THE OPEN MAPPING AND CLOSED GRAPH THEOREMS

Definition 4.1 X is called a Frechet space over H (abbreviated by FS (IH) if and only if X is a separated complete paranormed space over IH.

Example 4.2 (1) Every Banach space over H is a FS(H).

(2) Let $w = \{ z = (z_n)_{n \in \mathbb{N}} | z_n \in \mathbb{N} | \text{ for each } n \in \mathbb{N} \}$ with

 $||z|| = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|z_n|}{1+|z_n|} \text{ where } z = (z_n)_{n \in \mathbb{N}} \in \mathbb{W}. \text{ Then } (\mathbb{W}, \|.\|) \text{ is a FS(IH)}$ and $(\mathbb{W}, \|.\|)$ is not a Banach space over IH.

Proof: For each $n \in \mathbb{N}$, let $P_n(z) = |z_n|$, $z = (z_n)_{n \in \mathbb{N}} \in \mathbb{N}$. It is clear that P_n is a paranorm on w for each $n \in \mathbb{N}$. By Theorem 2.5, we have shown that $\|\cdot\|$ is a paranorm on w. It is clear that $\|\cdot\|$ is not a norm; hence $(w, \|\cdot\|)$ is not a Banach space over \mathbb{H} . By Theorem 2.5, we have the property that for any net z in w, $z \to 0$ if and only if $P_n(z) \to 0$ for each $n \in \mathbb{N}$. Let \mathbb{H}^N denote the space of infinite tuples of quaternions, let T be the paranorm topology on w and let T be the product topology for T we must show that T = T. Let T be the product topology for T be a net in T we must show that T be the T be the product topology for T be the product T be an each T be T be an each T be T be an each T be an ea

so T = T and hence the paranorm $\|\cdot\|$ gives the product topology i.e. $(w, T) = (H^N, T)$. Since $\| \cdot \|$ is complete, by Theorem 3.55, $\| \cdot \|$ is complete so $(w, \|\cdot\|)$ is complete. Let $z_0 \in w \setminus \{0\}$. Then $\| z_0 \| > 0$. Choose $U = \{ z \in w | \| z \| < \| z_0 \| /_2 \}$. Then U is a neighborhood of 0 in w and $z \in U$ so w is separated. Hence w is a separated paranorm space over $\| \cdot \|$ so $(w, \|\cdot\|)$ is a FS($\| \cdot \|$) which is not a Banach space over $\| \cdot \|$. #

Definition 4.3 Let $(X,\|.\|)$ a be paranormed space over IH. A series $\sum_{n=1}^{\infty} x_n$ in X is said to be absolutely convergent if and only if $\sum_{n=1}^{\infty} \|x_n\| < \infty$.

Theorem 4.4 A paranormed space over H is complete if and only if every absolutely convergent series is convergent.

Proof: Let $(X, \|.\|)$ be a paranormed space over $\|H$. (\Longrightarrow) Assume that X is complete. Let $\sum_{n=1}^{\infty} x_n$ be an absolutely convergent n=1 series. We must show that $\sum_{n=1}^{\infty} x_n$ converges. Claim that $\{\sum_{i=1}^{n} x_i\}_{n \in \mathbb{N}}$ is cauchy. Let $\epsilon > 0$ be given. We must show that there exists an $\|M \in \mathbb{N}\|$ such that for all $\|M \cap n\| \in \mathbb{N}\|$, $\|M \cap n\| = 1$ implies that $\|\sum_{i=1}^{\infty} x_i - \sum_{i=1}^{n} x_i\|$ $< \epsilon$. Since $\|X \cap M\| = 1$ converges, there exists an $\|K \cap M\| = 1$ in $\|K$

 $= \sum_{i=1}^{m} ||x_{i}|| - \sum_{i=1}^{n} ||x_{i}|| \le ||\sum_{i=1}^{m} ||x_{i}|| - \sum_{i=1}^{n} ||x_{i}||| = ||\sum_{i=1}^{m} ||x_{i}|| - L|| + (|L - \sum_{i=1}^{n} ||x_{i}|||)||$

 $\leq |\sum_{i=1}^{m} ||x_i|| - L| + |L - \sum_{i=1}^{n} ||x_i|| | < \epsilon/2 + \epsilon/2 = \epsilon$ so we have the claim. Since

X is complete, $\left\{ \begin{array}{c} n \\ \sum x_i \\ i=1 \end{array} \right\}_{n \in IN}$ converges; hence $\sum_{i=1}^{\infty} x_i$ converges.

(\Leftarrow) Suppose that X is not complete. Let $(y_n)_{n \in \mathbb{N}}$ be a nonconvergent Cauchy sequence. Let $k \in \mathbb{N}$. Then there exists $N_k \in \mathbb{N}$ such that $m, n \geq N_k$ implies that $||y_m - y_n|| < 2^{-k}$ and $N_{k+1} > N_k$. Let $x_k = y_{N_{k+1}}$

- y_{N_k} . Then $\sum_{k=1}^{\infty} ||x_k|| = \sum_{k=1}^{\infty} ||y_{N_{k+1}}| - y_{N_k}|| \le \sum_{k=1}^{\infty} 2^{-k} = 1$. By the

comparision test, $\sum_{k=1}^{\infty} \|x_k\|$ converges. Since $(y_n)_{n \in \mathbb{N}}$ has no convergent

subsequence, $(x_k)_{k \in \mathbb{N}}$ does not converge so $\sum_{k=1}^{\infty} x_k$ does not converge. #

Definition 4.5 Let X, Y be TVS(|H)'s. A linear map $f: X \to Y$ is called almost open if and only if for each $U \in N(X)$, $f(U) \in N(Y)$.

Lemma 4.6 Let X, Yabe TVS(IH)'s. Let $f: X \to Y$ be linear and suppose that for each $U \in N(X)$, f(U) has nonempty interior. Then f is almost open.

Proof: Let $U \in N(X)$. Then there exists a $V \in N(X)$ such that $V - V \subseteq U$. Let $y \in I$ Int (f(V)). Since f is linear, $f(V) - f(V) = f(V - V) \subseteq f(U)$. By Theorem 3.24, $f(V) - f(V) \subseteq f(V) - f(V) \subseteq f(U)$ so $f(V) - y = \{x - y \mid x \in f(V)\} \subseteq \{x - z \mid x, z \in f(V)\} = f(V) - f(V) \subseteq f(U)$. Since $0 \in I$ Int $(f(V) - y \in N(X), f(U) \in N(Y)$ therefore f is almost open. #

Lemma 4.7 Let X, Y be TVS(IH)'s and let f : X \rightarrow Y be linear. Suppose

that f(X) is of second category in Y. Then f is almost open.

Proof : Let U & N(X). We must show that f(U) & N(Y). Let V = f(U). Claim that $X = \bigcup \{nU\}$. Let $x \in X$. Since U is absorbing, there exists an $\varepsilon > 0$ such that $t \times \varepsilon U$ for $|t| < \varepsilon$. Choose $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \epsilon$. Since $\left| \frac{1}{n_0} \right| < \epsilon$, $\frac{1}{n_0} \times \epsilon U$ so $x \in n_0 U$ therefore $x \in \bigcup \{nU\}$ so we have the claim. Hence $f(X) = f(\bigcup \{nU\})$ = $\bigcup_{n \in \mathbb{N}} \{ nf(U) \} = \bigcup_{n \in \mathbb{N}} \{ nV \}$. Since f(X) is of second category, there exists an $m \in \mathbb{N}$ such that $Int(mV) \neq \emptyset$. We must show that $Int(\overline{V}) \neq \emptyset$. Let y ∈ Int(mV). Then there exists an open set W ∋y such that W C mV = mf(U). Claim that W C mf(U). Suppose not. Then there exists a $z \in W$ such that $z \notin mf(U)$ so $\frac{z}{m} \notin f(U)'$. Hence there exists an open set $M \ni \frac{Z}{m}$ such that $M \cap f(U) = \emptyset$ therefore $mM \cap mf(U) = \emptyset$. Now $mM \ni z$ and since M is open, mM is open therefore z & mM and mM \(mf(U) = \(g \). Hence z mf(U), a contradiction. So we have the claim. Since W > y and W C mf(U), $y/_{m} \in W/_{m}$ C f(U) so $Int(\overline{V}) = Int(f(U)) \neq \emptyset$. By Lemma 4.6, we can conclude that f is almost open. #

Lemma 4.8 Let $(X, \|.\|)$ be a FS(H) and (Y, p) is a separated paranormed space over [H. Let $f: X \to Y$ be linear, continuous and almost open. Then f is open.

<u>Proof</u>: Let U be an open set in N(X). We must show that $f(U) \in N(Y)$. Since $U \in N(X)$, $U \supseteq M_{\epsilon} = \{x | ||x|| < \epsilon\}$ for some $\epsilon > 0$.

Let $V = M_{\epsilon/2}$. We must show that $f(V) \subset f(U)$. Let $z \in f(V)$. Since f is almost open, for all $n \in \mathbb{N}$, $f(M_{\epsilon/2^n}) \in \mathbb{N}(Y)$; hence there exists a $\delta_n > 0$ such that $f(M_{\epsilon/2^n}) \ge \{y \in Y | p(y) < \delta_n' \}$. Let $\delta_n = \min \{\delta_1', \delta_2', \dots, \delta_n' \}$ Then { δ_n } $_{n \in \mathbb{N}}$ is a decreasing sequence of positive real numbers such that $f(M_{\epsilon/2^n}) \ge \{y \in Y | p(y) < \delta_n \}$ for n = 1, 2, ... Let $B = \{ y \in Y | p(z-y) < \delta_2 \}$. Since $z \in B$, $B \neq \emptyset$ so B is a nonempty open set. Since $z \in f(M_{\epsilon/2})$ and $B \ni z$, $B \cap f(M_{\epsilon/2}) \neq \emptyset$. Choose $x_1 \in M_{\epsilon/2}$ such that $p(z - f(x_1)) < \delta_2$. Then $z - f(x_1) \in f(M_{\epsilon/4})$. Choose $x_2 \in M_{\epsilon/4}$ such that $p(z - f(x_1) - f(x_2)) < \delta_3$. Repeating this argument, we get that for each $n \in \mathbb{N}$, there exists an $x_n \in \mathbb{N}_{\epsilon/2^n}$ such that $p(z - \sum_{i=1}^{n} f(x_i)) < \delta_{n+1}$. Since $||x_n|| < \epsilon/n$, by Theorem 4.4, $x = \sum_{n=1}^{\infty} x_n$ converges . Since $\|\cdot\|$ is continuous, $\|x\| \le \sum_{n=1}^{\infty} \|x_n\| < \epsilon$; so $x \in U$. Since $p(z-f(\sum_{i=1}^{n} x_i)) = p(z-\sum_{i=1}^{n} f(x_i)) < \delta_{n+1}$ for all n = 1, 2, ...and $\binom{\delta}{n}_{n \in \mathbb{N}}$ is decreasing, $z = f(\sum_{i=1}^{\infty} x_i) = f(x) \in f(U)$ so $f(V) \subseteq f(U)$. Since $f(V) \in N(Y)$, $f(U) \in N(Y)$ therefore f is open. #

Theorem 4.9 (Open mapping theorem)

Let X, Y be FS(H)'s. Let $f: X \rightarrow Y$ be linear, continuous and onto. Then f is open.

 $\frac{\text{Proof}}{\text{Proof}}$: Claim that Y is of second category. Let $(A_n)_{n \in \mathbb{N}}$ be a sequence of closed sets in Y with empty interior.

Given $n \in \mathbb{N}$, let $G_n = Y \setminus A_n$. Since Int $(Y \setminus G_n) = Int (A_n) = \emptyset$, G_n is a dense open set for all $n \in \mathbb{N}$. We must show that $\bigcap_{n \in \mathbb{N}} G_n = \emptyset$. Let d be the metric of Y. Since G, is an open nonempty subset of Y there exists a $y_1 \in G_1$ and an $\gamma_1 > 0$ such that $D(y_1, \gamma_1)$ = $\{y \mid d(y, y_1) \leq \gamma_1\} \subseteq G_1$. Since G_2 is dense in Y, $G_2 \cap D(y_1, \gamma_1) \neq \emptyset$. Choose $y_2 \in G_2 \cap D(y_1, \gamma_1)$. Then there exists an $\gamma_2 > 0$ such that $D(y_1, \gamma_2') = \{ y | d(y, y_2) < \gamma_2' \} = G_2 \cap D(y_1, \gamma_1). \text{ Let } \gamma_2 = \min \{ \gamma_2', \frac{\gamma_1}{2} \}$ Then D $(y_2, \gamma_2) \subseteq G_2 \cap D(y_1, \gamma_1)$ and $0 < \gamma_2 < \frac{\gamma_1}{2}$. Continuing this mehtod, we obtain a sequence $(\gamma_n)_{n \in \mathbb{N}}$ with $0 < \gamma_{n+1} < \gamma_{n/2}$ and D (y_{n+1}, γ_{n+1}) CD $(y_n, \gamma_n) \cap G_n$. Let m, $n \in \mathbb{N}$ be such that m > n. $y_m \in D(y_m, \gamma_m) \subseteq D(y_n, \gamma_n)$; so $d(y_m, y_n) \le r_n$ therefore $(y_n)_{n \in \mathbb{N}}$ is a Cauchy sequence, Since Y is complete, $(y_n)_{n \in \mathbb{N}}$ converges to a point in Y, say y. Since $y_m \in D(y_n, \gamma_n)$ for all m > n and $D(y_n, \gamma_n)$ is closed in Y for each n, $y \in D(y_n, \gamma_n)$ for each n. Hence $y \in G_n$ for all n so $\bigcap_{n \in \mathbb{N}} G_n \neq \emptyset$. Hence $\bigcup_{n \in \mathbb{N}} A_n \neq Y$ so Y is of the second category. By Lemma 4.7, f is almost open. By Lemma 4.8, f is open. # Theorem 4.10 Let X be a FS(IH), Y a separated paranormed space over IH, and $f: X \rightarrow Y$ linear and continuous. If f(X) is of second category

Proof: Since f is linear and f(X) is of second category in Y, by Lemma 4.7, f is almost open. By Lemma 4.8, since f is linear continuous and almost open, f is open. We must show that f is onto.

in Y then f is an open map from X onto Y.

Let $y \in Y$. Since $f(X) \in N(Y)$ and Y is a TVS(IH), f(X) is absorbing so there exists an $\varepsilon > 0$ such that $ty \in f(X)$ for $|t| < \varepsilon$. Thus $(\varepsilon_{/2})y \in f(X)$; hence $y \in \frac{2}{\varepsilon}$ $f(X) \subseteq f(X)$ so f is onto. #

Corollary 4.11 Let X, Y be Frechet spaces over |H| and $f: X \rightarrow Y$ a linear, continuous, one-to-one and onto map. Then f is a homeomorphism.

 $\underline{\text{Proof}}$: By Theorem 4.10, f is open. Then f^{-1} is continuous; so f is homeomorphism. #

Corollary 4.12 Two comparable Frechet topologies for a vector space over (H must be equal.

Proof: Let X be a vector space over \mathbb{H} with two comparable Frechet topologies, say \mathbb{T}_1 and \mathbb{T}_2 . Suppose $\mathbb{T}_1 \supseteq \mathbb{T}_2$. Let $i: (X, \mathbb{T}_1) \to (X, \mathbb{T}_2)$ be the identity map. Then i is linear, continuous, 1-1 and onto. By Corollary 4.11, i is a homeomorphism. Let $\mathbb{Q} \in \mathbb{T}_1$ be open. Then $i(\mathbb{Q}) = \mathbb{Q}$ is open in \mathbb{T}_2 . Hence $\mathbb{Q} \in \mathbb{T}_2$. Then $\mathbb{T}_1 \subseteq \mathbb{T}_2$. Hence $\mathbb{T}_1 = \mathbb{T}_2$. #

Theorem 4.13 (Closed graph Theorem).

Let X, Y be FS(H)'s. Let $f: X \to Y$ be a linear map with a closed graph G. Then f is continuous.

Then $\|(x, y) + (u, v)\| = \|(x + u, y + v)\| = p_1(x + u) + p_2(y + v) \le p_1(x)$ $+ p_1(u) + p_2(y) + p_2(v) = (p_1(x) + p_2(y)) + (p_1(u) + p_2(v)) = ||(x, y)||$ + $\|(u, v)\|$. Let (t_n) be a sequence of elements in \mathbb{H} such that $t_n \to t$ for some $t \in \mathbb{H}$ and $((x_n, y_n))_{n \in \mathbb{N}} \subset X \times Y$ with $\|(x_n, y_n) - (x, y)\| \to 0$ for some $(x, y) \in X \times Y$. We must show that $\|t_n(x_n, y_n) - t(x, y)\| \to 0$. Since $p_1(t_n x_n - tx) \rightarrow 0$, $p_2(t_n y_n - ty) \rightarrow 0$ and + is continuous, $\|t_n(x_n, y_n) - t(x, y)\| = \|(t_nx_n - tx, t_ny_n - ty)\| = p_1(t_nx_n - tx)$ $+ p_2(t_n y_n - ty) \rightarrow 0 + 0 = 0$ as $n \rightarrow \infty$. Hence ||. || is a paranorm on $X \times Y$. Let $(x, y) \in X \times Y$ be such that ||(x, y)|| = 0. Then $p_1(x) + p_2(y) = 0$; so $p_1(x) = 0$ and $p_2(y) = 0$. Since p_1 and p_2 are total, x = y = 0 so $\| \cdot \|$ is total. Let $(x, y) \in X \times Y \setminus \{(0, 0)\}$. Then $\|(x, y)\| > 0$. Let $0 < r < \|(x, y)\|$. Then $(x, y) \notin B((0, 0), r)$ so X x Y is separated. We must show that X x Y is complete. Let $(x_{\delta}, y_{\delta})_{\delta \in D}$ be a Cauchy net in XxY. Claim that $(x_{\delta})_{\delta \in D}$ is a Cauchy net in X and $(y_{\delta})_{\delta \in D}$ is a Cauchy net in Y. Let $U \in N(X)$ and $V \in N(Y)$. Since $(x_{\delta}, y_{\delta})_{\delta \in D}$ is Cauchy net in $(X \times Y)$, there exists a $\delta' \in D$ such that $\alpha \geq \delta'$, $\beta \geq \delta'$ implies that $(x_{\alpha}, y_{\alpha}) - (x_{\beta}, y_{\beta}) \in U \times V$; that is, $(x_{\alpha} - x_{\beta}, y_{\alpha} - y_{\beta}) \in U \times V$; hence $x_{\alpha} - x_{\beta} \in U$ and $y_{\alpha} - y_{\beta} \in V$ for all $\alpha \ge \delta$; $\beta \geq \delta$ so we have the claim. Since X and Y are complete, $x_{\delta} \rightarrow x'$, $y_{\delta} \rightarrow y'$ for some $x' \in X$, $y' \in Y$. Then $(x_{\delta}, y_{\delta}) \rightarrow (x', y') \in X \times Y$ so XxY is complete. Hence (XxY. | . |) ia a separated paranormed space so (Xx Y, ||. ||) is a FS(|H) and the topology induced by ||. || is the product topology of XxY.

Claim 2 G is a FS(\mathbb{H}) with respect to the relative topology Let $\|.\|$ be paranorm on X x Y. Then (G, $\|.\|$) is a paranormed space

over \mathbb{H} with respect to the relative topology. Since $\{(0,0)\}$ is closed in $X \times Y$ and G is closed in $X \times Y$, $\{(0,0)\} = \{(0,0)\} \cap G$. Thus $(G,\|.\|)$ is a separated paranormed space over \mathbb{H} . We must show that $(G,\|.\|)$ is complete. Let $(x_{\delta}, f(x_{\delta}))_{\delta \in \mathbb{D}}$ be a Cauchy net in G. Then $(x_{\delta})_{\delta \in \mathbb{D}}$ is a Cauchy net in X and $(f(x_{\delta}))_{\delta \in \mathbb{D}}$ is a Cauchy net net in f(X). Since X is complete, $x_{\delta} \to x_{0}$ for some $x_{0} \in X$. Since $(f(x_{\delta}))_{\delta \in \mathbb{D}}$ is Cauchy in f(X), it is Cauchy in Y. Since Y is complete, $f(x_{\delta}) \to y_{0}$ for some $y_{0} \in Y$. Since G is closed, $y_{0} \in f(X)$ so G is complete and thus G is a $FS(\mathbb{H})$ with respect to the relative topology

Let $T_1: G \to X$ be defined by $T_1(x, y) = x$. Clearly, T_1 is linear, continuous, one-to-one and onto. Since G is a Frechet space T_1 is a homeomorphism. Also the map $T_2: G \to Y$ given by $T_2(x, y) = y$ is continuous. Since $f = T_2 \circ T_1^{-1}$ and T_2 , T_1 are continuous, f is continuous. #

Theorem 4.14 Let X, Y be TVS(H)'s and let $f: X \to Y$ be a linear map. Then f has a closed graph if and only if for each net $(x_{\delta})_{\delta \in D}$ in X, if $x_{\delta} \to 0$ and $f(x_{\delta}) \to y$ then y = 0.

 $\underline{\operatorname{Proof}}: (\Longrightarrow) \text{ Suppose that f has a closed graph, say G.}$ Let $(x_{\delta})_{\delta \in D}$ be a net in X such that $x_{\delta} \to 0$ and $f(x_{\delta}) \to y$ for some $y \in Y$. We must show that y = 0. Since $(x_{\delta}, f(x_{\delta}) \to (0, y), (0, y) \in \overline{G} = G$ so y = f(0) = 0.

 $(\Leftarrow) \text{ Let G be the graph of f. Let } (a, b) \in \overline{G}.$ Then there exists a net $(g_{\delta})_{\delta \in D}$ in G such that $g_{\delta} \rightarrow (a, b)$ in XxY,

say $g_{\delta} = (x_{\delta}, f(x_{\delta}))$ where $(x_{\delta})_{\delta \in D}$ is a net in X. By assumption, $x_{\delta} \to a$ and $f(x_{\delta}) \to b$. Then $x_{\delta} - a \to 0$ and $f(x_{\delta} - a) = f(x_{\delta}) - f(a)$ $\to b - f(a)$. Hence b - f(a) = 0, so f(a) = b. Hence $(a, b) \in G$ so G is closed. #

Corollary 4.15 Let X, Y be TVS(\mathbb{H})'s with Y separated. Then a continuous linear map $f: X \to Y$ must have closed graph.

 $\frac{\text{Proof}}{\text{f}}: \text{ Let } (x_{\delta})_{\delta \in D} \text{ be a net in X such that } x_{\delta} \to 0 \text{ and}$ $f(x_{\delta}) \to y \text{ for some } y \in Y. \text{ Since f is continuous and } x_{\delta} \to 0,$ $f(x_{\delta}) \to f(0) = 0 \text{ ; hence } y = 0. \text{ By Theorem 4.14, f has closed graph. } \#$

Theorem 4.16 Let X, Y be FS(IH)'s. Let $f: X \rightarrow Y$ be linear and onto with closed graph. Then f is continuous and open.

Proof: Since f is linear and has a closed graph, by
Theorem 4.13, f is continuous. Since f is onto, by Theorem 4.9, f is
open. #

Definition 4.17 Let X be a TVS(IH) and let A, B be vector subspaces of X. A and B are algebraically complementary if and only if A+B=X and $A \cap B = \{0\}$. Define P: X \rightarrow A by P(x) = a where x = a+b, $a \in A$ $b \in B$. P is called the projection on A.

Theorem 4.18 Let X be a TVS(|H) and A, B be vector subspaces of X. which are algebraically complementary. Then A, B are closed if and only if the projection on A has closed graph.

 $Proof: (\Longrightarrow)$ Suppose A and B are closed. Let P be the projection on A. We must show that P has a closed graph. Let $(x_{\delta})_{\delta \in D}$ be a net in X such that $x_{\delta} \to 0$ and $P(x_{\delta}) \to y$ for some $y \in A$.

Since A+B=X, $x_{\delta}-P(x_{\delta})\in B$ and $x_{\delta}-P(x_{\delta})\to 0-y=-y$. Since B is a closed vector subspace of X and $-y\in B$, $y\in B$. Since $P(x_{\delta})\in A$, $P(x_{\delta})\to y$ and since A is closed in X, $y\in A$. Hence $y\in A\cap B=\{0\}$; so y=0. By Theorem 4.14, P has closed graph.

(\rightleftharpoons) Let $(a_{\delta})_{\delta \in D}$ be a net in A such that $a_{\delta} \to a$ for some $a \in X$. We must show that $a \in A$. Since $a_{\delta} \to a$, $a_{\delta} - a \to 0$; hence $P(a_{\delta} - a) = a_{\delta} - P(a) \to a - P(a)$. Since P has closed graph, by Theorem 4.14, a - P(a) = 0 so $a = P(a) \in A$ therefore A is closed. Similarly, we can show that B is closed in X. #

Definition 4.19 Let X be a TVS(H) and let A, B be algebraically complementary of X. Then A, B are called topologically complementary if and only if f the projection on A is continuous. A is said to be complemented in X if and only if A is one of a pair of topologically, complementary subspaces A, B in which case we write X = A + B.

Theorem 4.20 Let X be a Frechet space over |H and let A, B be algebraically complementary closed subspaces of X. Then A and B are topologically complementary.

Proof: Let P be the projection on A. We must show that P is continuous. Since A and B are closed, by Theorem 4.18, P has a closed graph. Since P is linear and has a closed graph, by the closed graph theorem, P is continuous. #

Definition 4.21 Let X be a TVS(IH). A basis for X is a sequence $(b^n)_{n \in \mathbb{N}}$ such that every $x \in X$ has a unique representation $x = \sum_{n=1}^{\infty} t_n b^n$.

For example, let c_0 = the set of all sequences converging to 0 with $\|x\| = \sup\{ \|x_n\| \|n\epsilon\| \}$. Then $(\delta^n)_{n \in \mathbb{N}}$ is a basis of c_0 where δ^n is the sequence with $x_n = 1$ and $x_k = 0$ if $k \neq n$.

Definition 4.22 Let X be a TVS(H). Let $(b^n)_{n \in \mathbb{N}}$ be a basis of X. Define $\ell_n: X \to \mathbb{H}$ by $\ell_n(x) = t_n$ where $x = \sum_{n=1}^{\infty} t_n b^n$. For all $n \in \mathbb{N}$, ℓ_n is a linear functional on X and ℓ_n has the property of forming with $(b^n)_{n \in \mathbb{N}}$ a biorthogonal system, that is, $\ell_n(b^k) = 0$ if $n \neq k$ and $\ell_n(b^n) = 1$. For each $n \in \mathbb{N}$, ℓ_n is called a <u>coordinate functional</u> and $(b^n)_{n \in \mathbb{N}}$ is called a <u>Schauder basis</u> if and only if each $\ell_n \in X'$.

Definition 4.23 A K - space over |H is a vector space over |H of sequences which has a topology such that each P_n is continuous, where $P_n(x) = x_n$, $x = (x_n)_n \in \mathbb{N}$.

Remark 4.24 Let X be a sequence space over |H| with basis $B = (\delta^n)_n \in \mathbb{N}^*$. Then X is a K-space over |H| if and only if B is a Schauder basis.

 \underline{Proof} : (\Longrightarrow) Suppose that X is a K-space over [H. Then X has a topology such that P_n is continuous for each $n \in \mathbb{N}$. Since P_n is linear and continuous and $P_n(\delta^k) = 0$ if $k \neq n$ and $P_n(\delta^n) = 1$, B is a Schauder basis.

 $(\Leftarrow) \text{ Since B is a Schauder basis for each } n \in |\mathbb{N}|$ there exists an $\ell_n \in X'$ such that $\ell_n(b^k) = 0$ if $k \neq n$ and $\ell_n(b^n) = 1$. Then $\ell_n(x) = \ell_n(\sum_{n=1}^\infty x_n \delta^n) = x_n$. Since $\ell_n \in X'$, there exists a topology

in X which makes ℓ_n continuous for all $n \in \mathbb{N}$. Thus X is K-space over \mathbb{H} . #

Remark 4.25 Let X be a TVS(IH) with basis $(b^n)_{n \in \mathbb{N}}$. Then X is linearly homeomorphic to a sequence space Y with basis $(\delta^n)_{n \in \mathbb{N}}$. Furthermore, Y is a K-space over IH if and only if $(b^n)_{n \in \mathbb{N}}$ is a Schauder basis of X.

Let $T = \{ M \subseteq Y | \text{there exists an open set G in X such that } M = u(G) \}$. Clearly T is a topology on Y. Also u is continuous with respect to T so u is a linear homeomorphism of X onto Y. Also, $u(b^n) = \delta^n$ and $\ell_n = P_n$ o u where $P_n(t) = P_n((t_n)_{n \in \mathbb{N}}) = t_n$, $n \in \mathbb{N}$. Thus $P_n \in Y$ if and only if $\ell_n \in X'$, By Remark 4.24, we can conclude that Y is a X-space over H if and only if $(b^n)_{n \in \mathbb{N}}$ is a Schauder basis for X: #

Let $q(x) = \sup\{p(\sum_{i=1}^{n} x_i \delta^i) | n \in \mathbb{N} \text{ and } x = \sum_{i=1}^{\infty} x_i \delta^i\}$. Then q is a paranorm for X and $q \geq p$.

 $\frac{\text{Proof}}{\text{Proof}}: \text{ For } x \in X, \text{ let } u^n = u^n(x) = \sum_{i=1}^n x_i \delta^i = (x_1, x_2, \dots, x_n)$

 $0,0,\ldots,0$). Then $q(x)=\sup\{p(u^n)\big|n\in\mathbb{N}\}$. We must show that q is a paranorm on X. It is clear that $q(x)\geq 0$, q(x)=q(-x) for all $x\in X$, q(0)=0 and $q(x+y)\leq q(x)+q(y)$ for all x, $y\in X$. We must show that scalar multiplication is continuous.

Claim 1 Let $(r_k)_{k \in \mathbb{N}}$ be a sequence of elements in \mathbb{N} such that $r_k \to 0$. Then $q(r_k x) \to 0$ for each $x \in X$. _____(1)

Let $(r_k)_{k \in [N]}$ be a sequence of elements in [H such that $r_k \to 0$. Let $x \in X$. We must show that $q(r_k x) \to 0$. Let $\epsilon > 0$ be given. Since $(u^n)_{n \in [N]} = (u^n(x))_{n \in [N]}$ converges to x in (x, p), $(u^n)_{n \in [N]}$ is bounded; so there exists a $\delta > 0$ such that $|t| < \delta$ implies that $p(tu^n) < \epsilon / 2$ for all $n \in [N]$. Since $r_k \to 0$, there exists an $N \in [N]$ such that k > N implies that $|r_k| < \delta$. Let $k \in [N]$ be such that k > N. Then $p(r_k u^n) < \epsilon / 2$ for all $n \in [N]$; so $q(r_k x) = \sup \{p(r_k u^n) \mid n \in [N] \le \epsilon / 2 < \epsilon$ so we have claim 1.

Claim 2. Let $k \in \mathbb{N}$. Let $(x_n^k)_{n \in \mathbb{N}}$ be a sequence in X. Then $q(x^k) \to 0$ implies that $q(tx^k) \to 0$ for all $t \in \mathbb{N}$. (2)

Let $t \in \mathbb{N}$, let $x^k = (x_n^k)_{n \in \mathbb{N}}$ and let $u^{k,n} = (x_1^k, x_2^k, \dots, x_n^k, 0, 0, \dots)$.

Let $\varepsilon > 0$ be given. Let $U \in \mathbb{N}(X, p)$ be such that $p(tu) < \varepsilon/2$ for all $u \in U$. Since $q(x^k) \to 0$ and $p(u^k, n) = p((x_1^k, x_2^k, \dots, x_n^k, 0, 0, \dots)) \le \sup$ $\{p(u^k, n)\} \le q(x^k)$, there exists an $N \in \mathbb{N}$ such that k > N implies that $u^k, n = (x_1^k, x_2^k, \dots, x_n^k, 0, 0, \dots) \in U$ for all $n \in \mathbb{N}$. Let $k \in \mathbb{N}$ be such that k > N. Since $u^k, n \in U$ and $p(tu) < \varepsilon/2$ for all $u \in U$, $p(tu^k, n) < \varepsilon/2$

for all $n \in \mathbb{N}$. Then $q(tx^k) = \sup \{ p(tu^k, n) | n \in \mathbb{N} \} \le \epsilon/2 \le \epsilon$ so we have claim 2.

Claim 3. Let $(r_k)_{k \in \mathbb{N}}$ be a sequence of elements in $[H \text{ and } (x^k)_{k \in \mathbb{N}} \subseteq X]$. If $r_k \to 0$ and $q(x^k) \to 0$ then $q(r_k x^k) \to 0$. (3)

Let $\epsilon > 0$ be given. Let U be a balanced neighborhood of 0 in (X, p)with $p(u) < \epsilon_{/2}$ for all $u \in U$. Then there exists an $N \in \mathbb{N}$ such that k > N implies that $||r_k|| < 1$ and $u^{k,n} \in U$ for all $n \in N$. Let $k \in N$ be such that k > N. Since $||r_k|| < 1$ and U is balanced, $r_k u^{k,n} \in r_k U \subseteq U$ for all $n \in \mathbb{N}$ and so $p(r_k u^k, n) < \epsilon_{/2}$ for all $n \in \mathbb{N}$. Thus $q(r_k x^k)$ = sup $\{p(r_k u^{k,n}) | n \in \mathbb{N}\} \le \epsilon_{/2}$ so we have claim 3. Let $(t_k)_{k \in \mathbb{N}}$ be a sequence of elements in IH such that $t_k \to t$ for some $t \in IH$ and let $(x^k)_{k \in \mathbb{N}}$ be a sequence of elements in X such that $q(x^k - x) \to 0$ for : some x $\in X$. We must show that $q(t_k^k - t_k) \to 0$. Let $r_k = t_k - t$ for all $k \in \mathbb{N}$ and $y^k = x^k - x$. Then $q(r_k x^k - tx) = q(r_k (x^k - x) + r_k x + t(x^k - x)$ $-tx^{k}$) $\leq q(r_{k}y^{k}) + q(r_{k}x) + q(ty^{k}) + q(tx_{k})$. By claim 3, $q(r_{k}y^{k}) \rightarrow 0$ and $q(tx^k) \rightarrow 0$. By claim 1, $q(r_k x) \rightarrow 0$. By claim 2, $q(ty^k) \rightarrow 0$ hence $q(r_{\nu}x^{k}-tx) \rightarrow 0$ so scalar multiplication is continuous therefore qis a paramorm on X. Let $x \in X$. Then $x = \sum_{i=1}^{\infty} x_i \delta^i$ so $p(x) = p(\sum_{i=1}^{\infty} x_i \delta^i)$ $\leq \sup \{p(\sum_{i=1}^{n} x_i \delta^i) | n \in \mathbb{N} \} = q(x) \text{ therefore } p \leq q. \#$

Theorem 4.27 Every basis of a FS(|H) is a Schauder basis.

Proof: Let (X, p) be a FS(IH). By Remark 4.25, we can take (X, p) to be a sequence space with basis $(\delta^n)_{n \in \mathbb{N}}$. For each $x \in X$, $x = \sum_{i=1}^{\infty} x_i \delta^i$, let $q(x) = \sup \left\{ p \left(\sum_{i=1}^{n} x_i \delta^i \right) \middle| n = 1, 2, 3, \ldots \right\}$. By Lemma 4.26, q is a paranorm for X and $q \geq p$. For each $n \in \mathbb{N}$ and for all $x \in X$, let $u^n = u^n(x) = \sum_{i=1}^{n} x_i \delta^i = (x_1, x_2, \dots, x_n, 0, 0, \dots)$. Claim that u^n is continuous on (X, q) for each $n \in \mathbb{N}$. Let $n \in \mathbb{N}$ and $a \in X$. Let $\epsilon > 0$ be given. Choose $\delta = \epsilon$. Let $x \in X$ be such that $q(x - a) < \delta$. Then $q(u^n(x) - u^n(a)) = q(u^n(x - a)) = q \left(\sum_{i=1}^{n} (x_i - a_i) \delta^i \right) |_{i=1}$ $= \sup \left\{ p \left(\sum_{i=1}^{k} (x_i - a_i) \delta^i \right) \middle|_{i=1} \right\} = \sup \left\{ p \left(\sum_{i=1}^{k} (x_i - a_i) \delta^i \right) \middle|_{i=1} \right\} = \sup \left\{ p \left(\sum_{i=1}^{k} (x_i - a_i) \delta^i \right) \middle|_{i=1} \right\}$ is continuous at x = a. Since a was arbitrary, u^n is continuous on (X, q) for each n. Since $u^n(x) - u^{n-1}(x) = x_i \delta^n = P_n(x) \delta^n$, by Corollary 3.48, P_n is continuous

on (X, q) for each n. Claim that (X, q) is complete. Let $(x^n)_{n \in IN}$ be a q - Cauchy sequence. Since P_k is linear and continuous on (X, q) for each k, P_k is uniformly continuous on (X, q) for each k; hence $(x_k^n)_{n \in IN}$ is a Cauchy sequence in [H] for each k. Let $x_k = \lim_{n \to \infty} x_k^n$.

We shall show that $\sum_{k=1}^{\infty} x_k \delta^k$ converges in (X, p). Since p is continuous

on (X, p), $p \left(\sum_{k=u}^{v} x_k \delta^k \right) = \lim_{n \to \infty} p \left(\sum_{k=u}^{v} x_k^n \delta^k \right)$ for all $u, v \in \mathbb{N}$.

Let $\epsilon > 0$ be given. Since $(x^n)_{n \in \mathbb{N}}$ is q - Cauchy, there exists an Né NN such that $n > m \ge N$ implies that $q(x^m - x^n) < \epsilon/_3$.

Let $n \in \mathbb{N}$ be such that n > N. Then $p(\sum_{k=u}^{v} x_k^n \delta^k)$

$$= p(\sum_{k=u}^{V} (x_{k}^{n} - x_{k}^{N}) \delta^{k} + \sum_{k=u}^{V} x_{k}^{N} \delta^{k})$$

$$\leq p(\sum_{k=u}^{V} (x_{k}^{n} - x_{k}^{N}) \delta^{k}) + p(\sum_{k=u}^{V} x_{k}^{N} \delta^{k})$$

$$= p(\sum_{k=1}^{V} (x_{k}^{n} - x_{k}^{n}) \delta^{k} - \sum_{k=1}^{u-1} (x_{k}^{n} - x_{k}^{N}) \delta^{k}) + p(\sum_{k=u}^{V} x_{k}^{N} \delta^{k})$$

$$\leq p(\sum_{k=1}^{V} (x_{k}^{n} - x_{k}^{N}) \delta^{k}) + p(\sum_{k=1}^{u-1} (x_{k}^{n} - x_{k}^{N}) \delta^{k}) + p(\sum_{k=u}^{V} x_{k}^{N} \delta^{k})$$

$$\leq q(\sum_{k=1}^{V} (x_{k}^{n} - x_{k}^{N}) \delta^{k}) + q(\sum_{k=1}^{u-1} (x_{k}^{n} - x_{k}^{N}) \delta^{k}) + q(\sum_{k=u}^{V} x_{k}^{N} \delta^{k})$$

$$\leq q(\sum_{k=1}^{v} (x_{k}^{n} - x_{k}^{N}) \delta^{k}) + q(\sum_{k=1}^{u-1} (x_{k}^{n} - x_{k}^{N}) \delta^{k}) + q(\sum_{k=u}^{v} x_{k}^{N} \delta^{k})$$

$$\leq q(\sum_{k=1}^{v} (x_{k}^{n} - x_{k}^{N}) \delta^{k}) + q(\sum_{k=1}^{u-1} (x_{k}^{n} - x_{k}^{N}) \delta^{k}) + q(\sum_{k=u}^{v} x_{k}^{N} \delta^{k})$$

$$\leq q(\sum_{k=1}^{v} (x_{k}^{n} - x_{k}^{N}) \delta^{k}) + q(\sum_{k=1}^{v} x_{k}^{n} \delta^{k})$$

$$\leq q(\sum_{k=1}^{v} (x_{k}^{n} - x_{k}^{N}) \delta^{k}) + q(\sum_{k=1}^{v} x_{k}^{n} \delta^{k})$$

Hence $(\sum_{k=1}^{n} x_k \delta^k)_{n \in \mathbb{N}}$ is p - Cauchy. Since (X, p) is complete,

 $\sum_{k=1}^{\infty} x_k \delta^k$ converges in (X, p). Let $a = \sum_{k=1}^{\infty} x_k \delta^k \in X$ taken with the p

metric. We shall show that $q(x^n - a) \to 0$. Let $\epsilon > 0$ be given. Choose $N \in \mathbb{N}$ such that $n > m \ge N$ implies that $q(x^m - x^n) < \epsilon$. Let $n, m \in \mathbb{N}$ be such that $n > m \ge N$. Then $p(\sum_{k=1}^r (x_k^n - x_k^m) \delta^k) \le q(x^n - x^m) < \epsilon$ for

any r. Thus for any such r, p($\sum_{k=1}^{r} (x_k - x_k^m) \delta^k$) $\leq \epsilon$ whenever $m \geq N$.

Thus $q(a - x^m) \le \epsilon$ for $m \ge N$. Hence $q(x^n - a) \to 0$. Therefore, $(x^n)_{n \in \mathbb{N}}$ converges in (X, q). So (X, q) is complete. Hence (X, q) is a FS(\mathbb{N}). Since $p \le q$, by Corollory 4.12, the topology induced by p equals the topology induced by q. Hence P_n is continuous in (X, p) for each $n > (\delta^n)_{n \in \mathbb{N}}$ is a Schauder basis for X. #