i) is the rclanon (:ootdmatc aroun;d the centre.

il
A succinct way to represent tbis state isto expms}, the coordinate of an electron as

x A X+ y = Vi

\"J
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The degeneracy of the states with different (X, Y) in a Landau level is now lifted. This
implies that the-densityof stateg is no lenger:a series of sharp lines: each Landau level

becomes a band of finite width. We call this band a Landau sub-band (Fig. 6)

As is evident from the equation of motion above, the nature of these sub-bands
depends quite strongly on the mode of spatial variation of the random potential. Let us

assume that V(1) varies rapidly within the length scale of the cyclotron radius £.

Such a potential may be constructed as an assembly of scatterers as

V(T) = Vo2 8(7-T1). (2.15)



14

where T'; is the position of the ith scatterer. In this case, the motion of an electron
may be regarded as quantum as hopping of the centre of the cyclotron motion with the

hopping distance being ~ ¢ for each jump (Ando and Uemura 1974). The potential,

eq. (2.15), is characterized by the dimensionless concentration of scatterers

G = 2xiSm 7 (2.16)
J
where n; is the original congentxanon of the scatterers and c; represents the average
number of scatterers w1th)wa/ ircle of ra&jus { . The electronic structure of the system
depends strongly on c;. g:n c, S>> -1 " (dense scatterers), the description of the
system by the self-consist t/?ox;ﬁ Approx'ymnon (Ando and Uemura 1974) becomes
applicable (Fig. 7). In thf c@e. the dcnsq,y of states of each Landau sub-band is
semi-elliptic with a width glvgi by sl 3 4":- .
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The ratio of T to the spacing of the Landau levels (7o ) is expressed as

I 1
12
- ( mo)
where 1 is the scattering relaxation time (mean free time) in the absence of magnetic
field and % /19 o n; Vo?. For strong magnetic fields of H ~ 10 T in Si MOS

systems, which is a typical experimental condition, we have I' /#iw <1 i.e. the Landau

sub-bands are separated.
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(b) Disordered system '
- Fig. 6 Energy spectrum of a two-dimensional electron system with and
without disorder.
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Fig. 7 he disordered two-dimensional
ield in the self-consistent Born
It is well known that the bro is due to disorder. There were

several theoretical .;-i tion: "'" f the LL's. But we will

propose here the met@ of Fey cg atioith a Gauésian model of

disorder to find the density’ qﬁtatés and predict the brdadening of the LL's. In the next
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