CHAPTER I

PRELIMINARY

The Algebra of Quaternions

Let $1, i, j$ and k denote, the elements of the standard basis for \mathbb{R}^{4}. The quaternion product on 19^{4} is then the \mathbb{R}-bilinear product with 1 as its multiplicative identity by the formulae $i^{2}=j^{2}=k^{2}=-1$, $i j=k=-j i, j k=i=-j$ and $k i=j=-i k$. In this thesis we shall denote the \mathbb{R}-algebra of $=17$ quaternions by " \mathbb{H} ". See [3].

Each quaternions $\dot{q}^{\prime}=a_{0} \cdot 1+a_{1} \cdot i+a_{2} \cdot j+a_{3} \cdot k \quad\left(a_{n} \varepsilon \mathbb{R}\right.$ for all n) is uniquely expressipie $i n$ the form $\operatorname{Re}(q)+\operatorname{Pu}(q)$, where $\operatorname{Re}(q)$ $=a_{0} \cdot 1 \varepsilon \mathbb{R}$ and $P u(q)=\alpha, \mathcal{q} \cdot a_{2} \cdot k \in \mathbb{R}^{3}, \operatorname{Re}(q)$ being called the real quaternion part of $\frac{1}{9}$ and $p u(q)$ the pure quaternion part of q.

The conjugate $\underline{q}-\frac{5}{y}$ a tuationion q is defined to be the quaternion $\operatorname{Re}(\bar{q})-p u(q)$.Hence $\overline{a+b}=-\bar{a}+\bar{b}, \overline{\mathrm{La}}=\lambda \overline{\mathrm{a}}, \overline{\bar{a}}=\mathrm{a}$ and $\overline{\mathrm{ab}}=\overline{\mathrm{b}} \overline{\mathrm{a}}$ for all $a, b \in \mathbb{H}$ and $\lambda \in \mathbb{R}$. Moreover, $a \in \mathbb{R}$ if and only if $\bar{a}=a$, while $\operatorname{Re}(a)=\frac{1}{2}(a+\bar{a})$ and $P u(a)=\frac{1}{2}(a-\bar{a})$. See $[3]$.
『
 a. If $a \neq 0$, then $|a| \neq 0$ and $\frac{a \bar{a}}{|a|^{2}}=\frac{\bar{a} a}{|a|^{2}}=1$. So we have :

Proposition 1.1 $\quad \mathbb{H}$ is a division ring.

Proof. See [3]. \#

Proposition $1.2|\mathrm{a} \cdot \mathrm{b}|=|\mathrm{a}||\mathrm{b}|$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathbb{H}$.

Proof. See [3]. \#

Proposition $1.3 \mathbb{H}$ is complete with respect to this absolute value.

Proof. Standard. \#

Linear algebra over tH.

Definition 1.4 A left vector/space X over H is a set of elements in which the operations of addition and scalar multiplication on the left are defined such that 11 is an abelian group under addition and if $x, y \in X$ and $\alpha, \beta \in \mathbb{H}$ thor
2) $\alpha(x+y)=2 \alpha x+\alpha y$,
3) $\alpha(\beta x)=(\overline{(\alpha \beta) x}$
4) 1. x
5) $(\alpha+\beta) \times$
$=2 \pi \Omega \frac{10 m}{}+$
$=A \alpha \alpha x+\beta x$.

From now on unlegg otherwise specified a vector space over $t H$ means a left vector space over \mathbb{H}. Examples of vector spaces over \mathbb{H}
(i)

(iii) $c=\left\{\left(z_{n}\right)_{n \in \mathbb{N}} \mid z_{n} \in \mathbb{H}\right.$ for all $n \in \mathbb{N}$ and $\left(z_{n}\right)_{n \in \mathbb{N}}$ converges $\}$
$\frac{\text { Definition } 1,5}{9}$ Let x bef vectorlspace over wind $\phi \neq A \underline{x}$. Then A is said to be a vector subspace or subspace of x if and only if $\alpha x+B y \in A$ for al x, oye $_{\mathrm{E}}$ and for ald α, B $_{\boldsymbol{H}}$. 6

Definition 1.6 Let X be a vector space over H and $A \subseteq X$. The span of A, written by $\langle A\rangle$, is the set of all (finite) linear combinations of A. Definition 1.7 Let X be a vector space over H and $A \leq X$. Then A is called convex if $s A+t A \subseteq A$ for $0 \leq s, t \leq 1, s+t=1$: balanced if ta $\in A$ for $|t| \leq 1$; and absorbing if for every $x \in X$ there exists an
$\varepsilon>0$ such that $t x \in A$ for $|t|<\varepsilon$. For a balanced convex and absorbing set A, define $\|x\|=\inf \{t>0 \mid x \in t A\} \cdot\|\cdot\|$ is called the gauge of A.

Definition 1.8 Let X be a vector space over \mathbb{H}. A vector subspace S of X is called maximal if and only if $S \neq X$ and $X=S+\langle x\rangle$ for some $x \in X$.

Definition 1.9: Let X be a vector space over \mathbb{H}. A subset (V_{α}) $\alpha \in I$ of X is said to be linearyly independent if and only if for any finite $v_{\alpha_{1}}, v_{\alpha_{2}}, \ldots, v_{\alpha_{n}} \sum_{m=1} \beta_{m} V_{\alpha_{n}}=0$ implies that $\beta_{m}=0$ for all m.
$\left(V_{\alpha}\right)_{\alpha \in I}$ is linearly gependent if and only if it is not independent. Definition 1.10 A irieat fadependent set spanning a vector space X is called a basis or base of X.

Definition 1.11 Let X, Y be vector spaces gyer H and $f: X \rightarrow Y$ a map. Then f is said to be linear map if and only if $f(a x+b y)=a f(x)+b f(y)$ for all $x, y \in X$ and for all $a, b \in \mathbb{H}$.

Definition 1.12 A pseudainetric on anset X is a real valued function d on the set6x x such bheto 98 ? 9 ? ?
(1) $d(x, y)=d(y, x) \geq 0$ for all $x, y \in x$,
(2) $d(x, x)=0$ for all $x \in X$.
(3) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

If also, (4) $d(x, y)=0$ implies that $x=y, d$ is called a metric.

Defintion 1.13 Let X be a topological space. $S \subseteq X$ is said to be of the first category in X if it is the union of a sequence of closed sets each of which has empty interior. Tf S is not the first cateqory in X it is said to be of the second category in X.

Theorem 1.14 (The Baire category theorem) A complete pseudometric space X is of the second category in itself.

Proof :

Definition 1.15 We say $x_{6} \rightarrow$ a if and only if for each neighberhood U of a there exists a $\delta \in \mathrm{D}$ such that $\delta \geqslant \delta$ implies that $x_{\delta}, \in U$.

Theorm 1.16 Let X, Y be topological spaces and $f: X \rightarrow Y$. Then f is continuous at $a \in X$ if and $a m y$ if $x_{0} \rightarrow$ a implies that $f\left(x_{8}\right) \rightarrow f(a)$ for each net $\left(x_{\delta}\right)_{\delta \in D}$

Proof: See [1].

Corollary 1.17 Let T, T be topologies on a set X such that for any net $\left(x_{\delta}\right)_{\delta \in D}$ in $X, x_{\delta} \rightarrow a$ in (X, T) implies that $x_{\delta} \rightarrow a$ in $\left(X, T{ }^{\prime}\right)$.

Theorem 1.18 Let be a collection of topologies for a set X. Then there exists a unique topology, denoted by $v \Phi$ ($=$ the set of all unions of finite intersections of members in ϕ), such that for any net $\left(x_{\delta}\right)_{\delta \in D}$ in $x, x_{6} \rightarrow a$ in $(x, v \oplus)$ if and only if $x_{6} \rightarrow a$ in (x, T)

```
for each T}\in\Phi\mathrm{ . For any topological space }Z\mathrm{ , a function f : Z 
is continuous if and only if f : Z }->(X,T)\mathrm{ is continuous for each
T\in@.
```

Proof : See [1]. \#

Theorem 1.19 Let X be a setf and $F=\left\{f_{\alpha}: X \rightarrow Y_{\alpha} \mid \alpha \in I\right\}$ where for each $\alpha \in I, Y_{f}$ is a topological space. Then there exists a unique topology on x, denotec loy $w F$, such that for any net $\left(x_{\delta}\right)_{\delta \in D}$ in x, $x_{\delta} \rightarrow a$ in $(x, w P)$ if $a n d$ only if $f_{\alpha}\left(x_{\sigma}\right) \rightarrow f_{\alpha}(a)$ in Y_{α} for each $\alpha \in I$. For any topological space z_{z}, a function $g: Z \rightarrow(x, w F)$ is continuous. if and only if $f_{\alpha} g$ is contingouts for each $\alpha \in I$.

Proof : Suppose $\bar{f} f=\{f\}$ where $f: X \rightarrow Y$. Let wf $=\left\{f^{-1}(G) \mid G\right.$ is an open set in Y, continuous, so for any gety $x_{\delta \in D}$ in x such that $x_{\delta} \rightarrow a$ in $(x$, wf) we get that $f(x) \rightarrow f(a)$ in y. Conversely. Souppose that $f\left(x_{0}\right) \rightarrow f(a)$ in Y where $\left(x_{\delta}\right) \frac{1 s}{\delta G D}$ a net in $(X, w f)$ and $\in X$. We must show that $x_{6} \rightarrow a$ in $(x, w f)$ Let U be an open neighberhood of a in ($x, w f$). Then $U=f$ fivs for some neiqhperhood v of $f(a)$ in Y. Since $f\left(x_{\delta}\right) \rightarrow f(a)$ and $V \Rightarrow f(a)$, there exists $a \delta^{\prime} \in D$ such that $\delta>\delta^{\prime}$ implies that $f\left(x_{6}\right) \in V$.
 in (X, wf). Let Z be any topological space. Suppose that $g: Z \rightarrow(X$,wf $)$ is continuous. fog is the composition of continuous maps. Then $f \circ g$ is continuous. Conversely, suppose fog is continuous. We must show that $g: Z \rightarrow(x, w f)$ is continuous. Let $a \in Z$ be arbitrary. Let $\left(x_{\delta}\right)$
be a net converging to a. Then $f\left(g\left(x_{6}\right)\right) \rightarrow f(g(a))$ therefore,
$g\left(x_{6}\right) \rightarrow g(a)$ in $(X, w f)$. Hence g is continuous.

In the qeneral case, let $w F=v\left\{\operatorname{wf}_{\alpha} \mid f_{\alpha} \in F, \alpha \in I\right\}=$ the set of all unions of finite intersections of members of $\bigcup_{\alpha \in I}\left\{\right.$ wf $\left.{ }_{\alpha}\right\}$. By Theorem 1.18, wF is a topology on X. By Theorem 1.18,

$$
x_{5} \rightarrow a \text { in }(x, w F) \text { if and only if } x_{6} \rightarrow a \text { in }\left(x, w f_{\alpha}\right) \text { for all }
$$

$\alpha \in I$. By the one function caso, $x_{b} \rightarrow a$ in (x, w_{α}) for all $\alpha \in I$ if and only if $f\left(x_{\alpha}\right) \rightarrow f(a)$ in γ_{α} for all $\alpha \in I$. The uniqueness of $w F$ come from Corollary 1,17 . We shall now prove the rest of the theorem. Let Z be any topoligical/space. Suppose $g: z \rightarrow(x, w F)$ is continuous.

Let $\alpha \in I$. Since f_{α} is continuous in $\left(X, w_{\alpha}\right), f_{\alpha} \circ g: Z \rightarrow Y_{f_{\alpha}}$ is continuous. Conversely, ;suppose $f_{\alpha} \circ g$ is continuous for each $\alpha \in I$. We must show that $g: z, \rightarrow(x, W F)$ is continuous. Let $a \in Z$. Let $\left(x_{\delta}\right)_{\delta \in D}$ be a net in z such that $x_{\delta} \rightarrow a$. Since f_{α} og is continuous for each $\left.\alpha \in I, f_{\alpha}\left(g\left(x_{0}\right)\right) \rightarrow f_{\alpha}^{(g)}(a)\right)$ for each $\alpha \in I$. By the one function case, $g\left(x_{0}\right)+g(a)$ in $\left(x_{i}, w f\right)$ for each $\alpha \in f^{\circ}$) By Theorem 1.18, $g\left(x_{6}\right) \rightarrow g(a)$ in $(x, w F)$. Hence $g: z \rightarrow(x, W F)$ is continuous. \# Definition 1.20 Let $\left\{x_{\alpha}\right\}$ be a family of topological spaces. The product in x_{α} is the set of and functions $x \geqslant I \rightarrow \bigcup_{\alpha \in I} x_{\alpha}$ such that $x_{\alpha} \underbrace{}_{\text {for each } \alpha \in I}$ for we write \dot{x}_{α} for $x(\alpha) \nmid=$ For two spaces $x, ~ Y$ we write the product as $x \times \mathcal{Y}$ By x^{I} we mean $\pi\left\{X_{\alpha} \psi_{\alpha \in I\}}\right.$ with $X_{\alpha}=X$ for each $\alpha \in I$. For each $\alpha \in I$, define $P_{\alpha}: \Pi X_{\beta} \rightarrow X_{\alpha}$ by $P_{\alpha}(x)$ $=x_{\alpha}$. Given $\alpha \in I, P_{\alpha}$ is called the projection on the α th factor.

Theorem 1.21 Let $\left\{X_{\alpha} \mid \alpha \in I\right\}$ be a family of topological spaces. There exists a unique topology on $1 \mathrm{X}_{\alpha}$ (called the product topology) such that for any net $\left(x_{\delta}\right)_{\delta \in D}$ in $\pi X_{\alpha}, x^{\delta} \rightarrow a$ if and only if $x_{\alpha}^{\delta} \rightarrow a_{\alpha}$ for
each $\alpha \in I$. For any topological space z and function $g: z \rightarrow \pi X_{\alpha}, g$ is continuous if and only if $P_{\alpha} \circ g$ is continuous for each $\alpha \in I$.

Proof : See [1]. \#

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

