CHAPTER III

RESULTS

Mud crab fishery in Klong Nigso mangrovo forest

Mud crabs are one $07 /$ the most important fishery resources harvested commercially from the Ranong mangroves. This crab fishery supports seventy full wime cpab fishernen in four fishing villages in this area of approximately 600 hectaresmApart from these commercial fishermen, quite a few casual crab fishermen, also harvest crabs from this mangrove. Mud crab, S. serrata were mostzy.caught in crab net traps. Crab trapping was usually carried out two to three days before and after new and full moon. The number of traps operated by each fisherman depends on the fishing ability of eaeh fisherman. Each fisherman-operated between 25 - 45 crab traps from small rowing boats. The actual fishing time varied from four to six homrs depending on the tiael and location of the fishing village. Baited traps were set at low tide in the middle of the creeks or on the sides of pargef channels. Iraps were continualy checked at intervals of fifteen minutes until high tide.

About 9.1 tons of S. serrata were caught monthly in the Klong Ngao mangrove area or a total of 109 tons annually. Almost all the crabs
caught by commercial fishermen were handled by crab dealers. In addition to the crabs sold to the dealers, a substantial quantity were also consumed by the fishermen themselves. They usually kept animals smaller than 10 cm for their own consumption because of their much lower market value. The total catch was usually sorted into three grades according to sizes, namely: crabs 10 cm . and smaller in carapace width; crabs larger than 10 cm . and females carrying eggs. Approximately 46 percent of the total catch of 109 tons annuady were orabs smaller than 10 cms . Crabs larger than 10 cms and berfied females comprised of 42 and 12 \% respectively in the total gatch, The fisherman received 10 Bahts per kg for crabs smaller than 10 cms and 30 Bahts per kg for those above 10 cms . The berried females got the highest price of 50 Bahts per kg. The crab dealers sold their crabs to wholegiters/in Ranong. These crabs were either sent to Bangkok or abroad suchas Malaysia and Singapore.

Length - weight Relationship

6a er

The total nymber of fisher ian's catch date for the measurement of weight (gm.) and carapace width (cm.) amounted to 8,130 individuals. Of these, 4,455 male and 3,675 demate 9 qud ababs dere measured. The percentage of catch according to different size groups in male and female mud crabs were shown in Table 2 and 3. The majority of males and females caught was in the size group of $8-10$ of 60.03 and 51.51% respectively.

37
Carapace width and weight in male S. serrata ranged from 4.74$13.25 \mathrm{~cm} .$, and $45-720 \mathrm{gm}$. , respectively. Carapace width and weight in female S. serrata ranged from $5.26-16.00 \mathrm{~cm}$. , and $45-720 \mathrm{gm}$. , respectively.

Table 2: Percentage of catch in different/size groups in male S. serrata from Klong Ngao mangrove forest, Ranong.

Table 3: Percentage of catch indifferent size groups in female S.serrata from Klong Ngao mangrove forest, Ranong

The relationship between carapace width and weight of S. serrata from Klong Ngao mangrove forest, Ranong province, yielded the result as follows:

1. Male S. serrata Forskäl

The relationship between carapace width and weight of male S. serrata can be expressed as
$W=0.097131(\mathrm{Cb})^{3.369941}$
The linearized from can be expressed as;
$\log (W)=3.369941 \log (04)-1.012642$
with $\mathrm{r}^{2}=0.90521 \quad n^{2}+4,455$ (Figure $3 ; \mathrm{a}, \mathrm{b}$)

2. Female S. serrata Norbkâ

The relationship between carapace width and weight of female S. serrata can also be expressed as;

$$
\begin{aligned}
& \mathrm{W}=0.559879(\mathrm{cW})^{2.55989} \\
& 990190 \text { and the inearized focm; } \\
& \log (\mathrm{W})=2.559879 \log (\mathrm{CW})-0.318198 \\
& \text { with } \mathrm{r}^{2}=0.9184 \quad \mathrm{n}=3,675 \quad \text { (Figure } 4 ; \mathrm{a}, \mathrm{~b} \text {) }
\end{aligned}
$$

LENGTH - WEIGHT RELATIONSHIP MALE S. serrata (Forkal)

CABAPD्रCE WDTH (cm)

Figure 3 : $98 \cap$ carapace width (ch) $\begin{gathered} \\ 9\end{gathered}$ serrata from Klong Ngao mangrove forest.
A. Allometric relationship
B. Linearized relationship

LENGTH - WEIGHT RELATIONSHIP
 FEMALE S. serrata (Forskal)

CAFAPACE WDTH (am)

Figure 4 carapade width (ew) weight (w) relationship of female Scylla serrata from Klong Ngao mangrove forest.
A. Allometric relationship.
B. Linearized relationship.

The result of the relationship between carapace width and weight of two sexes performed by regression analysis were summarized in Table 4, with corresponding to t^{t} value.

Table 4 : The relationship between carapace width and weight in male and female, S. serrata in Klong $N g a g$ mangrove forest.

The statistical t - test revealed that the coefficient b, for length weight relationship of male and female S. serrata, were significantly different from 3. Since the calculation of t^{\ddagger} values gave all the result larger than the tabulated value of the student - t distribution, which was equal to 2.236 at the degree of 6 freedom; $d ⿷>120$ and 10% of error level $(p=0.01)$, The bange of possiblevalue of b lied between 2.5 and 3.5 (Carlander, 1966; as cited by Pauly, 1982), usually close to 3 . When $\boldsymbol{b}=$ 3, weight growth is called isometric; this means that it proceeds in the same dimension as the cube of length. When b is not equal to 3 , weight
growth is called allometric; this means that it proceeds in a different dimension or differing from (CW$)^{3}$ and can be either positive (b>3) or negative ($b<3$). The result from the calculation of $t *$ valued show that both male and female S. serrata growth were allometric.

In comparing the carapace width- *eight relationship of both sexes , the weight in males increased more rapidly than females as the carapace width increased (Figure 5).

Abdominal Width - Carapace Width Relationship

1. Male S. Serrata ForbkaI

The relationship between abdominal width (AW) and carapace width (CW) of male S. serwata was expressed as;
$\mathrm{CW} \mathrm{F}^{2} 1.3127+3.4183 \mathrm{AW}$
P9\&\& 0 Q\&MFME?
with $r^{2}=0.7800$,
(Figure 6A.)

2. Female S. serrata Forskal

The relationship between carapace width (CW) and abdominal width (AW) of female S. serrata was expresised as;

$$
\mathrm{n}=3,675
$$

Growth Parameter

$$
\mathrm{CW}=4.9306+1.1865 \mathrm{AK}
$$

The length - frequency data of male mud crab,S. serrata, from Klong Ngao mangrove forest with the class interval of 0.5 cm ., were shown in Table 5. Length - frequency data of female Sesrata with the class

$$
\begin{aligned}
& \text { interval of } 0.5 \mathrm{~cm} \text {, were shown in Table } 6 \text {. } \\
& \text { P9' } \mathrm{Q}^{2} \text { were shown in Table } 6 . \\
& \text { จุหาลงกรณ์มหาวิทยาลัย }
\end{aligned}
$$

CARAPACE WIDTH - WEIGHT RELATION Scylla serrata (Forskal)

 จุณาลงกรณ์มตาวิทยาลัย
Figure 5: The comparison of carapace width - weight between male and female S. serrata from Klong Ngao mangrove forest, Ranong.

AW - CW RELATIONSHIP

Figure 6:Cafupace ofidth - abdoninal width refationship of mud crab Scylla serrata from Klong Ngao mangrove forest, Ranong.
A. Male Scylla serrata
B. Female Scylla serrata

The comparison between the distribution of carapace width in male and female S. serrata throughout the year showed that length - frequency histogram in male S. serrata was unimodal distribution; and female S. serrata was bimodal distribution (Figure 7). Size of female crabs which decreased in a number between two mode of the carapace width ranged from $8-10 \mathrm{~cm}$.

Determination of growth pgrameter, asyintotic length (L_{o}), and growth coefficient (K) of mud erab poptiftions using length - frequency data with adjusted class interyal $f^{2} 0 \mathrm{~m}=0.5 \mathrm{~cm}$. to 1.0 cm , yield the estimation of $\mathrm{L}_{\mathbf{6}}=17.50 \mathrm{~cm} ., \mathrm{K}=0.9$ with $\mathrm{Rn}=0.273$, and $\mathrm{t}_{0}=0.010$ in male crab populations; and $\mathrm{L}_{6}=17.7 \mathrm{~cm}, \mathrm{~K}=0.6$ with $\mathrm{Rn}=0.314$, and $\mathrm{t}_{0}=-0.50$ in female crab populations.

Longevity estimation 98 yud crab, S. serrata, computed from 95% sizes of L_{6} of crab yield 3.3 year in male S. serrate and 5 year in female S. serrata

The growth qurve of S, serrata hhich estimated from ELEFAN I are built up as shown in Figure 8 and 9.

Table 5 : Frequency data of carapace width in male Scylla serrata at Klong Ngao mangrove forest; April 1988 - March 1989, with 0.5 cm. class interval.

KIDLBHGTHS (cR.)	YONFI												
4.5													2
5.0	1			-									3
5.5													6
6.0		1									2		17
6.5												1	21
7.0	9								9	1	6	5	105
7.5	4	57							23	16	10	21	339
8.0	85	116						29	46	20	21	26	544
8.5	71	133		36	者		,	25	4	30	26	24	680
9.0	113	110	110	42	¢ ${ }^{\text {¢ }}$	38	32	22	92	33	23	37	711
9.5	105		99	18	- ${ }^{\text {co }}$		12			24	22	33	102
10.0	40		1	85	- 20					18	22	19	562
10.5	39		T	34	34	23			36	10	11	8	361
11.0	22	16	- 22	14	17	14	18	25	28	14	1	1	198
11.5		3		-					-	15	2	1	121
12.0		1%	\square	$\text { d } ?$			$\text { / } 9$			7	3	3	67
12.5		1	3	3	6			4	1			2	24
$\begin{aligned} & 13.8 \\ & 13.5 \end{aligned}$			97	$1 \int_{1}^{2}$	16		\bigcap^{3}		$1 \begin{gathered} 6 \\ 1 \end{gathered}$	$)_{1} 1$			13 3
14.0								1	1				2
TOTAL	536	685	656	305	126	322	260	274	485	196	155	181	4481

Table 6 : Frequency data of carapace width in female Scylla serrata at Klong Ngao mangrove forest, April 1988 - March 1989; with 0.5 cm. class interval.

Figure 7: The distribution of carapace width (CW) in S. serrata throughout the year from Klong Ngao mangrove forest, Ranong.

Figure 8: Growth curve of male S. errata population from Klong Ngao mangrove forest, output form BLEEAN I.

Figure 9: Growth curve of female S. serrate population from Klong Ngao mangrove forest, output from ELEFAN I.

Recruitment

1.Male S. serrata

The recruitment pattern of male S. serrata population around Klong Ngao mangrove forest revealed that there are recruitment occurred throughout the year with the percentage of 96.45% in one peak. The main pulse of recruitment pabtern covered about six months from May to October. The highest peak of recruitimert recorded in August with 17.96 \% (Figure 10).The percentage of aunual, recruitment computed by ELEFAN II was presented in Table 7 and Figure Th.

Table 7: Percentage of annual recruitment of male Scylla serrata population around Klooge Ngao mangrove forest.
\qquad

	Dec	3.00
	Jan	1.85
	Feb	0.00

Figure 10: Recruitment pattern of male Scylla serrata population from Klong Ngao mangrove forest, output from ELEFAN II program.

The recruitment pattern of female S. serrata from Klong Ngao mangrove forest as obtained from ELEFAN II in Table 7 and Figure 11 showed that recruitment occurred throughout the year, but with two distinct peaks. The maximal component of distributions extended 5 month from February to June. The peak of Lecruitment was in February. The recruitment pulse covered about 4 months with the percentage of 25.72%. The latter other peak of recryitment was in May with pulse covering the rest of the year with the percentage of 67.98%.

Table 8: Percentage of amula recruftment of female Scylla serrata population around Kiong Ngao mangrove forest.

Figure 11: Recruitment pattern of female Scylla serrata population at Klong Ngao mangrove forest, generated from ELEFAN II program.

Mortality

The catch curve of both male and female S. serrata and female S.serrata were shown in Figures 12 and 13. Estimation of total mortality $(Z)=6.374$ in male and 5.120 in female. Natural mortality (M) in male and female were estimated 1.938 and 1.481 respectively. While the fishing mortality in male and female were 4.435 and 3.639 respectively.

The ELEFAN II is also provided the probability of capture, the chance of animal to be gaught of each class sizes. The size of male S. serrata with high chances of geptuce of 50% and 75% were 8.653 and 9.272 cm. , respectively. In fenales, the sizes most likely caught at 50% and 75 \% probability were 9.574 and $10,216 / \mathrm{cms}$ respectively. These results corresponded well with the laatch data that the majority of males and females caught was in the size group of males and females caught was in the size group of $8>10$ cms. Apparently the females were usually larger than males. The result of probability of capture was computed as shown in Table 9 and 10 and the resultant curves, are shown in Figure 14 and 15.

ศูนยวิทยทรพยากร

 จุฬาลงกรณ์มหาวิทยาลัย

Figure12: Catch curve of male mud crab, S. serrata, from Klong Ngao mangrove forest, Ranong; generated from ELEFAN II.

Fisure13: Catch curve of female mud crab, S. serrata, from Klong Ngao mangrove forest, Ranong; generated from ELEFAN II.

Table 9 : Result on probability of capture of male mud crab, S. serrata, around Klong Ngao mangrove forest, computed by ELEFAN II program.

Mid-lengths (cm).	Prb. Seleotion	Smooth Prob.
4.5	0.001	0.00100
5.5	0.003	0.00400
6.5	0.033	0.02100
7.5	0.182	0.11400
8.5	0.056	

Table 10: Result on probability of capture of female Scylla serrata from Klong Ngao mangrove forest, output of result computed by ELEFAN II.

Mid-lengths (cm).	Prob. Selecuion	Smooth prob.
5.5	0.001	0.00100
6.5	0.014	0.00700
7.5	0.059	0.03400
8.5	0.157	0.15200
9.5	0.357	0.48100
10.5	1.000	0.82700
11.5	1,000	0.96100
12.5	1.090	0.99200
13.5	10.000	0.99848
14.5	1.000	0.99971

Figure14: Resultant curve on probability of capture of male Scylla serrata population around Klong Ngao mangrove forest, output from elefan II.

Figure 15: Resultant on probability of capture of female Scylla serrata around Klong Ngao mangrove forest, computed from ELEFAN II.

Reproduction

1. Sex - Ratio

Sex - ratio between male and female mud crabs throughout the year is $1: 0.82$ with 45.20% of female ravid. There were two interval of declination in female ratios. The finst interval appeared in April and the second interval showed deelining trend from September to January. From January, on the female ratiof fincreased equaled to the male ratio in February (Table 11, Figure 10). The spawning migration in female mud crabs was evidenced from the sex - ratio data.

PERCENTAGE OF FEMALE RATIO Scylfa serrata (Forskäl)

Figure 16: A percentage of female ratio of Scylla serrata, Klong Ngao mangrove forest, Ranong.

Table 11: Chi - square test of monthly sex - ratio between male : female, Scylla serrata, in the Klong Ngao mangrove forest.

MONTH	${ }_{\text {(H) }}^{\text {¢ }}$	$\stackrel{f}{(F)}$	$\mathrm{M}+\mathrm{F}$		x^{2}	M: \mathbf{F}	$\begin{aligned} & \boldsymbol{\%} \\ & \text { RATIO } \\ & \text { OF } \\ & \text { FBMALE } \end{aligned}$
APR	534	436	970	485	4.95*	1:0.82	44.95
MAY	684	633	317	65	0.99	1:0.93	48.06
JUN	657	75	416	708	3.67	1:1.16	53.60
JUL	305		615	308	0.02	1:1.02	50.41
AUG	426		776	388	3.72	1:0.82	45.10
SEP	322			241	27.62*	1:0.49	33.06
OCT	260			179	$37.21{ }^{*}$	1:0.37	27.17
NOV	274			190	$37.14{ }^{*}$	1:0.39	27.89
DEC	462		75	379	$18.42{ }^{\text {F }}$	1:0.64	38.97
JAN	195			274	2.66	1:0.78	43.80
FEB	155		. 31	15	0.00	1:1.00	50.00
MAR	181	223	40	202	2.18	1:1.23	55.20
Total	4455	3675	8130	065	7.42	1:0.82	45.20

The data on Gonad - Somatic Index revealed that females S. serrata in the catches throughout the year had the monthly mean values within the range of $0.61-12.97 \%$ (Table $12-13$, Figure 17). The female crabs with the gonad development in the $4^{\text {nd }}$ stage were approximately 41.15 \%, while those in the $3^{\text {rd }}$ and $4^{\text {the }}$ stages were 13.80 and 26.30 \% respectively. The immature femaie crabs with gonads being in the $1^{\text {st }}$ stage were approximately 18.75%.

The high values of GSI were recorded in May and September. The maximum value of GSI was recordedrin September GSI showed the declining trend after the month of September with the lowest being in December and
 from the mangrove forests duying: ρ ctober to January reflected by the low GSI values. From the field observations, revealed that from October to January the ratio of feales caught in the total catch within the mangrove were low as compared to other months. The declination of GSI values were coincided with afdecreased in sex + patio oflfemale S. Serrata population. GSI value and the female ratios decreased in September (Figure 18). Whereas the ratio of berried females caught by offshore trawling increased during November and October. This clearly indicated that the mature females moved out from the mangrove forest to spawn offshore. The major spawning season was between the months of September to January.

Table 12: Number of female S. serrata at each gonadal development stage in the Klong Ngao mangrove forest.

Table 13: Gonad - somatic Index in female Scylla serrata from Klong Ngao mangrove forest.

MONTH	$\begin{gathered} \text { 1st } \\ \text { Stage } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2nd } \\ \text { Stage } \end{gathered}$	$\begin{gathered} 3 \mathrm{rd} \\ \text { Stage } \end{gathered}$	$\begin{gathered} \text { 4th } \\ \text { Stage } \end{gathered}$	$\begin{gathered} \left(2^{\text {nd }}{ }_{-4}^{\mathrm{HE}} \mathrm{en}_{\text {Eh }}^{\text {Stages }}\right. \text { GSI. } \end{gathered}$
APR	0.17	0.78	$1,4$	6.15	2.48
MAY	0.20	1.53	3.17	8.37	4.36
JuN	0.12	0.5	1.23	2.63	0.88
JUL	0.13		1.42	6.38	2.93
AUG	0.1		2.70	6.97	3.93
SEP	0.67		1.65	14.44	12.97
OCT	0.18	84	1,18	2.93	1.00
NOV	0.1	66	0.96	0.00	0.72
DEC	0.10		. 0	0.00	0.61
JAN	0.08		1.12	0.00	0.61
FEB	0.14	0.71	1.83	2.79	1.11
MAR	0.18	1.03	1.60	4.14	2.33
MAXIMUM	0.67	1.53	3.17	14.44	12.97
MINIMUM	0.08	0.54	0.00	0.00	0.61

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Figure 17: Monthly gonad - somatic index in female S. serrata from Klong Ngao mangrove forest, Ranong.

Figure 18: The comparison between/Gonad-Somatic Index and a percentage of female Datios in S.serrata from Klons Ngao mangrove forest, Ranong.

QThe gonad condition of felale S. Serrata Was Qlassified into 4 stages based on the change of color as translucent, creamy or pale yellow, yellow, and orange or reddish orange. The microscopic examination in S. serrata ovary conditions were as followed;

1. stage I : A long narrow translucent strip was above the digestive gland of S. serrata. From the histological study indicates the initiation of follicles (Figure $19 \mathrm{~A}, \mathrm{~B}$). The stage was defined as an immature ovary.
2. stage II: Ovary initially changed color to creamy or pale yellow. Microscopic examination showed that some yolk globule were form into oocyte (Figure 20C).
3. stage III: Ovary becomed enlarge and changed color to yellow, covering $1 / 3-3 / 4$ part of the digestive gland. Microscopic examination showed that most of loocyte, were filled with yolk globule (Figure 20D). a<
4. stage IV : Thersterge has defined as mature ovary. The ovary covered most part of the digestive gland, and become orange or reddish orange. With microscopic examination showed that each of oocyte was large and fully packed with mature genital product (Figure $21 \mathrm{E}, \mathrm{F}$).

ศูนย้วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Figure 19: Histological identification of gonad stages of female Scylla serrata.
A. and B. = Immature stage of and ovary.

 serrata
$E=4$ th stage; mature stage $(0=$ oocyte $)$.
$\mathrm{F}=$ mature stage $(0=$ oocyte $)$.

3. Size at First Sexual Maturity

The fourth stage of gonad development in S. serrata when the ovary become orange or red color, was considered as fully developed and commonly used to determine size at first sexual maturity. Carapace width of female crab whose ovaries at 4 th stageloyary ranged from 8.35-11.51 cm., with mean carapace width of 9.94 car($n=102$). The minimal size in femaleS. serrata with mature gyary was 8.35 cm . This indicated that female S. serrata reach the sexuaf maturity at about this size. (Figure 22).

When sizes frequency data of gravid female S. serrata compared with female sizes distribution thfonghout the year found that modal sizes of gravid female were ranged feron $9-10 \mathrm{~cm}$. were coincided with the decrease in number between tho niode of female sizes frequency throughout the year(Figure 23 an (24). This could be due to the spawning migration of mature female crabs.
 ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Figure 22: A per cent of ovary stages of female Scylla serrata from Klong Ngao mangrove forest

Figure 23: Size distribution of gravid female Scylla serrata from Klong Ngao mangrove forest, Ranong.

\square gravid female -- TOTAL SIZE FREQ.
KLONG NGAO MANGROVE:FOREST, RANONG,

Figure 24. The comparison of size distribution between gravid female \& female Scylla serrata from Klong Ngao mangrove forest, Ranong.

