INTRODUCTION

In the past two decade“s remarkable progress has been made in the study of two-
dimensional (2D) electron tems. Dur&ng this period, Clear recognition of the two-
dimensional character of i Erface electréms, development of different types of two-
dimensional electron sy{e:‘ls .and dlsclosgre of very important and unusual properties
have taken place. The r(t ent' dmcovery of the quantum Hall effect (QHE) has brought
the study of these electrorfé tg'a new. stage-‘iﬂ Wthh solid state physics is linked with
quantum electrodynamics. In this the515, we'coﬂtlder the density of states (DOS) of a
two-dimensional electron gas with dlsorderim a magnenc field. By definition, two-
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dimensional electron _ _sz be trapped on a surface

such as that of liquid }ie_iium below 4.2 K. Other two-diij_rlensional electron systems
have been realized in thednterface between two semiconductors. From a microscopic
point of view, they are formed when the surface of liquid helium presents a barrier V,,
of more than 1 eV to electron transmission into the liquid, whilethe image potential
attracts the electron to the interfage.. As a result, the wave function is localized, as is

illustrated in Fig. 1.

Examples of two-dimensional electron systems are electrons confined to metal-
oxide-semiconductor(MOS) space charge layers and at semiconductor heterojunctions.
Earliest interest was in electron transport properties, the integer quantum Hall effect

[1,2, 3, 6] and fractional quantum Hall effect, [2, 4, 5] and in distinguishing localized



from delocalized states. However, transport measurements do not readily observe the
total density of states available to the electrons. Recently, many experiments [7-15]
with two-dimensional electron systems show that the disorder, due to impurities
[16, 17] or to inhomogeneities [18, 19], broadens the Landau levels (LL's) significantly.

They confirm that there is a large density of states between LL's.

Fig. 1 Schematic potential diagram on the surface of liquid helium. vy (z)
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The density of stzifés of an electron*confined in two dimensions in the presence of

{

a transverse magnetic field-and a disorder potential may be evaluated using several
techniques developed for disordered systems. In the Barn approximation [2, 11, 14,
16, 17, 20], a perturbative approach, the density=ef states is elliptical around each
Landau level (LL)»and zero betweenckL's.. More exact methods ([21-25] yield a
Gaussian density of states for the lowest LL, as do path-integral methods [26, 27].

Broderix et al. [28] discuss all these methods and the approximations in them carefully.

In the last few years, Sa-yakanit et al. [27] have used the Feynman path
integration method and shown that a substantial density of states between LL's could be

obtained using non-perturbative methods for electrons interacting with disorder having



a finite correlation lerigth L. Last year, Sa-yakanit et al. [33] calculated, without the
large-time approximation, the density of states exactly within the first cumulant
approximation using numerical integration and showed that the first cumulant
approximation is sufficient to obtain an appropriate density of states, which compares
very well with experiments [15]. However, the density of states can take on negative
values in some situations at higher energics;-i;ﬁich is unphysical. To overcome this,
we could go beyond the first- order cumulant appfoxi’rnation.
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The purpose of this t}}déis is b_,ev;lua}? the density of states of a two-dimensional
electron gas with a random pbtenualm a tt:_;n§v,erse magnetic field. The basic idea of
our calculation comes frorh thé works 6f Gerhiardts [26], and Sa-yakanit et al. [27, 33].
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The outline of our work is as follows: —
3 L.

In the next chabfér, we review some basic theory fof’_gbvo—dimensional electron

systems. This review né_ﬁ only gives the basic ideas of constructing the Feynman path
integral but also on how to formulate it from'Schrodinger's equation. An example, the
harmonic oscillator, will be‘presented in chapter Il In'chaptér IV, we calculate the
averaged propagator using a Gaussian potential.“In Chapter V, ‘using the result of
Chapter IV, we obtain the density of states with the second cumulant-approximation
averaged propagator. Discussion and conclusions, including suggestions, will be given

in the last chapter.
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