CHAPTER 3

RESULTS

A. EVALDATION OF GRANUDES

1. Bulk Volume
1.1 Manual anc gscillating methods

Comparison/of the bulk volume of diazepam granule prepared by manual and oscillating method is shown in Figure 5 and Table 3. Both the oscillating and manual methods with different sieve size gave different bulk volumes. As the numbef of sieve increased the bulk volume of both granules decreasg, the bulk volume of oscillating method was slightly larger than the buhe volume of manual method. As the number of sieve inoreased, the standard deviation also decreased in both manual and oscillating

1.2ฯFluid bed spray drying method
 diazepalm granule prepared by fluid bed spray drying method. Table 3 also lists the physical properties of diazepam granule prepared by this method. As the weight of PVP increased, the bulk volume and its standard deviation also increased especially when $15 \mathrm{mg} / \mathrm{tab}$ of the binder was used.

Table 3 Comparison of bulk volume of diazepam Eranules prepared by manual, oscillating and fluid bed spray drying methods.

1.3 Comparison of bulk volume of diazepam granules prepared by manual, oscillating and fluid bed spray drying methods.

When $6 \mathrm{mg} / \mathrm{tab}$ of PVP used as binder in the three methods, it was found that the bulk volume from fluid bed spray drying method was lesser than oscillating method except the granule prepared by the sieve number 30 and larger than manual method except the granule prepared by the sieve numben 12

When increasing the amount of PVP to $9 \mathrm{mg} / \mathrm{tab}$ in fluid bed spray drying inethod the result was the same as previously mentioned. Fupther increasing the binder to 12 gm/tab, the bulk volume for fluid bed spray drying method was lesser than of oschllating method except the granule prepared by the sieve number 25 and 30 and greater than of the bulk volume of all granule prepared by manual method.

When the bighest amount of the binder was used as $15 \mathrm{mg} / \mathrm{tab}$ Othe buik $\mathrm{k} /$ Yoiluife forlfluid? bed spray drying method was the highest oompared to manual and oscillating

2. \% Fine of Granule
2.1 Manual and oscillating method Comparison of \% fine of diazepam granule which prepared by manual and oscillating methods is shown in Figure 7 and listed in Table 4: The \% fine of granule prepared by oscillating method was lower than the

Figure 7 Comprison of \%fine of diesepan Grenules preparea by

Table 4 Comparison of \% fine of diazepam granules prepared by manual, oscillating and fluid bed spray drying methods.

\% fine from manual method for all sieve sizes.
2.2 Fluid bed spray drying method

The \% fine of diazepam granule prepared by fluid bed spray drying method is shown in Table 4 and Figure 8. As the weight of PVP increased from 6 to 15 $\mathrm{mg} / \mathrm{tab}$ the \% fine of granule extensively decreased.
2.3 Comparison of $\%$ fine of diazepam granules prepared by manual, oscillatine and fluid bed spray drying methods

When $6 \mathrm{mg} / \mathrm{tab}$ of PYP was used in fluid bed spray drying method the \%, fine of diazepam granule was markedly higher than those from manusl and oscillating methods.

When increasing, PVp to $9-12 \mathrm{mg} / \mathrm{tab}$ in fluid bed spray drying method, the same result was obtained. Further
 method the $\%$ fine of diarepam Eranule yas still higher than the diazepan granule prepared by oscillating method and greater than by the manual method.
3. s.ศศุนย

 Comparison of size distribution of diazepam

 granule prepared by manual and oscillating methods using the sieve number 12 is shown in Figure 9. The size distribution of diazepam granule prepared by manual method was in a higher frequency in the range of 0-149 and 840$1680 \mu \mathrm{~m}$. and was in a lower frequency in the range of
as granulating agent.

, oscillating method.

149-177, 177-250, 250-420 and 420-840 $\mu \mathrm{m}$. when compared to the diazepam granule prepared by oscillating method. Granules prepared by manual method had the greatest frequency in the range of $840-1680 \mu \mathrm{~m}$. and the lowest in the range of $149-177 \mu \mathrm{~m}$. Granules prepared by oscillating method had the greatest frequency in the range of 420-840 $\mu \mathrm{m}$. and the lowest frequengs ohe, same as the granule prepard by manual method:

Comparison of/fize distribution of diazepam granule prepared by menual and osoillating method using sieve number 16 is shown in Figure 10. The size distribution of diazepem sfraule prepared by manual method showed higher frequency intbe range of 0-149 and 840-1190 $\mu \mathrm{m}$. and lower frequencyin the same range as the granule prepared by sieve numbex 12 when compared to the diazepam granule prepared by oscillating methodSaranules prepared by manual method had the greatest poputation in the range of 840-1190 $\mu \mathrm{m}$. and the lowest in the range of 149-177 $\mu \mathrm{m}$. Granupas Dprepared $\mathrm{fy} /$ oschlating fethod had the greatest population in the range of $420-840 \mu \mathrm{~m}$. and the lowest the same as the stanule prepered by manial method. Comparison of size distribution of diazepam granule prepared by manual and oscillating methods using sieve number 20 is shown in Figure 11. The size distribution of diazepam granule prepared by manual method showed higher frequency in the range of 0-149, 149-177 and 840-1190 $\mu \mathrm{m}$, and lower in the range of 177-250, 250-420

WV , Oscillating method.

©IIV, Oscillating method.
and 420-840 $\mu \mathrm{m}$. when it was compared with the diazepam granule prepared by oscillating method. the diazepam granule had the greatest frequency in the range of 840$1190 \mu \mathrm{~m}$. and the lowest in the range of $149-177 \mu \mathrm{~m}$. The diazepam granule prepared by oscillating method had the greatest frequency in the range of 420-840 $\mu \mathrm{m}$. and it had lowest size the same as the granule prepared by manual method.

Comparison of gize distribution of diazepam

 granule prepared by manpal and oscillating methods using sieve number 25 is shown in Figure 12. The size distribution of diazeparo geanule prepared by manual method demonstrated higher frequency than granule prepared by oscillating method exceptian the range of $149-420 \mathrm{um}$ and 840-1190 $\mu \mathrm{m}$. They hed the greatest population in the range of $420-840 \mu \mathrm{~m}$ and the lowest in the range of $840-$ $1190 \mu \mathrm{~m}$. Granures prepared by oscillating method had the greatest and the lowest population the same as the granule prepared by manual method.Complarison of size distribution
granupa 9\%repareq by manuah and oscintating methods using sieve number 30 is illustrated in Figure 13. The size distribution of diazepam granule prepared by manual method showed higher frequency than the diazepam Eranule prepared by oscillating method except the range of $149-420$ $\mu \mathrm{m}$. The diazepam granule prepared by manual method had the greatest population in the range of $420-840 \mu \mathrm{~m}$. and

䴟, Oscillating method.
the lowest in the range of 840-1190 $\mu \mathrm{m}$. The diazepam granule prepared by oscillating method had the greatest and the lowest population the same as the granule prepared by manual method.
3.2 The fluid bed spray drying method

Comparison of size distribution of diazepam granule prepared by fluid bed spray drying method using various amounts of PVP as grantlabing agent is shown in Figure 14 and Table 6 , Then $6 \mathrm{mg} / \mathrm{tab}$ of PVP was used the diazepam granules werg/highly accumulated in the size range of 0-149 um. The eranules were less accumulated in the range of $149-1190$. Wher increasing the amount of PVP to $9 \mathrm{mg} / \mathrm{tab}$ the wesult was the same. Further increasing PVP to 12 ,mg/tab the granule was less accumulated in the rangelof: 840-1190 $\mu \mathrm{m}$, when the highest amount of the binder tads used, the granules were highly accumulated in the range of 250-420 unt
3.3 Comparison of the mean diameter of diazepam granule prepared by manual, pscillating and fluid bed

The-mean diameterf $q^{f} 9$ diazepam granule prepared by the three methods are listed in Table 7 and 8 . When 6 $\mathrm{mg} / \mathrm{tab}$ of the binder was used in the three methods it was found that the granules from fluid bed spray drying method were more accumulated in the range of 0-149 μm and the mean diameter was 86.55μ which it was smaller than the mean diameter of granules prepared by the other two methods.

Table 5 Comparison of the size distribution of diazepam granule prepared by fluid bed spray drying method using different levels of PVP.

Figure 14 Comparison of size distribution of granile prepared by
 polyvinylpyrrolidone as granulating agent. จุหาลงกรณมหาวิทยาลัย

Table 6 Influence of method of preparing on the mean diameter of diazepam granules prepared by manual and oscillating methods.

Table 7 Influence of amount of PVP as granulating agent on the mean diemeter of diazepam granules prepared by fluji ded spray drying method.

* Average of 5 determinations

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

When increasing the amount of PVP to $9 \mathrm{mg} / \mathrm{tab}$ in fluid bed spray drying method. The mean diameter of granules was $118.59 \mu \mathrm{~m}$ which it was a little higher than the mean size of granules prepared by using the binder 6 $\mathrm{mg} / \mathrm{tab}$ but it was still smaller than the mean diameter prepared by other two methods.

Further increasing the amount of PVP to $12 \mathrm{mg} / \mathrm{tab}$ in fluid bed spray drying method. Although the population was well distributed in the range of 149-177, 177-250, 250-420 and 420-840 $\mathrm{\mu m}$, the mean diameter was larger than the granule prepared by using lower amount of the binder but was still smaller than the mean diameter prepared by the other two methods.

When the highest of the binder was used in fluid bed spray drying method the mean diameter was bigger than those prepared by using less amount of PVP but was smaller than the mean diameter prepared by the other two methods.

4.1 Manual and oscillating methods e

Q 9% Comparison flaw rate bediasepam granules prepared by manual and oscillating methods are shown in Figure 15 and Table 8.

As the number of sieve increased the flow rate increased. The flow rate of granule prepared by manual method was faster than the granule prepared by oscillating method.

Table 8 Comparison of flow rate of diazepam granules prepared by manual, oscillating and fluid bed spray drying methods.

** Unmeasufable
จุหาลงงกรณ์มหาวิทยาลัย

method.
4.2 The flow rate of diazepam granules prepared by fluid bed spray drying method is listed in Table 8 and Figure 16. When using $6 \mathrm{mg} / \mathrm{tab}$ of PVP as the binder, nonflowable granule was obtained. When $9 \mathrm{mg} / \mathrm{tab}$ of the binder was used, the granule could flow but the flow rate was poor. Further increasing the amount of PVP to 12 $\mathrm{mg} / \mathrm{tab}$, the flow rate was exteasiyely increased. However, further increasing the amount of binder to $15 \mathrm{mg} / \mathrm{tab}$ the flow rate was slifhtly decreased
4.3 Comparisod 0 f flow rate of diazepam granules prepared by manual, oscilating and fluid bed spray drying methods are shown in Figure 15 and 16.

When the same innount of $6 \mathrm{mg} / \mathrm{tab}$ of PVP was used the granule from fluld bed spray drying method was nonflowable but the other three granules were flowable. When increasing the amount of PVP to 9 mig/tab in fluid bed spray drying method the flow rate of diazepam granules prepared by manual and oscillating were still faster than the granulepreparea by fluidGed spray drying method.

Further increasjing the amount of bjnder to 12 mg/taß 9% ffuid bed spray drying meftod the diazepam granule flow faster than the diazepam granules prepared by oscillating and manual methods except that prepared by manual method with the sieve number 30 . When the highest amount of the binder was used in fluid bed spray drying method the flow rate was still faster than granules prepared by other two methods except the granule prepared
(00E/w6) 3Iva Mols
Figure 16 Oopparison of flou rate of diazepam granules prepared by
fluid bed spray drying method using various amounts of
polyvinylpyrrolidone as granulating agent.
by the sieve number 25 and 30 in manual method and the granule prepared by the sieve number 30 in oscillating method.

5. Repose Angle

5.1 Comparison of repose angle of diazepam granules prepared by manual and osoillating method

Comparison of repose angle of diazepam granules prepared by manual and 930 illatins method as illustrated in Figure 17, the repose angle increased as the sieve size increased both in manye. 1 and oscillating method. However the oscillating method gevelarger angle than the manual method when using the sankisieye number.
5.2 The repbser angle of diazepam granules prepared by fluid bed spray drying method.

Comparison of the repose angle of diazepam granule prepared by fluj bed spray drying method was listed in Table 9. When $6 \mathrm{mg} / \mathrm{tab}$ of PVP was used as the binder the repose ansle couif qnot he mepsured beause of the nonflowability of the granules. When 9,12 and $15 \mathrm{mg} / \mathrm{tab}$ of PVP $9 / 7$ Qus 6ud as bthebinder the crepesed angle was increased from 41.58 to 43.00 . Increasing the amount of PVP would increase the repose angle of the granule.
5.3 Comparison of repose angle of diazepam granules prepared by manual, oscillating and fluid bed spray drying methods.

Table 9 Comparison of repose angle of diazepam grangules prepared by manual, oscillating and fluid bed spray drying methods.

Figureis comparison of repose angle of diazepam granules prepared by
polyvinylpyrrolidone as granulating agent.
$\mathrm{mg} / \mathrm{tab}$ of PVP the repose angle was uncomparable. When increasing the amount of PVP to $9 \mathrm{mg} / \mathrm{tab}$ the repose angle was large amount the granules obtained by fluid bed spray drying , manual and oscillating methods.

Further increasing PVP to $12 \mathrm{mg} / \mathrm{tab}$ in fluid bed spray drying method the repose angle was larger than all the granule which prepared oy manual and oscillating methods.

When the highost/amount of the binder was used in fluid bed spray dryipgmethod as $15 \mathrm{mg} / \mathrm{tab}$ the repose angle was highest comparad to all granules obtained by manual and oscillating methods.

B. EVALUATION OF TABLC:

1. Weight Variation of Diazepam Tablet
1.1 Corngarison of weight of diazepam tablet prepared by manual and oscillating methods
 diazepam tablet prepared by oscillating method except the tablet prepared by the sieve number 25 . The tablet prepared by larger sieve size showed larger weight deviation than that prepared by smaller the sieve size. The weight variation of diazepam tablet prepared by oscillating method gave lower weight variation than manual

Table 10 Comparison of weight of diazepam tablets prepared by manual, oscillating and fluid bed spray drying methods.

* Average of 20 determinations a $9,9 \% ?$ e

\square, Manual and + ,Oscillating
and oscillating methods

(8ㄸ) LHDIIM *
method.
1.2 The weight of diazepam tablet prepared by fluid bed spray drying method

Comparison of the weight of diazepam tablets prepared by fluid bed spray drying method is listed in Table 10 and Figure 20. Whem 6, 9, 12 and $15 \mathrm{mg} / \mathrm{tab}$ of PVP was used as the binder the mean weight was within the limit of $+10 \%$ from the mean weight. When $12 \mathrm{mg} / \mathrm{tab}$ of PVP was used the weight variation was the lowest. When 6 $\mathrm{mg} / \mathrm{tab}$ of PVP was used the weight variation was the highest.
1.3 Comparison (of weight of diazepam tablets prepared by manual, oscillating and fluid bed spray drying methods

All tablesg weighed within the limit of $+10 \%$ from the mean weight.

The mean weight of tablets using $6 \mathrm{mg} / \mathrm{tab}$ as the binder in fluid bed spray drying method was found to be lower than thep tapretan prepared py the sieve number 12 and 25 but higher than all other tablets in manual method, and lowerathom platabletsjprepawed by goscidating method except qthose prepared by the sieve number 25 .

When increasing the amount of PVP to $9 \mathrm{mg} / \mathrm{tab}$ the mean weight was the lowest amount the tablet prepared by fluid bed spray drying, manual and oscillating methods.

Further increasing the amount of PVP to $12 \mathrm{mg} / \mathrm{tab}$ in fluid bed spray drying method the mean weight was the

spray drying method using various amounts of polyvinylpyrrolidone
as granulating agent.
highest when compared to all tablets in the other two methods except the tablets prepared by the sieve number 12 and 30 in oscillating method.

When it was compared to the manual and oscillating methods the tablet which prepared by using $15 \mathrm{mg} / \mathrm{tab}$ as the binder in fluid bed spray/drying method had the lowest of the mean weight except the tablet which prepared by the sieve number 16 in manus method.

2. Hardness of Tablet

2.1 Comparison of hardness of diazepam tablets prepared by manual and ospillating methods

Compraison 46 fhardness of diazepam tablet prepared by manual and gsolilating method was shown in Figure 21 and Table 11 the mean hardnesses of tablet which prepared by manyal and oscillating methogs were within the limit of $3-6 \mathrm{Kps}$. The standard deviation was increased when the tablet was prepared by using an larger sieve size and was deoreased When the tablet prepared by a smaller the sieve size. The hardness of tablet prepared by manual method had a highen standard deviation than that prepared
by oscillating method, 60 ,
2.2 Comparison of hardness of diazepam tablets prepared by the fluid bed spray drying method

Comparison of hardness of diazepam tablet prepared by the fluid bed spray drying method was listed in Table 11 and Figure 22. When 6, 9, 12 and $15 \mathrm{mg} / \mathrm{tab}$ of PVP were used. The mean hardnesses of all tablets were

Table 11 Comparison of hardness of diazepam tablets prepared by manual, oscillating and fluid bed spray drying methods.

as granulating agent.
within the limit of $3-6 \mathrm{Kps}$. When smaller amount PVP was used the standard deviation of the hardness was quite large and it was decreased when the tablet prepared by using $12 \mathrm{mg} / \mathrm{tab}$. When increasing the amount of PVP to 15 $\mathrm{mg} / \mathrm{tab}$ the standard deviation of the hardness was increased again.
2.3 Comparison of percness of diazepam tablets prepared by manual, oscillating and fluid bed spray drying methods

> When the hafdnesses of tablets prepared by using $6 \mathrm{mg} /$ tab of the pinder was compared it was found that the hardness of tablets from fluid bed spray drying method was higher than allitablets from manual method except the tablet prepaned by the sieve number 12 , was only higher than the tablet whigh prepared by the sieve number 12 and 25 in ocolzwating method.

When the tablet was prepared by $9 \mathrm{mg} / \mathrm{tab}$ of the binder fluid bed spray drying method it was found that the hardness was lowénthan ald tablets prepared by manual and oscillating methoas except the tablet prepared by the

Further increasing the amount of PVP to $12 \mathrm{mg} / \mathrm{tab}$ the hardness of tablets was higher than those by manual method except the tablet prepared by the sieve number 12 . was lower than the tablets prepared by oscillating method except the tablet prepared by the sieve number 25 .

When the tablets were prepared by using $15 \mathrm{mg} / \mathrm{tab}$
of the binder in fluid bed spray drying method the hardness of the tablet was higher than all tablets except the tablet prepared by the sieve number 12 from manual method.

3. Disintegration Time

3.1 Comparison of disintegration time of diazepam tablet prepared by manual and oscillating methods Comparison of disintegration time of diazepam tablet propargd/py manual and oscillating method was listed in Table 12. fanger sieve number decreased the disintegration time of tablets from both manual and oscillating methods. The isblet prepared by oscillating method showed higher disintegration time than the tablet prepared by manual method.

The disjntegration time of tablets which prepared by manual method showed higher standand deviation than that by the oscijlating method.
prepared
3. 2 The dsintegration time of diazepam tablets prepared by fiuid Bea spray drying method wás shown in Table 12 and Figure 19. The tablet prepared by less amount of PVP showed faster disintegration time than the tablet using higher amount of PVP. The tablet prepared by 12 $\mathrm{mg} / \mathrm{tab}$ of PVP showed the lowest standard deviation than the tablet containing by the other three amount of PVP.

3.3 Comparison of disintegration time of diazepam

Table 12 Comparison of disintegration time of diazepam tablets prepared by manual, oscillating and fluid bed spray drying methods.

(0es) आWIL NOLLVZワGINISII
method.

asgranulating agent.
tablets prepared by manual, oscillating and fluid bed spray drying methods

Comparison of disintegration time of diazepam tablet prepared by manual, oscillating and fluid bed spray drying methods were shown in Table 12 . When $6 \mathrm{mg} / \mathrm{tab}$ of PVP was used the disintegration time of tablet prepared by fluid bed spray drying method yes the fastest.

When increasing the amount of PVP to $9 \mathrm{mg} / \mathrm{tab}$ in fluid bed spray dxying method it was found that the disintegration time was/slightly increased. However, it was faster than those from manual method except the tablets prepared by the sheve number 30 and faster than all tablets prepared bycoscillating method. Except the tablets prepared by the sifeve fumber 25 and 30 .

Further increasing PVP to $12 \mathrm{mg} / \mathrm{tab}$ the disintegration time was inereased, and slower than those of the tablets prepared by all sieve number except number 12 both in manual and oscillating methods.

When the fighest amount of thel binder was used the disintegration was slower कhan all cthe tablets prepared $/ V_{\text {manual }}$ and oscihlating methoas Cexcept the tablet using sieve number 12 from manual method.
4. \% Friability
4.1 Comparison of \% friability of diazepam tablets prepared by manual and oscillating methods Comparison of \% friability of diazepam
tablets prepared by manual and oscillating method was shown in Figure 25 and Table 13. Tablets prepared by manual method using the sieve number $12,16,20,25$ and 30 gave $0.92,0.48,0.43,0.50$ and 0.59% friability respectively. The \% friability and its standard deviation were the least for tablet prepared by the sieve number 20 . The tablet prepared by the sieye number 12 gave the highest \% friability and its sbendard deviation.

For tablets preparled by osoillating method, as the sieve size incraased the \% friability was slightly increased. And ius standard deviation was also increased except the tablet prepared thy sieve number 12 .
4.2 The \% friabiषity of diazepam tablet prepared by fluid bed spray dryint method

The \% friability of diazepam tablet prepared by fluid bed spray drying method was gummarized in Table 13 and Figure 26. The lesser amount of PVP as the binder produced greater \% friability of the tablets and its standard
 prepared by manual oscillating and ffyid bed spray drying methods

The \% friability of all diazepam tablet prepared by manual, oscillating and fluid bed spray drying method were less than 0.75% except the tablet prepared by manual method which the sieve number 12 .

The \% friability of diazepam tablet prepared by 6 $\mathrm{mg} / \mathrm{tab}$ in fluid bed spray drying method was compared to

and oscillating methods : $\square, M a n u a l$ and + ,0scillating
 จุฬาลงกรณ์มหาวิทยาลัย

Table 13 Comparison of friability of diazepam tablets prepared by manual, oscillating and fluid bed spray drying methods.

polyvinylpyrrolidone as granulating agent.
the tablet prepared by manual method it was found that the \% friability was higher than the tablet prepared by the sieve number 16,20 and 25 but it was lower than the tablet prepared by the sieve number 12 and 30 .

When compared to the tablet prepared by oscillating method it was showh that its \% friability was the highest of all.

When increasing DYP to $9 \mathrm{mg} / \mathrm{tab}$ in fluid bed spray drying method its \% ferfoillity was lower than those from the tablet of manyal method prepared by the sieve number 12 and 30 higher than the tablet prepared by the sieve number 16 and 20 and equal to the tablet prepared by the sieve number 30 .

When compared to the tablet prepared by oscillating method its \% friability Mas equal to the tablet prepared by the sieve number 12 and higher than the tablet prepared all other the sieve number.

Further fingreasing pYp to 12 and $15 \mathrm{mg} / \mathrm{tab}$ the \% friability was lower when compared to those, from manual

5. Content Uniformity
5.1 Comparison of content uniformity of diazepam tablet prepared by manual and oscillating methods

Comparison of content uniformity of diazepam tablets prepared by manual and oscillating method was shown in Figure 27 and Table 14. The content of requirment drug in all diazepam tablet was within the limit of 90-110 \%. When increasing the sieve number in both methods the standard deviation of the/ drus content was decreased.
5.2 The contery uniformity of diazepam tablet prepared by fluid bed spray dryins method

The content muniformity of diazepam tablet prepared by fluid bed spray drying method was shown in the Figure 27 and Table 14 能広 tablets prepared by fluid bed spray drying method alsos soowed the content of drug within the limit of $90-110 \%$. The standard deviation of tablets contains 12 meftab of PVP showed the lowest standard deviation.
5.3 Comparison $9 \rho^{2}$ contethe uniforyity of diazepam tablets prepared by manual, oscillating and fiuid bed $\begin{aligned} & \text { spray drifing pethod } \text { comparison of content uniformity of diazepam } \\ & \text { Cof }\end{aligned}$ tablets prepared by manual, oscillating and fluid bed spray drying method were shown in Table 14 . The content of drug in diazepam tablets prepared by the three methods were within the USP limit of 90-110\%.

Table 14 Comparison of content uniformity of diazepam tablets prepared by manual, oscillating and fluid bed spray drying methods.

110

109
108

Figure 27
(\%) LNALNO WVIצZVII

fluid bed spray drying method using various amounts of polyvinylpyrrolidone
as granulating agent.

When $6 \mathrm{mg} / \mathrm{tab}$ of PVP was used in all tablets that the variation of drug content from tablets prepared by fluid bed spraying drying method showed the highest. When increasing the amount of PVP to $9 \mathrm{mg} / \mathrm{tab}$ in spraying drying method the deviation of drug content was still higher than those of tablets prepared by both manual and oscillating methods except those by the sieve number 12 and 16 both in manual and oscillating methods.

Further incressing the binder to $12 \mathrm{mg} / \mathrm{tab}$ in spray drying method the deviation of drug content was the lowest.

When the aighest amount of the binder was used the standard deviation waf Jiankedly increased. And it was higher than all these tablets prepared by both methods except the tablets prepared by the sieve number 12 and 16.

6. \% Drug Dissolved

6.1 Comparison of \%edrug dissolved of diazepam tablet prepared by cianual and dosqiilating method

Comparison 6of \% drus dissolvedo of diazepam tablet prepared by fanual 98 and ascillatone method as illustrated in Figure 29 and Table 15. The \% drug dissolved after 30 minutes was under the limit of 85% which not meet the USP XX requirement. Its standard deviations was increased as the number of sieve decreased in both manual and oscillating methods.

Table 15. Comparison of \% drug dissolved from diazepam tablets prepared by manual, oscillating and fluid bed spray drying methods.

Comparison of \% drug dissolved of diazepam tablets prepared by
م
0 fluid bed spray drying method using various amounts of polyvinylpyrrolidone

6.2 The \% drug dissolved of diazepam tablets prepared by fluid bed spray drying method

The \% drug dissolved of diazepam tablet prepared by fluid bed spray drying method was listed in Table 12. All tablets prepared by fluid bed spray drying method also showed the \% drug dissolved under the USP requirement of 85%. The tablet prepared by using $12 \mathrm{mg} / \mathrm{tab}$ of PVP showed the lowest standard deviation of \% drug dissolved.
6.3 Comparisgn/of \% drug dissolved of diazepam tablets prepared by mapual, oscillating and fluid bed spray drying methods

Comparison of \% drus dissolved of diazepam tablets prepared by manu\#g pscillating and fluid bed spray drying method tas 11sted in Table 15, the \% drug dissolved of diazepan tablet prepared by manual, oscillating and fluid bed spray drying methods were under the limit of 85%,

Wher 6 Img/tabog fo PVR ous used in three methods, it was found that the \% drug dissolved from tablets of fluid bed spray ${ }^{\text {dgyinasmethod was haphen/tham thosel from the }}$ other two methods. When increasing the amount of PVP to 9 $\mathrm{mg} / \mathrm{tab}$ in fluid bed spray drying method its \% drug dissolved was still lower than all the tablet prepared by the manual method. except the tablets prepared by the sieve number 20 and oscillating methods except the tablets prepared by the sieve number $12-25$.

Further increasing PVP to $12 \mathrm{mg} / \mathrm{tab}$, it was shown that the \% drug diassolved was the lower than all the tablet prepared by oscillating and manual methods except the tablet prepared by the seive number 20 . And its standard deviation of \% drug dissolved was the lowest when it was compared with manual and oscillating method.

When the highest amount of the binder was used as $15 \mathrm{mg} / \mathrm{tab}$ in fluid bed spplay drying method its \% drug dissolved was lower than $930 i 1 l a t i n g$ and manual methods.

