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CHAPTER I
INTRODUCTION

1.1 Music Information Retrieval (MIR)

Music Information Retrieval (MIR) is an interdisciplinary research
area which appeared in recently. It converge Computer Science, Information
Retrieval, Engineering, Signal Processing, Musicology and Music Theory. The term
MIR encompasses a number of different research that have the common denominator
of being related to music access.

Despite its name, MIR is not only about retrieving information from
music but to full users' music information, amusement or training needs. And as these
needs are more aimed at music retrieval that music information retrieval, so are the
consequent approaches. Also, the term "retrieval” has a broader sense since it
encompasses tasks such as filtering, classification, identification, indexing and
visualization that become increasingly useful for the final users [1].

Most of the research works on MIR, of the proposed techniques, and
of the developed systems are content-based. The main idea underlying content-based
approaches is that a document can be described by a set of features that are directly
computed from its content [1]. In the case of MIR, the content is the implicit and
explicit information related to a sound or a piece of music and that is embedded in the
signal itself. The methodologies of MIR are based on Infomation Retrieval, Thus
techniques of statistics and probability theory are used to describe the underlying
models. Some of the topics MIR include are:

e Computational methods for classification, clustering, and modeling
e Musical feature extraction for monophonic and polyphonic audio

e Similarity and pattern matching

e Music identification and recognition

e Filtering for music and music queries, query languages, standards and
other metadata or protocols for music information handling and retrieval

e Software for music information retrieval, human-computer interaction and
interfaces, mobile applications, user behavior

e Music perception, cognition, an affect and emotions



e Music similarity metrics, syntactical parameters, semantic parameters,
musical forms, structures, styles and genres,

e Music annotation methodologies,

e Music automatic summarization, analysis and knowledge representation,
downgrading, transformation, formal models of music, digital scores and
representations,

e Music indexing and metadata

e Music archives and digital collections

o Intellectual property rights, national and international intellectual property
right issues, digital rights management, identification and traceability,

e Sociology and economy of music,

1.2 Singing Voice vs. Speech

Although singing voice and speech sounds have many properties
because they originate from the same apparatus, there are several differences [2] , [3]:

e Duration of voiced sounds

e Loudness
e Pitch

e Vibrato

e Formants
e Rhythm

e Rhyme

1.3 Related Works

In addition to vision, sound is one of human being important sense. It
is the sense most used to gather information about the environment. Despite this,
comparatively little research has been done the field of environmental sound
classification. The research that has been done mainly centered on the recognition of
speech and music.



The voice recognition has been most popular as the other is to
recognize the human voice. There are many problems related to the management of
musical data that have not yet been solved. They are now being extensively
considered in the field of Music Information Retrieval (MIR) [4]. In this research, we
are interested singing voice recognition in polyphonic recordings of popular music.
Our assumption is that, for any song, it is unnecessary to filter the instrumental
background from the singing voice to recognize the singing words. By following this
direction, we expected to achieve high recognition accuracy. Singing voice
recognition is very different from Automatic Speech Recognition (ASR) because of
the differences between speech and singing voice such as duration of voice sound,
loudness, pitch, vibrato, formant, rhythm and rhyme [5] [6] [7] [8]. To make the
problem realistic and feasible, we considered singing voices in polyphonic audio
signal sampled from commercial compact disc (CD) recordings of popular music. In
addition, various music genres for popular music, such as Rock, hard rock, soft rock,
dance, hip-pop, soul, R&B, folk, and acoustic were concerned. All music genres have
a man and woman singers. The type of songs emphasized in this study is Thai songs.
The study of Thai singing word recognition is rather few and Thai words have special
characteristics due to their intonation patterns. Different intonations have different
meanings. The intonation of a Thai word may be changed during the singing,
depending on the rhythm.

Several techniques concerning the English words was proposed for to
solve the problem of audio recognition [9] [10] [11] [12] [13] [14] [15] [16] [17].
Most of the proposed methods were divided into two processing steps: feature
extraction and classification. In the first step, feature exaction, the redundant
information contained in the signal was transformed into descriptors used as the input
of a classifier. In the second step, classification, the singing voice was recognized.
Shenoy [18] used the amplitude variation over time in each sub-band and a threshold
method on the energy function such as the proportion of frames classified as vocals to
be equivalent to the proportion of the singing in the entire song. Nwe [19] used
Harmonic Attenuated LFPCs with Hidden Markov Model (HMM) models based on
three parameters, e.g. section type (intro, verse, chorus, bridge and outro), tempo, and
loudness. Tsai [20] used Mel-Frequency Cepstral Coefficient s (MFCCs) andGMM
models to classify vocal from non-vocal signals. Berenzweig and Ellis [21] used
vector of posterior probability as a feature and HMM framework with two states,
"singing™ and "non-singing”. Chou and Gu [22] used 4 Hz modulation energy,
harmonic coefficient, 4Hz harmonic coefficient, delta MFCC and delta log energy as
features and GMM model to detect singing voice. Berenzweig [23] applied 13 PLPCs
and MLP. Maddage [24] considered LPC, LPC derived cepstrums (LPCC), MFCC,
spectral power (SP), short time energy (STE), and ZCR as feaures and a multi-layer
neural network, SVM and GMM for classification. SVM was found to outperform
the other classifiers. Maddage [25] latter tried Twice Iterated Composite Fourier
Transform (TICFT) to each audio frame. Rocamora and Herrera [26] used different
sets of features such as MFCCs and their deltas, LFPC their deltas and double deltas,
PLPCs and their deltas, HC and pitch and different classifiers such as a SVM, a back
propagation NN, a decision tree classifier, and two different K-nearest neighbors.
Tzanetakis [27] used spectral shape feature, MFCCs, mean and deviation of pitch ,
centroid and LPCs for feature extraction and a naive bayes network, nearest neighbor



algorithms, back-propagation ANN, a decision tree classifier based on the C4.5
algorithm, a SVM classifiers. Kim [28] used a harmonic measure, defined as the ratio
of the total signal energy to the maximally harmonically attenuated signal and
threshold method on the harmonic measure to classify the segment.

As compared to other areas in audio such as speech or music, research
on general unstructured audio-based scene recognition has received little attention. To
the best of our knowledge, only a few systems (and frameworks) have been proposed
to investigate of singing voice recognition with raw audio. Most of investigations of
singing voice recognition deal with recognition phoneme first and use a speech
recognizer for lyrics recognition. Sasou [29] tested an Auto Regressive HMM with
pure singing voice signals from the RWC database. These studies presumed pure
monophonic singing voices without accompaniment, posing additional difficulties for
practicable use with musical audio signals like CD recordings. Suzuki [30] combined
both the melody and the lyrics of the user's singing voice to retrieve a song from a
database. The authors used a large vocabulary speech recognition system with a
HMM as the acoustic model adapted to the singing voice using the speaker adaptation
technology.

Wong [31] proposed a system for real-time alignment of Cantonese
music, which is a particular tone language. The meaning of a word changes when
pronounced with a different pitch. A MLP was used to segregate the vocal from the
non-vocal segments taking as input the spectral flux, the HC, the ZCR, the MFCCs,
the amplitude level and the 4Hz modulation energy. DTW algorithm was used to
align the two sequences. However, this method is not consistently effective because
the durations of uttered phonemes are based on location, even though they are the
same phonemes.

Kan [32] is probably the first English lyrics sentence level alignment
system for aligning the lyrics to the music signals for a specific structure of songs.
Gruhne [33] implemented a system that performed automatic classification of 15
voiced sung phonemes in polyphonic audio. Their procedure was based on harmonics
extraction and re-synthesis of a number of partials as a preprocessing step, in order to
reduce influences from accompanying sounds. Then, low-level features were
extracted from the audio and classified using different classification techniques like
SVM, GMM and MLP. Fujihara Gruhne [34] performed automatic synchronization
between lyrics and polyphonic music signals for Japan CD recordings. Their
proposed system included detection of vocal segments, segregation of vocals and
adaptation of a speech recognizer to the segregated vocal signals. During the first
step, harmonics extraction and re-synthesis was performed as in Gruhne [33]. A
simple HMM was used in order to keep only the vocal regions and remove the non-
vocal sections. Last, features were extracted from the audio (MFCCs, delta MFCCs,
and delta power) and the Viterbi algorithm was used to align the segmented vocal
parts with corresponding lyrics. Pawel [35] presented an automatic singing voice
recognition using neural network and rough sets. The method also required and
combined many type of feature vector for classification method. Annamaria [36]
studied the use of n-gram language models in recognizing phonemes and words in
monophonic and polyphonic music. They considered uni-, bi-, and tri-gram language



models for phonemes and bi- and tri-grams for words. In the recognition, a Hidden
Markov Model based phonetic recognizer was adapted to singing voice. The word
recognition system achieved only 24% correct recognition rate, where the first
retrieved in Figure 1.1 was an approach used in previous research.

Sasou[29] Suzuki[31] Wong(32] Gruhne[33] Fujihara[34] Powel[35] Annamaria [36] A
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Figure 1.1 Comparison of our propose and another work.

An algorithm for audio recognition can be applied to new problems,
such as other environment sound recognition. We considered the task of classifying
the environment sounds to understand the scene surrounding the audio sensor. By
auditory scenes, we referred to a location with different acoustic characteristics such
as a streets, restaurants, offices, homes, and cars. In this research, we proposed a
system of classifying a unstructured environmental sound in polyphonic audio signal
sampled from commercial compact-disc (CD) recordings of popular database
including various types of environmental sounds in this research such as car engine,
construction, crowd applause, crow clamor, fire, helicopter, office, outdoor sounds-
forest, outdoor sounds-road, restaurant stores, transportation-motorcycle,
transportation-train, water, weather - rain, weather-thunder, household, air plane,
water(ocean), chicken farm, and auto racing.

Similar to the above problems, Most of the proposed methods were
divided into two processing steps [37], [38], [39], [40], [41] [42] are feature extraction
and classification. In feature exaction step, the redundant information contained in the
signal was transformed into descriptors used as the inputs of a classifier. Malkin and
Waibel [43] extracted sixty-four dimensional MFCC and the spectral centroid, at a
rate of 100 frames per second. They introduced linear auto encoding neural networks



for classifying the environment. A hybrid auto-encoder and GMM were used in their
experiments and 80.05% average accuracy was obtained. However, they selected only
those segments that were quieter than the average power in an audio file for the
experiments.

Wang et al. [44] used three MPEG-7 audio low-level descriptors
spectrum centroid, spectrum spread, and spectrum flatness are used as features in their
study on environmental sound classification. They proposed a hybrid SVM and k-NN
classifier in their study. For SVM, they used three different types of kernel functions:
linear kernel, polynomial kernel and radial basis kernel. The system with 3 MPEG-7
features achieved 85.1% accuracy averaged over 12 classes.

Kraetzer et al. [45] developed a method to detect the used microphone
and the background environments of audio recordings. Kraetzer extracted 63
statistical features from audio signals. Seven of the features were in time domain, i.e.
empirical variance, covariance, entropy, LSB ratio, LSB flipping rate, mean of
samples and median of samples. Besides these temporal features, they used 28 mel-
cepstral features and 18 filtered mel-cepstral features. For classification, the data
mining tool WEKA with K-means as a clustering and Naive Bayes as a classification
technique were applied with the goal to evaluate their classification in regard to the
classification accuracy on known audio features. For the evaluation of hypothesis I,
i.e. the classification of the microphones for all rooms and a fixed number of vectors
per file, the best results for the Bayesian classification achieved 75.99% and K-means
clustering achieved 41.57%. For the evaluation of hypothesis Il, i.e. the room
classification, the results showed less impressive accuracy than the microphone
classification evaluated in hypothesis I. The best result here was found with 41.54%
accuracy in the case of Bayesian classification, the Headset and 100 vectors computed
per file. The clustering with K-means resulted generally in worse accuracies than
Bayes classification (about 15% worse in the maximum case).

Ntalampiras et al. [46] used MFCC along with MPEG-7 features to
classify urban environments. They exploited a full use of MPEG-7 low level
descriptors, namely audio waveform, audio power, audio spectrum centroid, audio
spectrum spread, audio spectrum flatness, harmonic ration, upper limit of harmonics,
and audio fundamental frequency. This work was based on a Hidden Markov Model
(HMM) classification frameork.

Toyoda [47] used a multi-layered perception neural system for
environmental sound recognition. The input data were the combination of
instantaneous spectrum at power peak and the power pattern in time domain. Since for
almost environmental sounds, their spectrum changes were not remarked when being
compared with speech or voice, the combination of power and frequency pattern
would reserve the major features of environmental sounds but with drastically reduced
data. The recognition rate for 45 data types kinds of environmental sound was about
90%.

Eronen et al. [48], identified time and frequency domain features, as
well as stochastic features, to classify various everyday outdoor and indoor scenes.



Eronen used Zero-crossing rate (ZCR), Mel- Frequency Cepstral Coefficients
(MFCC), Mel-Frequency Delta Cepstral Coefficients (MFCCs), Band-energy,
Spectral roll-off, Linear Prediction Coefficients (LPCs)and Linear Prediction Cepstral
Coefficients(LPCC) for features. They employed k-nearest neighbor (k-NN) and the
one-state Hidden Markov Model (HMM) as classifiers, and applied Principal
Component Analysis (PCA) and Independent Component Analysis (ICA) for feature
transformation. They reported that, by using Mel-Frequency Cepstral Coefficients
(MFCCs) and Hidden Markov Models (HMMs), they were able to achieve a
recognition accuracy of up to 88%. The recognition accuracy as a function of the
length of testing sequence converged after about 30-60 s. interestingly, they reported
that human's recognition accuracy of the same data set was 82% with an average
reaction time of 14 s.

Wang et al. [49] applied signal enhancement prior to recognition, and
divided the recognition procedure into environmental sound classification and speech
recognition. For signal enhancement, they used the perceptual wavelet analysis
filterbank and the Karhunen-Loeve Transform (KLT). These approaches achieved
satisfactory results, when combined with traditional features and classification
methodologies.

Byeong-jun Han and Eenjun Hwang [50] considered three types of
features, i.e. Traditional Features (TFs), Change Detection Features (CDFs), and
Acoustic Texture Features (ATFs). To mitigate this problem of high dimension of the
feature data, they used no-negative matrix factorization (NMF) and employed Support
Vector Machine (SVM) as a classifier. Experimental results showed that the
combination of these features with traditional features can achieve 86.09% of the
maximum accuracy in environmental sound classification when compared with
74.35% of the maximum accuracy under traditional features.

Lozano [51] et. al. presented a short paper on a method for classifying
audio sounds. The presented techniques in this research can be used as input to parse
audio to make sure the alternative text is correctly describing the audio content. The
following acoustic parameters were extracted from the data: Mel Frequency Cepstrum
Coefficients, Zero Crossing Rate, Centroid and Roll- Off Pint. The feature extraction
included a multi-resolution analysis technique with multiple windows of different
sizes, instead of the traditional fixed length window. This gave a more number of
parameters which would worsen the performance of the classifier. However, this was
compensated by a heuristic selection of parameters to reduce the size of the feature
array. The classification algorithm applied was the Gaussian Mixture Model. The
experimental results were based on 60% training data and 40% testing data. The
windows sizes ranged from 20 to 80 milliseconds. With the most preferable
configuration, the classified reached an accuracy of 92.44%. The results also showed
that using multi-resolution analysis outperformed the use of single-windows.
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Figure 1.2 Comparison of our propose and another work.



The analysis of sound environments in Selina Chu, [52] [53], which is
closest to our work, presented Matching Pursuit (MP) as features. Chu introduced the
Matching Pursuit (MP) technique in environmental sounds recognition. MP provides a
way to extract features that can describe sounds where other audio feature such as
MFCC fails. In their MP technique, they used Gabor function based time-frequency
dictionaries. It was claimed that features with Gabor properties could provide a
flexible representation of time and frequency localization of unstructured sounds in
the background environment. They applied KNN (k = 1) and GMM with 5 mixtures to
recognize fourteen types of environmental noise events.

Jonathan [54] presented a novel feature extraction method for sound
event classification, based on the visual signature extracted from the sound’s time-
frequency representation. The motivation stems from the fact that spectrograms form
recognizable images, which can be identified by a human reader, with perception
enhanced by pseudo-coloration of the image. All the four step process as follows. 1)
The spectrogram is normalized into greyscale with a fixed range. 2) The dynamic
range is quantized into regions, each of which is then mapped to form a monochrome
image. 3) The monochrome images are partitioned into blocks, and the distribution
statistics in each block are extracted to form the feature. The proposed method comes
from the fact that the noise is normally more diffuse than the signal and therefore the
effect of the noise is limited to a particular quantization region, leaving the other
regions less changed. The method is tested on a database of 60 sound classes
containing a mixture of collision, action and characteristic sounds and shows a
significant improvement over other methods in mismatched conditions, without the
need for noise reduction. In Figure 1.2 is an approached used in previous research.

1.4 Objective

e To classify a singing word in a singing voice signal with background
music especially a singing word pronounced similarly.

e To classify a type of environment sound.

e To find the optimal windows size used to create a spectrogram for
classification.

e To compare performance of the proposed method with Mel-Frequency

Cepstral Coecients (MFCCs), Linear Predictive Coding (LPC) and other
Features extraction method in optimal parameters.

1.5 Scope and Limitations
In this dissertation, the scope of work is constrained as follows:
e This proposed algorithm is tested with the Thai and English music 5000

albums. Sample files were coded in stereo of frequency 44.2 kHz with
128/s bit rate manually captured.
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e The BBC Sound Effects Library, The Warner Bros Sound Effects Library,
56 TV-series, 356 DVD Movie. Sample files were coded in stereo of
frequency 44.2 kHz with 128/s bit rate manually captured.

e The result of this approach is compared with the other Features extraction
method such as Linear Predictive Coding(LPC), Mel-Frequency Cepstral
Coecients (MFCC))

1.6 Dissertation Organization

This thesis is organized as follows. The next chapter, this thesis
provides theoretical preliminary on grasping which is used subsequently in the
remaining of the dissertation. The remaining chapters describe algorithms to solve the
problem in each setting. Chapter 2 gives brief introduction and literature reviews.
Chapter 3 describes algorithms and data collection. The results and discussion are
given in Chapter 4. Finally, Chapter 5 concludes our work and describes future
extension.
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CHAPTER II

RELATED BACKGROUND

This chapter provides the necessary background for audio
classification. We first discuss methods for feature extraction and classification, and
conclude with a section summarizing relevant research on these fields.

2.1 Audio Classification.

Audio signal processing, sometimes referred to as audio processing, is
the intentional alteration of auditory signals, or sound. As audio signals may be
electronically represented in either digital or analog format, signal processing may
occur in either domain. Analog processors operate directly on the electrical signal,
while digital processors operate mathematically on the digital representation of that
signal. Most audio recognition and classification problems are implemented using the
following two-stage process.

e Feature Extraction.
e Classification.

The sequence of recognition and classification problems is shown in
Figure 2. Generally, a computer represents sounds in a digital format. First, an audio
signal is analyzed and calculated to generate a feature. After that, a classifier such as
Feed-Forward neural network and k Nearest Neighbors (k-NN) are used for
classification.

Classification
Technique

Feature Extraction

A 4

Audio Signal

Figure 2.1 Traditional Classification Sequence.

2.2 Audio Feature Extraction

Feature extraction is the process of computing a compact numerical
representation that characterizes a segment of audio. The design of descriptive feature



12

for a specific application is the main challenge in building pattern recognition
systems. Here, we examine some of the commonly used audio signal features.

2.2.1 Fast Fourier Transform

A fast Fourier transform (FFT) is an algorithm to compute the discrete
Fourier transform (DFT) and its inverse. There are many distinct FFT algorithms
involving a wide range of mathematics, from simple complex-number arithmetic to
group theory and number theory; this article gives an overview of the available
techniques and some of their general properties, while the specific algorithms are
described in subsidiary articles linked below.

A DFT decomposes a sequence of values into components of different
frequencies. This operation is useful in many fields but computing it directly from the
definition is often too slow to be practical. An FFT is a way to compute the same
result more quickly: computing a DFT of N points in the naive way, using the
definition, takes O(N)? arithmetical operations, while an FFT can compute the same
result in only O(NlogN) operations. The difference in speed can be substantial,
especially for long data sets where N may be in the thousands or millions in practice,
the computation time can be reduced by several orders of magnitude in such cases,
and the improvement is roughly proportional to N/log(N). This huge improvement
made many DFT-based algorithms practical; FFTs are of great importance to a wide
variety of applications, from digital signal processing and solving partial differential
equations to algorithms for quick multiplication of large integers.

The most well-known FFT algorithms depend upon the factorization of
N, but there are FFTs with O(NlogN) complexity for all N, even for prime N. Many

2Tl
FFT algorithms only depend on the fact that e” ~ is an N th primitive root of unity,
and thus can be applied to analogous transforms over any finite field, such as number-
theoretic transforms. Since the inverse DFT is the same as the DFT, but with the
opposite sign in the exponent and a 1/N factor, any FFT algorithm can easily be
adapted for it.

An FFT computes the DFT and produces exactly the same result as
evaluating the DFT definition directly. The only difference is that an FFT is much
faster. In the presence of round-off error, many FFT algorithms are also much more
accurate than evaluating the DFT definition directly, as discussed below.

Let xo,..,xy_; be complex numbers. The DFT is defined by the
formula

N-1
Fp= Y waf R =l N —1. 2.1)
n=0
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Figure 2.2 Diagram illustration of spectrogram.
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2.2.2 Spectrogram (Power Spectrum)

A spectrogram is a visual representation of the distribution of acoustic
energy across frequencies and over time. The horizontal axis of a spectrogram
typically represents time. The vertical axis represents the discrete frequency steps.
The strength of power detected is represented as the intensity at each time-frequency
point.

First, the input audio signal x(n) of each singing word is sliced into a
number of small windows or frames equal to a power of two. Each signal window is
calculated by using the short-time Fourier transform (STFT) defined as follows.

s 2rkn
X(k)= Z w(n)z(n)exp(— N -) (2.2)

n=0

For k =0,1,..., N — 1 where k corresponds to the frequency f(k) =
(%) fs is the sampling frequency in Hertz and w(n) is Hamming time-window
given by

™

w(n) = 0.54 — 0.46 cos ( = ) 2.3)

The power of each X(k), denoted by P(k), is computed by following
equation.

P(k) = 10logio(X () (2.4)

Each P(K) is plotted against time step to form a power spectrogram of
each singing word. Figure 2.2 shows an example of how a power spectrogram is
created.

2.3 Classification Basics

Classification is the task of assigning objects to one of several
predefined categories. Especially, a classifier takes as input data a collection of
records that are characterized by a tuple (Xx,y), where x is the attribute set and y is the
class label. The attribute set includes several features or properties of the instance and
can be either discrete or continuous. On the other hand, the class label must be a
discrete attribute and this distinguishes classification from regression. Thus,
classification is the task of learning a target function f that maps each attribute set x to
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one of the predefined class labels y. This target function is also known as
classification model. A classification technique (or classifier) is a systematic
approach to build classification models from a given data set.

Examples of classifiers are decision trees, neural networks, support
vector machines, logistic models etc. Each technique employs a learning algorithm in
order to build a model that best fits the relationship between the attribute set and the
class label of the data. This model should apart from fit well input data, correctly
predict the class labels of instances it has never seen before. The input data consist
the training set, while the unknown records consist the testing set. In order to measure
the performance of a model, the number of correctly and incorrectly predicted test
records is measured. These measures are usually presented in a tabular form, known
as a confusion matrix:

Predicted Class

Actural Class
Classl Class2
Classl True Positive | False Positive
Class2 False Positive | True Positive

In order to compare the performance of different models metrics such
as accuracy and error rate are widely used:

Number of correct predictions

Accuracy = (2.5)

Total number of predictions

Total number of predictions

(2.6)

FError rate = —
Number of correct predictions

2.3.1 K-nearest neighbor method

KNN method is simplest methods for general, non-parametric
classification and based on supervised learning [55]. The aim is to find nearest k
sample from the existing training data when a new sample appears and classify the
appeared sample according to most similar class [56]. Generally closeness is defined
with Euclidean distance. Mitchell (1997) had explained Euclidean distance precisely
with a formula. An arbitrary instance x be described by the feature vector
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{a)(x),a2(x),...;an(x)} 2.7

Where a,, (x) denotes the value of nth attribute of instance x. Then the
distance between two instances x; and x; is defined to be d(x; ,x;) as follows

(2.8)

In general the following steps are performed for KNN algorithm:

1. Choose of k value: k value is completely up to user. Generally after
some trials a k value is chosen according to results.

2. Distance calculation: Any distance measurement can be used for this
step. Generally most known distance measurements like Euclidean and Manhattan
distances are preferred.

3. Distance sort in ascending order: Chosen k value is also important in
this step. Found distances are sorted in ascending order and k of minimum distances
are taken.

4. Classification of nearest neighbors: Classes of k nearest neighbor are
identified.

5. Finding dominant class: In the last step, queried data is classified
according to class of identified k nearest neighbor by utilizing maximum ratio. This
ratio is calculated for each class of k nearest neighbor with the number of data owned
by that class over k. Let = (py, p2, ..., Pn) 1S the set of k nearest neighbor probabilities
for each class where n is number of class. Maximum ratio is calculated as in Eq.

2.3.2 Artificial Neural Networks

Artificial neural networks (ANN) has originated from the studies on
how animal brains work, hence one has to study brain to understand fundamentals of
ANNSs. The brain is an extremely complex, nonlinear and parallel computer, which
has the ability of organizing neurons to perform certain computations like pattern
recognition, perception. Artificial neural networks born after McCulloc and Pitts
introduced a set of simplified neurons in 1943. These neurons were represented as
models of biological networks into conceptual components for circuits that could
perform computational tasks. The basic model of the artificial neuron is founded upon
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the functionality of the biological neuron. By definition, “Neurons are basic signaling
units of the nervous system of a living being in which each neuron is a discrete cell
whose several processes are from its cell body”

The biological neuron has four main regions to its structure. The cell
body, or soma, has two offshoots from it. The dendrites and the axon end in pre-
synaptic terminals. The cell body is the heart of the cell. It contains the nucleolus and
maintains protein synthesis. A neuron has many dendrites, which look like a tree
structure, receives signals from other neurons. The electrical signals are generated by
the membrane potential which is based on differences in concentration of sodium and
potassium ions and outside the cell membrane.

Consequently, a crude analogy between an artificial and a biological
neuron can be made: dendrites of other neurons refer to input signals, synapses are the
connection weights and activity in the cell body is represented by an activation
function [46]. lllustration of such an artificial neuron is displayed in Figure 2.3.

= i, \
Activation function

3 Output
Xy Wy
< f I
Input Signal —

Figure 2.3 an illustration of an artificial neuron

From this model the interval activity of the neuron can be shown to be:
v = Z W T (2.10)
j=1

The output of the neuron, y,, would therefore be the outcome of some
activation function on the value of v,.
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The activation function defines a mapping between the output of a
neuron and its inputs. Figure 2.4 demonstrates three basic types of activation

functions.
Yy | y y
1 /‘ -1 -

Threshold Linear Sigmciid

Figure 2.4 Different activation functions used in neural networks.

Emerging from the studies on how animal brains work, ANNs are
composed of layers of neurons gathered in a parallel architecture with a high degree of
interconnection between them. Although each neuron performs linear discrimination,
ANNs can solve most of the real-world (often non-linear) problems thanks to their
parallel structure. Researchers have provided numerous ANN algorithms with
different architectures, learning paradigms or parameters in the literature. It is
extremely arduous to cover all available ANNs due to this diversity and
numerousness. Consequently, we selected several ANNs from different architectures
to be used in this work. The following subsections present these ANNs with basic
explanations. Please note that these explanations do not cover aspects of learning
process; like learning methods, learning rate adaptation, weights update, and
convergence.

2.3.3 Feed-forward Networks

In a feed-forward network data propagates in the forward (from input
layer to output layer) direction, thus its neurons has only unidirectional connections
(no feedback or same layer neuron to- neuron connections). Figure 2.5 displays an
example of such a network.
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Input Layer Hidden Layer Qutput Layer

Figure 2.5 Architecture of a feed-forward neural network.

2.3.4 Multi-Layer Perceptron (MLP)

MLPs are also known as feed-forward networks, because input signals
propagate layer-by-layer through the network in forward direction. MLP performs
back propagation learning, where two passes of signals through the network are
employed. Forward pass: Input signals are propagated in forward direction, while
weights at each layer are fixed and actual output of the network is produced. Error
between the actual output and the desired output (label) is calculated. In backward
pass, this error signal is propagated backward and weights are adapted a second time.
Therefore, this algorithm is also known as errorback - propagation.

2.4 Audio Time Scale Modification (TSM)

Since each sound was captured from different songs. Therefore, the
time interval of each sound is not equal, depending on a singer. For this reason we
apply time-scale modification algorithm (TSM) to scale the time interval of each
sound become equal. Time Scale Modification (TSM) refers to the process of
speeding up or slowing down a sound without changing the pitch of any tonal
components. For example, TSM of speech should sound like the speaker is talking at a
slower or faster rate. The idea of time-scale modification of a audio signal is used not
to change the speaking rate of a signal, but to reconstruct the signal segment which is
lost or delayed.

Waveform Similarity Overlap-and-Add (WSOLA) technique were
used in the time-scale modification of audio signals. The WSOLA time-scale
modification (TSM) technique is capable of generating an output signal with the same
pitch period from the signal provided to the algorithm. This technique also minimizes
discontinuities at the boundaries between good packets and reconstructed packets. It is
possible to use the WSOLA time-scale modification technique on the residual signal
in the same way it is used on the original signal.
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2.4.1 Waveform Similarity Based Overlap-Add (WSOLA)

The Waveform Similarity Overlap-Add (WSOLA) algorithm proposed
in [57] is a robust and computationally efficient algorithm used for high quality time-
scale modification of speech. Timescale modification techniques aim to change only
the apparent speaking rate, while preserving other perceived aspects of speech such as
timbre, voice quality, and pitch. The basic idea of WSOLA is to decompose the input
into overlapping segments of equal length, which are then realigned and
superimposed with fixed overlap to form the output. The realignment leads to an
increase or decrease in the output length. Specifically, WSOLA produces a synthetic
waveform, y(k), that maintains maximal local similarity to the original waveform,
x(n), in the neighborhoods of all sample indices given by the mapping, n = 7(n),
where 7(n) is the transformation function defined as t(t) = at, being the time-
scaling factor. If «a > 1, the output speech is stretched, and if «a < 1, the output
speech is compressed.

The WSOLA algorithm operates entirely in the time domain. The
algorithm works by segmenting the input audio waveform into blocks of equal length.
Audio blocks in the input waveform are selected and overlap-added to produce the
output audio. If the source blocks were taken at regular intervals in the original
waveform, the output file would be of poor quality as the pitch pulses are not equally
spaced. Thus, the selection of similar source blocks in the input to use for overlap-add
is critical to achieving high output quality.

3 | Signal Template 2
{ Signal Block A [ e Signal Block B

\ / s»»:%a,

e |
4 ‘ TR

£ 05

0 05 2 25 3
Destination Signal

Block A

1 15
Destination Signal | time

=

Figure 2.6 WSOLA compression at a = 0.6

L
\ ;4@ file fp3 wav




21

| signal Template
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Figure 2.7 WSOLA compression at a = 1.6

Figure 2.6 and 2.7 illustrates the basic operation of the WSOLA
algorithm. The algorithm iteratively constructs the output waveform, block by block.
In Figure 2.6, source block A is copied to the destination block A. Template block B
is the block following source block A with 50% overlap. WSOLA now needs to find a
block to copy to destination block B to overlap-add with destination block A.
Therefore, source block B is desired to closely resemble template block B.

The reverse transformation, t=1(t) = it gives the center of the search

region in which to look for source block B. A measure of waveform similarity is
computed between template block B and blocks in the search region. The source block
with the greatest similarity is then copied to destination block B. The template block
for the next iteration will be the block right after source block B with 50% overlap.
For a given iteration, the source block follows the template block in WSOLA
compression, and it precedes the template block in WSOLA expansion, as shown in
Figure 2.6 and 2.7, respectively.

Once the positions of the template block and the search region are
known, a series of correlations is computed between the template block and blocks in
the search region. Each source block in the search region is shifted by &§, where
%L <6< g — 1, and L is the length of the search region. The similarity measure used

in this work is the cross-correlation coefficient,

k=0
p= ZTemplateBlock(k) x SourceBlock(k + 9), 2.11)

N

where N is the length of a block. The weighting window used in this
work for the overlapadd operation is the Hamming time-window w(n), w(n) =
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0.54 — 0.46 cos(znTn) , With 50% overlap. The window size is set to be the length of a

block, N. Based on our experimental setup, we use a window of 512 points for length
of a block N.

The speech quality and algorithm computation time are affected by the
block size and the length of the search region for the source block. Larger blocks
contain more pitch periods so the correlations will give a better measure of the
waveform similarity between template and source blocks. However, if the block size
IS too large, artifacts such as echoes and tinny sounds will be introduced into the
output. A larger search region results in more correlations being computed, thus it is
computationally more expensive. Nevertheless, a better match with higher correlation
between template and source block may be found within a larger search region.
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CHAPTER 111

PROPOSED METHODOLOGY

3.1 Concept of Proposed Solution

The singing style and duration of sing voice make it difficult to define
effectively the number of states in Hidden Markov Model to recognize those singing
words. Moreover, separately eliminating the instrumental background signal under
uncontrollable loudness, pitch, vibrato, formant, and rhythm is not simple. In our
solution, the instrumental background signal will not be filtered from the singing word
signal.

Both signals are considered as one entity and this 2-dimensional signal
is transformed into a 2-dimensional in spectrum domain to magnify the features of
singing words. Then, the image of spectrogram is used as an input for a classifier to
recognize the singing words.
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Figure 3.1: Examples of four singing words represented in forms of spectrograms. (A)
Word A. (B) Word B. (C) Word C. (D) Word D.

The examples of spectrogram for four singing words are presented in
Figure 3.1. Each spectrogram is shown in Figure 3.1. It can be seen that each vertical
band of frequency magnitude in the spectrogram can be viewed as a vertical image
whose color of each pixel implies the magnitude of the corresponding frequency. This
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vertical band is called a spectrogram image. Each row of Figure 3.1 presents the same
word sang from different people and time. The characteristics of a spectrogram of
same word obtained from different people are very similar. Then, this thesis apples
the concept of recognition like image recognition, such as hand-written digit
recognition and fingerprint identification.
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Figure 3.2: The spectrogram of each sound type. (A) car engine. (B) construction. (C)
crowd Applause. (D) crow clamor. (E) cire. (F) celicopter. (G) office. (H) outdoor
sounds - forest. (1) outdoor sounds - road. (J) restaurant stores. (K) transportation-
motorcycle. (L) transportation-train. (M) water. (N) weather-rain. (O) weather-
thunder. (P) household. (Q) airplane. (R) water(Ocean). (S) chicken farm. (T) auto
racing.

With techniques discussed above, it is possible to apply the concept to
other problems. The examples of spectrogram of each environmental sound type are
presented in Figure 3.2. It can be seen that each spectrogram clearly displayed
different characteristics. Based on different characteristics of the spectrogram
displayed, this thesis can use a different characteristic of spectrogram for
classification.

3.2 Singing Word Recognition Problem

The purpose of our research is to recognize a singing voice with
instrumental interference. Our system take polyphonic music audio signal as input,
which was sampled from music CD recording and different music genres are included
in the experiments such as rock ,hard rock, soft rock , dance , hip-pop, soul, r&b ,folk
and acoustic. The files are all from different artists. the following two issues are :
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e Singing voice different from speech because of the differences between
speech and singing voice such as duration of voice sound, loudness, pitch,
vibrato, formant, rhythm and rhyme [58]. It is difficult to use algorithm of
speech recognition to solve this problem.

¢ In polyphonic music recordings, the instrumental interference is treated as
the noise source that causes degradation to the intelligibility of the singing
voice signal.

The goal of this research is to solve singing voice recognition without
using any method to separate music in environment. Especially, the audio music with
instrumental interference is treated as the noise source degraded the performance of
recognition system.

3.2.1 Methodology

Figure 3.3 shows a diagram of singing voice recognition algorithm.
Start by reading the audio file. Since each sound was captured from different songs.
Therefore, the time interval of each sound is not equal, depending on a singer.

For this reason this research applies time-scale modification algorithm
to make the time interval of each sound to be equal. An audio signal is analyzed and
calculated with the short-time Fourier transform (STFT), to generate a spectrogram.
After that a classifier, such as Feed-Forward neural network and K nearest neighbors
(KNN) are experimentally chosen.

Audio Signal

!

Time-Scale Modification

!

Hamming Window

!

Spectrogram

!

Classification Technique

!

Output Class

Figure 3.3 Flowchart of the singing voice recognition algorithm.

A spectrogram of each word is viewed as a matrix that describes the
time waveform energy distribution in the joint time-frequency domain. Because a
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spectrogram of each singing word is a 2D array, a spectrogram of each singing word
is arranged to a feature vector before classification method , as shown in Figure 3.4.

Row(M)

Spectrogram Size M*N ‘

Frequency (Hz)

Time (s)

Figure 3.4: The method to convert a spectrogram images matrix to a spectrogram images

vector by using row data spectrogram.

3.2.2 Data Collection

First, we investigated the performance of a spectrogram of audio

features to solve the problem of singing voice recognition and provide an empirical
evaluation on two data sets. The first database, denoted as DB-THS, is a collection of
songs randomly chosen from Thai popular music CDs. It contains over 1500 Albums.
DB-THS consists of 12 Thai One syllable singing word, 7200 sound samples, and 600
for each words. The singing words were selected from the most frequently in the all
song. The considered singing words are shown in Table 3.1.

Table 3.1 DATABASES DB-THS USED IN EXPERIMENTS

Class.

Singing word Time duration(min-max) Pronunciation (in Thai)
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The second database, denoted as DB-TH-ENG. DB-TH-ENG, is a collection
of songs randomly chosen from English and Thai popular music CDs. For the second
dataset that consisting of two or more words. DB-TH-ENG consists 12 singing word.
We used five words in English and seven words in Thai. DB-TH-ENG that contains
7200 sound samples, 600 for each word. The singing word was selected from the most
frequently in the all song. The 12 considered singing words are showing in Table 3.2.

Table 3.2 DATABASES DB-THS USED IN EXPERIMENTS

Class. Singing word Tim? duration(min- PrLor_]\unciation (in
1 Iloveyou 0.65s-2.95s
2 Loveyou 0.57s-2.92s
3 Together 1.04s-2.11s
4  Tomorrow  1.07s-6.63s
5  Yesterday 0.81s-5.90s
6 awinn 0.52s-3.65s "kwarm-luck™
7 rfade 0.88s-1.11s "kit-thun"
8  lasdnaur 0.99s-4.62s "krai-sak-kon™
9 hime 0.41s-1.99s "mai-koey "
10 lige 0.57s-1.17s "mai-mee"
11 rSruser 0.47s-1.93s "ruk-ther"
12wl 0.73s-1.46s "hua-jai"

All sample files in DB-THS and DB-TH-ENG were coded in stereo of
frequency 44.2 kHz with 128/s bit rate. All audio signals were converted to mono and
down-sampling types at rate of 8,000 Hz.

The following comparisons are conducted. The objective of the experiments is
to investigate which features, i.e. (1) Mel Frequency Delta Cepstral Coefficients
(MFCC); and (2) Linear Prediction Coefficients (LPC); and classifier, i.e. feed
forward neural network and k-nearest neighbor network (KNN).

e The average accuracy based on spectrogram, MFCC, and LPC features
versus a feed forward neural network.

e The average accuracy based on spectrogram, MFCC, and LPC features
versus a KNN.
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e The average accuracy between the feed forward neural network and the
KNN with spectrogram, MFCC, LPC, and MP features.

e The average accuracy based on spectrogram, MFCC, and LPC features
versus a feed forward neural network with different window sizes.

e The average accuracy based on spectrogram, MFCC, and LPC features
versus a KNN with different window sizes.

e Computational Speed Tests on Spectrogram Features.
e Experiment dimension reduction on Spectrogram Features.

3.3 Environmental sound Recognition Problem

This research considers the task of classifying the environment sounds to
understand the scene surrounding the audio.

3.3.1 Methodology

Fig 3.5 shows a diagram of Environment sound recognition algorithm.
An audio signal is analyzed and calculated with the short-time Fourier transform
(STFT) to generate a spectrogram. In Environment sound recognition, we send each
column of spectrogram to classifier. After that a classifier, such as Feed-Forward
neural network and k Nearest Neighbors (k-NN) are experimentally chosen.

Spectrogram Size M*N

Classification Outout
” Technique p

Frequency (Hz)

EN-EE=NE G

Time (s)

Figure 3.5 Flowchart of the Environment sound recognition algorithm.

3.3.2 Data Collection

The third database denoted as DB-ENG was a collection of 20 different types
of environmental sounds. As summarized in Table 4.1, the natural sound clips are
obtained from famous sound database such as the BBC [23] and Sound Ideas - The
General Series 6000. The sounds were recorded in wav format to avoid introducing
artifacts in our data. All audio signals were converted to mono and down- sampled
from the CD sampling rate of 44.1 kHz to 16 kHz. The environment sound types were
chosen so that they are made up of non-speech and non-music sounds.
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The experiment consisted of the test on 20 different types of unstructured
environmental sound which are: Car engine, Construction, Crowd Applause, Crow
Cheering, Fire, Helicopter, Office, Out- door Sounds - Forest, Outdoor Sounds -
Road, Restaurant Stores, Transportation - Motorcycle (start and idle), Transportation-
Train, Water, Weather - Wind, Weather - Rain and Thunder, Household, Airplane,
Water(Ocean), Chicken Farm, Auto Racing. The length of each sound is listed in the
last column of Table 3.3.

Table 3.3 The length and class of 20 different types of unstructured environmental

sound.

Class Type of Environmental Sound  Time (Minutes)
1 Car engine 145
2 Construction 12.1
3 Crowd Applause 13.8
4 Crowd Clamor 15.7
5 Fire 135
6 Helicopter 14.2
7 Office 15.2
8 Outdoor Sounds - Forest 15.8
9 Outdoor Sounds - Road 15.9
10 Restaurant Stores 15.9
11 Transportation - Motorcycle 13.8
12 Transportation - Train 14.1
13 Water 15.8
14 Weather - Wind 15.7
15 Weather - Rain and Thunder 12.8
16 Household 16.6
17 Airplane 12.2
18 Water(Ocean) 20.0
19 Chicken Farm 22.3
20 Auto Racing 23.2

The following comparisons are conducted. The objective of the
experiments is to investigate which features, i.e. (1) Mel Frequency Delta Cepstral
Coefficients (MFCC); (2) Linear Prediction Co-efficients (LPC); and (3) Matching
Pursuit (MP), and classifier, i.e. feed forward neural network and k-nearest neighbor
network (KNN), are suitable for recognizing the environmental sounds. Since the
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details of extracted features depend upon the sampling rate, following comparison of
different sampling is also investigated.

e The average accuracy based on spectrogram features versus a feed forward
neural network.

e The average accuracy based on spectrogram, MFCC, LPC, and MP
features versus a feed forward neural network.

e The average accuracy based on spectrogram features versus a feed forward
neural network.

e The average accuracy based on spectrogram, MFCC, LPC, and MP
features versus a feed forward neural network.

e The average accuracy spectrogram features versus a KNN.

e The average accuracy based on spectrogram, MFCC, LPC, and MP
features versus a KNN.

e The average accuracy between the feed forward neural network and the
KNN with spectrogram, MFCC, LPC, and MP features.

e The average accuracy based on spectrogram, MFCC, LPC, and MP
features versus a feed forward neural network with different window sizes.
The average accuracy based on spectrogram, MFCC, LPC, and MP
features versus a KNN with different window sizes.

e The average accuracy based on spectrogram, MFCC, LPC, and MP
features versus a feed forward neural network with different sampling
rates.

e The average accuracy based on spectrogram, MFCC, LPC, and MP
features versus a KNN with different sampling rates.
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CHAPTER IV

RESULTS AND DISCUSSION

The experimental environment is Dell OptiPlex 755 Desktop, Intel
Core 2 Duo E6750 Processor operating at 2.66-GHz and 6 GB total memory, running
Microsoft Windows 7 64bit. All data sets were divided into four groups of equal sizes.
Then, arbitrarily selected three groups were used for training and the rest is used for
testing. For cross-validation procedure, the same process was repeated 50 times with
the different training and test sets, to ensure that all samples are included at least once
in the test set. The experimental results are shown in the following sections.

4.1 Singing Word Recognition Problem

For Singing Word Recognition Problem, Each environmental in DB-

THS and DB-TH-ENG in table 3.1 and 3.2 was segmented into several sub-signals.
These sub-signals were randomly divided into four groups of equal sizes. Then,
arbitrarily selected three groups were used for training and the rest is used for testing.
In each experiment, we performed 50 runs on each classifier to obtain statistically
reliable results. The mean recognition rate was calculated based on the error average
for one run on test set. The following classification techniques are commonly used for
speech/speaker recognition or have, in the past, been used for this application domain.
They are:

e K nearest neighbor method

Artificial Neural Networks

Minimum least square linear

Normal densities based linear

Naive Bayes

Parzen

Radial basis neural network

Decision tree
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4.1.1 Experimental on DB-THS Dataset

Based on our experimental setup, we use a window of 512 points with
a 25% overlap. This corresponds to the window size used for all feature extractions.
First, we applied Waveform Similarity Based Overlap-Add (WSOLA) for time-scale
modification in each signing word audio data was applied to equalize to the lengths of
all samples. A time of interval of each singing word equal 0.5 seconds.

The overall recognition accuracy from K nearest neighbor method,
Artificial Neural Networks, Minimum least square linear, Normal densities based
linear, Naive Bayes, Parzen, Radial basis neural network and Decision tree are
summarized in figure 4.1.

Recognition Accuracy (%)

k-nearest —
neighbor = Mini —
Forward b i
least square Non:n.al —
Biiir densities en : s T
PR, Radial basis Dechiuin

neural

network tree

z
"
=]
1
<
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Figure 4.1: Overall recognition rate comparing 8 classifier using spectrogram as
features on DB-THS dataset.

As shown in this figure, K nearest neighbor and Artificial Neural
Networks performed better than another classification technique. As a result of this
experiment, we will consider the use of K nearest neighbor method and Artificial
Neural Networks as the most powerful. These researches examine the results from
varying the number of neighbors and using the same for each environment type. The

By using feed forward neural network (ANN) with spectrogram
feature, this research examines the results from verity number of hidden neural unit
and using the same for each singing word. The overall recognition rates by varying
are given in Fig 4.2. The highest recognition rates were obtained using 20 hidden
neural units, with the average accuracy of 78.60%.
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Figure 4.2: Preliminary experiments to obtain the candidate number of hidden neurons
based on the features of Spectrogram, MFCC, and Ipc on DB-THS of hidden neural =

20.
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Figure 4.3: Overall recognition rate (ANN) comparing 12 classes using Spectrogram,
LPC, and MFCC as features with DB-THS data set.

An interesting benchmark is showing in figure 4.3 when ran the same
experiments using all feature, including MFCC and Ipc. In Ipc feature, this research
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use 13 order of the prediction filter polynomial. MFCC feature, this research use 13
number of cepstra to return, 0.6 for exponent for liftering,0.97 for apply pre-emphasis
filter, lowest band edge of mel filters 133.3 Hz, highest band edge of mel filters
8000Hz, 40 numbers of warped spectral bands to use. The frequency warping scale
used for filter spacing in MFCC is the Mel (Melody) scale.

This research compares the overall recognition accuracy using
Spectrogram, MFCC, and LPC for 12 classes of sounds using feed forward neural
network (ANN) with 20 hidden neural units in Fig. 4.3. As shown in this figure,
Spectrogram features demonstrate the ability to better. They perform better than
MFCC features in 11 of the examined classes while producing poor results in the case
of 1 other class. Compared with the LPC features, Spectrogram feature were better in

every class. The having the highest recognition rate at 97.08% in class 4 (Pronounced
"krai").
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Figure 4.4: Preliminary experiments to obtain the candidate number of K nearest
neighbors based on the features of Spectrogram, MFCC, and Ipc. on DB-THS.

For completeness, this research examines the classification by using K-
nearest neighbors (KNN) with spectrogram. These researches examine the result from
verity number of K by using same windows size 512 and same data in Feed Forward
Neural Network. Figure 4.4 was showing overall recognition accuracy using K-
nearest neighbors (KNN) with a verity number of K for each singing word. The
overall recognition rate was obtained using K=1 with average accuracy of 66.0%. The
performance is not high compared with Feed Forward Neural Network.

This research compares the overall recognition accuracy using
Spectrogram, MFCC, and LPC for 12 classes of sounds using K-nearest neighbors
(KNN) using K=1 in Fig 4.5. As shown in figure 4.4 and Fig. 4.5, Spectrogram a
feature in recognition performance is not much higher than MFCC. They perform
better than MFCC features in 6 of the examined classes while producing poor results
for 6 other classes. Compare with the LPC features, Spectrogram feature were better
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in every class. By using K-nearest neighbors (KNN) with spectrogram feature, the
highest recognition rate was 78.77% in class 6 (Pronounced “chan").

Recognition Accuracy(%)

M Spectrogram @ MFCC mLPC

Figure 4.5: Overall recognition rate (KNN) comparing 12 classes using Spectrogram,
LPC, and MFCC as features with a DB-THS.

4.1.2 Experimental on DB-TH-ENG Dataset

Singing voice recognition experiments were conducted using Longer
term and cross language. The data in this section can be used to handle English and
Thai music data. Using the same experiment settings associated with section 4.1.1.
This research obtained the accuracies of this section.

This research compares the overall recognition accuracy K nearest
neighbor method, Artificial Neural Networks, Minimum least square linear, Normal
densities based linear, Naive Bayes, Parzen, Radial basis neural network and Decision
tree in figure 4.1.

As shown in this figure, K nearest neighbor and Artificial Neural
Networks perform better than classification techniques. As a result of this experiment,
we will consider the use of K nearest neighbor method and Artificial Neural Networks
as the most powerful.

Using the same experiment settings associated with 4.1.1 this research
examines the classification by using feed forward neural network (ANN) with
spectrogram. This research examines the results from verity number of hidden neural
unit and using the same for each environment type. The overall recognition rates by
varying are given in Fig. 4.7. The highest recognition rate was obtained using 45
hidden neural units, with an average accuracy of 92.93%. In this Experiment,
spectrogram feature show a higher performance when used longer term data than the
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others. An interesting benchmark is show in Figure 4.8 when ran the same
experiments using all feature, including MFCC and Ipc. This research compares the
overall recognition accuracy using Spectrogram, MFCC, and LPC for 12 classes of
sounds using feed forward neural network (ANN) with 45 hidden neural units in
Figure 4.8. As shown in this figure, Spectrogram features demonstrate the ability to
better. They perform better than MFCC features in 7 of the examined classes while
producing poor results in the case of 5 other classes. Compared with the LPC features,
Spectrogram feature were better in every class. The having highest recognition rate at
96.12% in class 4 (Pronounced "'mai-mee™"). Especially, in figure 4.8spectrogram
feature can recognize Cross-Language Music Data.

Recognition Accuracy (%)

Figure 4.6: Overall recognition rate comparing 8 classifier using spectrogram as
features on DBTHS-ENG dataset.
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Figure 4.7: Preliminary experiments to obtain the candidate number of hidden neurons
based on the features of Spectrogram, MFCC, and Ipc on DB-TH-ENG dataset of
hidden neural = 45.
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Figure 4.8: Overall recognition rate (ANN) comparing 12 classes using Spectrogram,
LPC, and MFCC as features with a DB-TH-ENG dataset.

For completeness, this research examines the classification by using K-
nearest neighbors (KNN) with spectrogram. This research examines the result from
verity number of K by using same windows size 512 and same data in Feed Forward
Neural Network. Figure 4.9 was showing overall recognition accuracy using K-
nearest neighbors (KNN) with a verity number of K for each singing word. The
overall recognition rate was obtained using K=1 with accuracy of 82.67%. The
performance is not high compared with Feed Forward Neural Network.
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Figure 4.9: Preliminary experiments to obtain the candidate number of

K nearest neighbors based on the features of Spectrogram, MFCC, and Ipc. on DB-
TH-ENG dataset

This research compares the overall recognition accuracy using
Spectrogram, MFCC, and LPC for 12 classes of sounds using K-nearest neighbors
(KNN) using K=1 in Fig. 4.10. As shown in figure 4.9 and Fig 4.10, Spectrogram
features in recognition performance are not much higher than MFCC. They perform
better than MFCC features in 7 of the examined classes while producing poor results
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in the case of 5 other classes. Compared with the LPC features, Spectrogram feature
were better in every class. The having the highest recognition rate was 95.09% in
class 3 (Pronounced "Together").

100 -

Recognition Recognition(%)

Classl Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10 Class1l Class12

M Spectrogram EMFCC @ LPC

Figure 4.10: Overall recognition rate (KNN) comparing 12 classes using Spectrogram,
LPC, and MFCC as features with a DB-TH-ENG dataset.

Time =12s

Time=12s

Time=12s Time=12s

Figure 4.11: Example of spectrogram obtained from different sizes of windowed
segment a) 64, b) 128, c) 256, d) 512, e) 1024, f) 2048, g) 4096, h) 8192.
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4.1.2 Experiment on different sizes of windowed segment on DB-TH-
ENG and DB-THS

A spectrogram can be obtained from different sizes of windowed
segment. Figure 4.11 show a spectrogram obtained from different sizes of windowed
segment. From the figure this research can see a different characteristic of a
spectrogram obtained from different sizes of windowed segment. This research
wanted to find out the effect in classification performance of different sizes of
windowed segment and size of windowed segment that gives the best accuracy rate in
classification for the data set.

This experiment used the same data in Table 3.1 and Table 3.2. The
following window sizes were experimented: 4096, 2048, 1024, 512 and 256 . All
window sizes were used overlapping at 25%.

Figure 4.12 and 4.13, show the average accuracy obtained from
different classifier with a different size of windows segment by using k-nearest
neighbors (KNN) with K=1 and feed forward neural network with 20 hidden neural
units on DB-THS. As showing Figure 4.12 and 4.13 and, a spectrogram that created
from a large size of windows segment gives better classification accuracy than a
spectrogram that created from a small size of windows segment. For another feature,
by using feed forward a spectrogram perform better than MFCC and Ipc in all sizes of
windows segment. Comparing to the results from Figs 6 and 4.12, these results are
interesting. When increasing a window size of 512 to 4096 in the spectrogram feature.
The Average recognition accuracy increased from 78.60% to 82.17%.

Figure 4.14 show the details of each group. As shown in this figure,
Spectrogram features demonstrate the ability to better. They perform better than
MFCC features in 12 of the examined classes. Compared with the LPC features,
Spectrogram feature were better in every class. Compared to the results from Figure 7.
When using a window size of 512 for spectrogram feature, the recognition
performance than MFCC only 11 class. For K -nearest neighbor network, when
window size is 256, MFCC provides higher accuracy than spectrogram. However, in
other sizes, the results of spectrogram are better than MFCC. When this research used
the same data in Table 3.2. The following window sizes were experimented: 4096,
2048, 1024, 512 and 256. All window sizes were used overlapping at 25%. Figure
4.16 and 4.17, show the average accuracy obtained from different classifier with a
different size of windows segment by using feed forward neural network with 45
hidden neuron units and k-nearest neighbors (KNN) with K=1.

In case of feed forward network, similar results in DB-THS dataset a
large window size achieves higher accuracy than a small window size for spectrogram
features. The DB-TH-ENG dataset is the same effect. By using windows size 512, the
highest average recognition rate was 89.43%. When the window size is change to
4096. The highest average recognition rate was 90.30%. Compared with other feature
in the spectrogram, it also provides higher performance anyway. Figure 4.17 show the
details of each group. As shown in this figure, Spectrogram features demonstrate the
ability to better. They perform better than MFCC features in 12 of the examined
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classes. Compared with the LPC features, Spectrogram feature were better in every
class. Compared to the results from Figure 4.5. When using a window size of 512 for
spectrogram feature, the recognition performance than MFCC only 7 class.

Recognition Accuracy(%)

256

Feed Forward Neural Network

512 1024 2048
M Spectrogram mLPC m MFCC

Figure 4.12: Average recognition performance of Feed-Forward Neural Networks on
a spectrogram MFCC and Ipc obtained from different sizes of windowed segment on

DBTHS data set.
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Figure 4.13: The comparison of recognition accuracy for different window sizes

based on K =1 nearest neighbor network and different features on DBTHS data set.
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Figure 4.14:  Overall recognition rate (ANN) comparing 12 classes using
Spectrogram, LPC, and MFCC as features with a DBTHS data set on Windows Size
4096.
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Figure 4.15:

size 4096.

Overall recognition rate (KNN) comparing 12 classes using
Spectrogram, LPC, and MFCC as features with a DB-THS dataset by using windows



Recognition Accuracy (%)

8 8 8§ 8 8

100

70

256 512 4096

42

Feed Forward Neural Network

1024 2048
M Spectrogram MFCC mLPC

Figure 4.16: Average recognition performance of Feed-Forward Neural Networks on
a spectrogram MFCC and Ipc obtained from different sizes of windowed segment on
DB-TH-ENG data set.
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Figure 4.17: Overall recognition rate (ANN) comparing 12 classes using Spectrogram, LPC,
and MFCC as features with a DB-TH-ENG dataset by using windows size 4096.
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Figure 4.18: The comparison of recognition accuracy for different window sizes
based on K = 1 nearest neighbour network and different features on DB-TH-ENG data
set.
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Figure 4.19: Overall recognition rate (KNN) comparing 12 classes using Spectrogram,
LPC, and MFCC as features with a DB-TH-ENG dataset by using windows size 4096.

Figure 4.18, For K -nearest neighbor network, when window size is
256, MFCC provides higher accuracy than spectrogram. However, in other sizes, the
results of spectrogram are better than MFCC. Similar to neural feed forward network,
a large window is better than a small window size. At maximum window size of 4096,
the recognition rate is up to 85.16% for DB-TH-ENG dataset.
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4.1.4 Experiment Dimension Reduction on Spectrogram Features.

However, the use of Spectrogram is also limited. When converting
from Audio Signal to a Spectrogram. A dimension of Spectrogram is higher than other
feature. Therefore, Spectrogram was using more memory more than the other types
feature vector in same windows size. As compared to using the MFCC feature
performance close to the Spectrogram. When used a same size of Windows to create
spectrogram and MFCC feature. MFCC was used 13 numbers.

The spectrogram feature usually has a high dimensionality. The size of
a spectrogram of each singing word can be calculated from:

SpectrogramSize = L’\J]i QJ X % 4.1

Where N is the length of a input signal x(n), M is length of windows
w(n) and Q is hop size. For example, this research created a spectrogram from short
input signal. Time duration of input signal is 0.5s with 8000 H z sample rate. The
sampling rate defines the number of samples per unit of time (usually seconds). This
signal sampling rates are 8000 Hz and time duration is 0.5s. Therefore, the length of
input signal is 8000/2 = 4000. If spectrogram used windows size 256 and overlap
25%. This research can be calculated from the sample below. A size of spectrogram
equal 2560. A dimension of spectrogram feature is very high; its dimensionality needs
to be reduced. Dimensionality reduction is the transformation of high-dimensional
data into a meaningful representation of reduced dimensionality.

This research apply 6 dimension reduction technique in this section for

reduce spectrogram feature dimensions.

+ Diffusion maps ('DiffusionMaps’).

« Linear Local Tangent Space Alignment ('LLTSA")

 Principal Component Analysis('PCA").

« Stochastic Neighbor Embedding ('SNE")

» Symmetric Stochastic Neighbor Embedding (‘'SymSNE’)

 t-Distributed Stochastic Neighbor Embedding (‘tSNE")

First, the research performs an estimation of the intrinsic
dimensionality of both dataset based on the method specified by method. Possible
values for method are maximum likelihood estimator (MLE). In our experiments, this
research set neighborhood range k1 and k2 in maximum likelihood estimator (MLE)
to 6 and 20. After that, this research run dimension reduction technique on same data
in Table 3.1 and Table 3.2.

Two classifiers, i.e. feed forward neural network and K-nearest
neighbour (KNN), are deployed in this experiment. In section 4.1.3, a spectrogram that
create from window of 4096 points with a 25% overlap show the highest average
recognition rate. Then, this section used that window of 4096 points for spectrogram
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feature. The research compare the overall recognition accuracy using Spectrogram
and their combination for 6 dimension reduction technique in Fig. 4.20 , 4.21 , 4.22
and 4.23, After this research apply dimension reduction technique for reduce
spectrogram feature dimension.

In Figure 4.20, this research listed the accuracies achieved with
spectrogram, MFCC, LPC and spectrogram with dimension reduction technique for
the testing data. This research can see from Figure 4.20 that spectrogram feature with
dimension reduction technique recede the accuracies noticeably, compared to the
results obtained from spectrogram feature without dimension reduction technique.

By using Feed forward neural network (ANN) with spectrogram
feature with dimension reduction technique. The recognition performance is greatly
reduced. Especially when singing word is short as show in figure 4.20 and 4.23.

However, we compared with K-nearest neighbour (kNN) with
spectrogram feature with dimension reduction technique. Recognition performance
was not reduced as much as the using Feed forward neural network (ANN)as show in
figure 4.21 and 4.23. In particular, t-Distributed Stochastic Neighbor Embedding
(‘tSNE') techniques can provide performance equivalent to the spectrogram feature
without dimension reduction technique.

Feed-Forward Neural Network

Spectrogram 82.17

l

LPC 38.80

MFCC 38.07

Spectrogram with tSNE 35.45

I

Spectrogram with SymSNE 10.48

1

Spectrogram with SNE

I

10.68

I

Spectrogram with PCA 23.43

Spectrogram with LLTSA _ 10.39

Spectrogram with DiffusionMaps 8 96
|

10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00

Recugnition Accuracy (%)

g-

0.

Figure 4.20: Overall recognition rate (KNN) comparing 12 classes using Spectrogram,
LPC, and MFCC as features with a DB-THS dataset.
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Figure 4.21: Overall recognition rate (KNN) comparing 12 classes using Spectrogram,
LPC, and MFCC as features with a DB-THS dataset.
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Figure 4.22: Overall recognition rate (KNN) comparing 12 classes using
Spectrogram, LPC , and MFCC as features with a DB-TH-ENG dataset.
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Figure 4.23: Overall recognition rate (KNN) comparing 12 classes using
Spectrogram, LPC , and MFCC as features with a DB-TH-ENG dataset.

4.1.5 Computational Speed Tests

In this section this research show the execution time of the algorithm.
The experimental en- vironment is Dell OptiPlex 755 Desktop , Intel Core 2 Duo
E6750 Processor operating at 2.66-GHz and 6 GB total memory, running Microsoft
Windows 7 64bit with Matlab 2011b 64bit. The programs were tested on 2 data sets
acquired from Table 3.1 and Table 3.2.

The execution time report in this section, Our timing of the experiment
in section The 12 considered singing word that contains 7200 sound samples, 600
for each word. Each singing words are randomly divided into four groups of equal
sizes. Each group contains 150 sounds for each word. Then, arbitrarily selected three
groups are used for training and the rest is used for testing. For cross-validation
procedure, the same process is repeated 50 times. The average retrieval time with 50
times of a test set report in Table 4.1. By using feed forward n which has a
computational time between 0.376s 0.526s for each singing word. However, when
using knn computation time increases slightly. By using KNN which has a
computational time between 0.485s 0.576s for each singing word.



Table 4.1 COMPUTATIONAL TIMES (Second) with spectrogram feature

Windows Size

DB-THS DB-TH-ENG DB-THS DB-TH-ENG

256 0.52s 0.40s 0.57s 0.51s
512 0.48s 0.40s 0.57s 0.50s
1024 0.47s 0.39s 0.54s 0.48s
2048 0.44s 0.39s 0.57s 0.49s
4096 0.45s 0.37s 0.55s 0.49s

Table 4.2 COMPUTATIONAL TIMES (Second) with MFCC feature

Windows Size

DB-THS DB-TH-ENG DB-THS DB-TH-ENG

256 0.65s 0.50s 0.72s 0.64s
512 0.60s 0.50s 0.72s 0.63s
1024 0.59s 0.49s 0.68s 0.60s
2048 0.55s 0.49s 0.72s 0.62s
4096 0.57s 0.47s 0.69s 0.62s

Table 4.3 COMPUTATIONAL TIMES (Second) with LPC feature

Windows Size DB-THS DB-TH-ENG DB-THS DB-TH-ENG
256 0.25s 0.19s 0.27s 0.24s
512 0.23s 0.19s 0.27s 0.24s
1024 0.22s 0.18s 0.25s 0.23s
2048 0.21s 0.18s 0.27s 0.23s
4096 0.21s 0.17s 0.26s 0.23s

Table 4.2 and 4.3 show a computational time by using MFCC and
LPC feature. By using MFCC feature will take to process an average of 25% slower
than the spectrogram feature. However, when compared with LPC feature. The time it
takes to process up to 60% faster than spectrogram feature.



49

4.2 Environmental sound Recognition Problem

For Singing Word Recognition Problem, Each environmental in DB-
ENG in table 3.3 were segmented into several sub-signals. These sub-signals were
randomly divided into five groups of equal sizes. Then, arbitrarily selected four
groups were used for training and the rest is used for testing. In each experiment, we
performed 50 runs on each classifier to obtain statistically reliable results. The mean
recognition rate was calculated based on the error average for one run on test set. The
following comparisons are conducted. The objective of the experiments is to
investigate which features, i.e. (1) Mel Frequency Delta Cepstral Coefficients
(MFCC); (2) Linear Prediction Coefficients (LPC); and (3) Matching Pursuit (MP),
and classifier, i.e. feed forward neural network and k-nearest neighbour network
(KNN), are suitable for recognizing the environmental sounds. Since the details of
extracted features depend upon the sampling rate, the comparison of different
sampling is also investigated.

1.The average accuracy based on spectrogram features versus a feed forward
neural network.

2.The average accuracy based on spectrogram, MFCC, LPC, and MP features
versus a feed forward neural network.

3.The average accuracy spectrogram features versus a KNN.

4.The average accuracy based on spectrogram, MFCC, LPC, and MP features
versus a KNN.

5.The average accuracy between the feed forward neural network and the KNN
with spectrogram, MFCC, LPC, and MP features.

6.The average accuracy based on spectrogram, MFCC, LPC, and MP features
versus a feed forward neural network with different window sizes.

7.The average accuracy based on spectrogram, MFCC, LPC, and MP features
versus a KNN with different window sizes.

8.The average accuracy based on spectrogram, MFCC, LPC, and MP features
versus a feed forward neural network with different sampling rates.

9.The average accuracy based on spectrogram, MFCC, LPC, and MP features
versus a KNN with different sampling rates.
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Figure 4.24: Classification accuracy obtained with Spectrogram features and Feed-
Forward Neural Network.

4.2.1 Various Features with Feed-Forward Neural Network

This experiment is to test the feasibility of spectrogram feature on the
accuracy of classification realized by a neural network. Each spectrogram is computed
from a window of size 256 sampling points. There are 30 hidden neurons used in this
experiment. Figure 4.24 summarizes the accuracy of each sound type. It can be seen
that 12 sound types, i.e. Construction, Crowd Applause, Crow Clamor, Fire,
Helicopter, Outdoor Forest, Transportation-Moto, Weather-Wind, Weather-Rain and
Thunder, Aviation, Chicken Farm, and Auto Racing, achieve more than 90% accuracy
rate. Another four sound types, i.e. Car Engine, Restaurant Stores, Transportation
Train , and Water(Ocean) achieve between 75-60% accuracy rate. But the rest of
sound types, i.e. Office, Outdoor-Road, Water, and Household, achieve rather poor
accuracy.

Although the accuracy based on spectrogram feature is acceptable up
to some certain degree, it is not conclusive that spectrogram feature is the most
suitable feature for this recognition. Three other features, namely MFCC, LPC, and
MP, are tested against spectrogram feature. For MFCC, the parameters are the
following: number of cestrum’s is 13; exponent for littering is 0.6; highest band edge
of Mel filters is 4000 Hz; number of warped spectral bands is 40. The frequency
warping scale used for filter spacing in MFCC is the Mel (Melody) scale. For MP, the
signal is decomposed by using Gabor dictionary of 1120 atoms with dyadic scales
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from 2 to 256 samples and translations in 0, 64, 128, and 192. In each atom, 35
different exponentially distributed modulation frequencies are considered.

Anyhow, from the MP decomposition of the segment, only the first 5
atoms are concerned. From these atoms, a four-dimensional feature vector from the
mean, standard deviations of the modulation frequencies, and scales of the 5 atoms is
formed. The classification results for the spectrogram, MP, MFCC, and LPC features
by using feed forward neural network with 30 hidden neural are shown in Figure 4.25.

The number of hidden neurons is also another relevant factor affecting
the accuracy. However, theoretically estimating this number is rather difficult. Several
numbers of hidden neurons are tested. The accuracy based on the number of hidden
neurons for each feature type is summarized in Figure 4.26. The highest accuracy is
achieved when the number of hidden neurons is set to 30. But when this number is
increased, the accuracy is gradually decreased. This may be due to the over fitting
effect during the neural training process.
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Figure 4.25: Classification accuracy obtained with different features and Feed-
Forward Neural Network.
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Figure 4.26: Classification performance of Feed-Forward Neural Network with
varying number of hidden neural unit.

4.2.2 Various Features with K-Nearest Neighbours (KNN)

A similar experiment is conducted with a k-nearest neighbour classifier
(KNN). The number of nearest neighbours is set to 10. The rationale of setting this
number will be discussed later. Firstly, the spectrogram feature of each sound type is
extracted and trained with a KNN. The testing result of each sound type is
summarized in Figure 4.27. It can be seen that 13 sound types, i.e. Car Engine,
Construction, Crowd Applause, Fire, Helicopter, Office, Outdoor-Forest,
Transportation-Moto, Wa- ter, Weather-Wind, Weather-Rain and Thunder,
Household, and Auto Racing, achieve the accuracy range of 92.66%-99.88%. Five
sound types, i.e. Crow Clamor, Outdoor-Road, Restaurant Stores, Transportation-
Train, and Chicken Farm, are in the accuracy range of 76.12%-89.37%. The other two
sound types, i.e. Aviation and Water (Ocean), have the accuracy in between 56.85%-
66.24%. By average, the KNN classifier with spectrogram feature performs much
better than the neural classifier.

The effectiveness of different features, i.e. spectrogram, MFCC, LPC,
and MP, with a KNN classifier is also investigated in this experiment. Figure 4.28
shows the result of this experiment. Obviously, over all classification accuracy using
KNN classifier is better than a neural network. The spectrogram feature indicates the
best classification accuracy of more than 90%. This accuracy is higher than the
results based on MFCC, LPC, and MP features in 12 classes, i.e. Car engine,
Construction, Construction, Office, Restaurant Stores, Transportation-Train, Weather
Wind, Weather-Rain and Thunder, Household, Water(Ocean), Chicken Farm and
Auto Racing. But spectrogram feature results less accuracy than MFCC feature for the
sound of Outdoor-Forest and MP for the sounds of Construction, Crow Clamor,
Outdoor Sounds-Road, Transportation-Moto, Water, and Aviation.
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Different numbers of nearest neighbours are tested by varying the
values of K from 10 to 20 to achieve the maximum accuracy. Figure 4.29 summarizes
the accuracy under different numbers of nearest neighbours. The maximum accuracy
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Figure 4.27 Classification accuracy obtained with spectrogram features using the KNN

classifier.
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Figure 4.29: Average classification performance of KNN with different numbers of
nearest neighbours, spectrogram, MP, MFCC, and LPC features.

4.2.3 Comparison of Neural Network and KNN Performances

To conclude which classifiers, namely neural network and KNN
classifiers performs best on environmental sound recognition, the average accuracy of
all sound types based each feature and each classifier is computed. Figure 4.30
summarizes the comparison. The first two vertical bars are the performances of
neural network and KNN classifiers with spectrogram feature. The second vertical
bars are of MPCC feature. The third vertical bars are of LPC feature and the last ones
are of MP feature. Obviously, KNN classifier performs significantly better than
neural network classifier in all features.

4.2.4 Effect of Different Window Sizes

A spectrogram can be obtained from different sizes of windowed
segment. Note that the amount information of any sound wave represented in forms
of spectrogram depends upon the window size. However, predicting an appropriate
window size for each sound type is not simple. What should be a feasible window
size that can be applied to every sound type to possibly achieve the maximum
classification accuracy? To answer this problem, the following set of window sizes
{64, 128,256, 512, 1024, 2048, 4096, and 8192} with neural and KNN classifiers are
experimented. Based on spectrogram, MFCC, LPC, and MP with different window
sizes, Figures 4.31 illustrates the average neural classification accuracy and Figure
4.32 illustrates the average KNN classification accuracy. The same configurations of
neural classifier and KNN classifier discussed in the previous section are deployed in
this experiment.
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Figure 4.30: Average Classification accuracy obtained with KNN and Feed-forward
Neural Network on a variety features.

It is interesting to note that, regardless of neural as well as KNN
classifiers and window sizes, spectrogram feature provides the highest accuracy
among the other features, MFCC, LPC, and MP. The maximum average accuracy
occurs when the window size is equal to 8192. This is because a large window
contains more classifiable feature information than a small window size. However, for
MFCC, LPC, and MP features, the average accuracy with different window sizes is
not conclusive. For example, with window size of 512, LPC performs better than MP
by neural classifier but MP performs better than LPC by KNN classifier.
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Figure 4.31: Average classification performance of a feed forward
neural network with spectrogram, MP, MFCC, LPC features and different window
sizes.
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Figure 4.32: Average classification performance of KNN with spectrogram, MP, MFCC and
LPC feature using different window sizes.

4.2.5 Effect of Different Sampling Rates

A digital audio signal can be collected from different sampling rates.
Many different sampling rates are used in current digital signal processing
applications. Telephone systems sample speech at 8 kHz, 11.025 kHz is used for
AM-radio quality audio, and 44.1 kHz is the standard for CD quality digital music. A
spectrogram feature computed from a digital audio signal by different sampling rates
contains different amounts of information which obviously affect the accuracy. The
interesting problem is which sampling rate is most suitable for classifying
environmental sound types. Since it is very difficult to reach the theoretical
conclusion on the best sampling rate for this problem, an empirical study on different
sampling rates versus classification accuracy is conducted. The following sampling
rates are tested against the classification accuracy, i.e. 5500 Hz, 6000Hz, 7333 Hz,
8000 Hz, 11025 Hz, 16000 Hz, 22050 Hz, 32000 Hz, and 44100 Hz.

In this experiment, the sampling rate of 44100 Hz with 128 KB/s bit-
rates is originally applied to the audio signals. Then, the obtained signals are down
sampled to 5500Hz, 6000Hz, 7333Hz, 8000 Hz, 11025 Hz, 16000 Hz, 22050 Hz and
32000 Hz with mono channel, respectively. In addition to different sampling rates,
different window sizes in each sampling rate are also involved. The following window
sizes are concerned for each sampling rate, i.e. 128, 256, 512, 1024, 2048, 4096 and
8192 with 25% overlap.
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Figure 4.33, 4.34, 4.35, 4.36, 4.37,4.38, and 4.39 show the average
classification rates by using feed-forward neural network with 30 hidden neural on
spectrogram, MFCC, LPC and MP features. It can be seen that, in case of the feed
forward neural network, spectrogram feature provides better performances than those
from MFCC, LPC and MP features in all sampling rates. The performance of
spectrogram feature does not change much when changing the sampling rate but
MFCC, LPC and MP features significantly change a lot. In all sampling rates, it was
found that, regardless of the feature types used, a large window size will provide
better performance than a small window size.

Figure 4.40, 441, 442, 443, 444, 445, and 4.46 show the
performances of spectrogram, MFCC, LPC, and MP features with a KNN for 10
nearest neighbours under different sampling rates. Similar to the previous experiment,
the same conclusion on the performance of each feature type as well as the window
sizes can be drawn. Remarkably, the performance of spectrogram feature, however,
remains to be relatively high and even very stable for different sampling rates. This
verifies that spectrogram is very robust to use for environmental sound classification.

100 -
90
80 - =T F LI e TS -

70 - / -
60 -
50 -
20

30

= Spectrogram
MFCC

- == LPC

— -MP

Recognition Accuracy (%)

20 -

10 -

0

6000Hz 7333Hz 8000Hz 11025Hz  16000Hz 22000Hz  24000Hz 32000Hz  44100Hz

Sampling Rate (Hz)

Figure 4.33: Average classification performance of feed forward neural network
having 30 hidden neurons with spectrogram, MP, MFCC and LPC feature using
different sampling rates on Window Sizes 8192.
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Figure 4.34: Average classification performance of feed forward

neural network having 30 hidden neurons with spectrogram, MP, MFCC and LPC
feature using different sampling rates on Window Sizes 4096.
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Figure 4.35: Average classification performance of feed forward neural network
having 30 hidden neurons with spectrogram, MP, MFCC and LPC feature using
different sampling rates on Window Sizes 2048.
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Figure 4.36: Average classification performance of feed forward neural network
having 30 hidden neurons with spectrogram, MP, MFCC and LPC feature using
different sampling rates on Window Sizes 1024.
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Figure 4.37: Average classification performance of feed forward neural network
having 30 hidden neurons with spectrogram, MP, MFCC and LPC feature using
different sampling rates on Window Sizes 512.
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Figure 4.38: Average classification performance of feed forward neural network
having 30 hidden neurons with spectrogram, MP, MFCC and LPC feature using
different sampling rates on Window Sizes 256.
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Figure 4.39: Average classification performance of feed forward neural network
having 30 hidden neurons with spectrogram, MP, MFCC and LPC feature using
different sampling rates on Window Sizes 128.
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Figure 4.40: Average classification performance of K-nearest neighbour forK10 with
spectrogram, MP, MFCC and LPC feature using different sampling rates on Window

Sizes 8192.
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Figure 4.41: Average classification performance of K-nearest neighbour forkK10 with
spectrogram, MP, MFCC and LPC feature using different sampling rates on Window

Sizes 4096.
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Figure 4.42: Average classification performance of K-nearest neighbour forK10 with
spectrogram, MP, MFCC and LPC feature using different sampling rates on Window

Sizes 2048.
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Figure 4.43:

Average classification performance of K-nearest

neighbour forK10 with spectrogram, MP, MFCC and LPC feature using different
sampling rates on Window Sizes 1024.
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Figure 4.44: Average classification performance of K-nearest neighbour forK10 with
spectrogram, MP, MFCC and LPC feature using different sampling rates on Window

Sizes 512.
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Figure 4.45: Average classification performance of K-nearest neighbour forK10 with
spectrogram, MP, MFCC and LPC feature using different sampling rates on Window

Sizes 256.
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Figure 4.46:  Average classification performance of K-nearest
neighbour forK10 with spectrogram, MP, MFCC and LPC feature using different
sampling rates on Window Sizes 128.

4.2.6 Classifying Short Duration Sounds

The work by Selina Chu [22] performed a listening test to study human
recognition capability on these environmental sounds. The duration of the studied
audio clips varied between 2, 4, and 6 seconds. The test consisted of 140 audio clips
from 14 categories, with ten clips in each class. The study concluded that a longer
duration increases the chance that a listener can correctly identify the sounds in each
clip. However, this conclusion may not be true if an interested sound is recognized by
a machine. To confirm this hypothesis, our technique is deployed to different duration
sounds as follows.

Our algorithms are tested with the audio clips summarized in Table 4.4
for various time periods between 1 to 6 seconds. Some these periods are shorter than
those of Selina Chu's experimental times [22]. Our experiments consist of 5-fold cross
validation and the average accuracy is measured. In each fold, the data in each of the
audio clip are partitioned into five sections. Four out of five sections are for training
and the rest is for testing. The duration of each clip in minutes is given in Table 4.4.
The audio data in the training set are converted into a set of spectrograms by using a
window of size 8196 and 4096 with 25% overlapping sampled points for feature
extraction. A feed- forward neuron network with 30 hidden neurons and 20 outputs is
applied for classification. For KNN, the value of K is set to 10 for classification.

The audio data in test set are chopped into a set of short audio clips. A
duration of each clip varied between 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6 seconds.
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This research used each window in each audio clip to test the accuracy. The accuracy
rate is computed by analyzing the maximum output value observed from cumulative
frequency.

Fig 4.47 shows the results of the experiments. By using a feed-forward
neural network with spectrogram for the duration of one second, the classification
accuracy ranges from 85.66% to 90.57% for the window size of 8196 and 81.19% to
84.93% for the window size of 4096. Obviously, the accuracy increases when the
duration is lengthened. The accuracy of each duration is summarized in Tables 4.5
and 4.6. Nine best classification scenes are Car engine, Crowd Applause, Crowd
Clamor, Fire, Outdoor Sounds - Forest, Outdoor Sounds - Road, Water, Household,
and Chicken Farm. All nine classes achieve more than 90% of classification rate.

Table 4.4 Duration of training and testing sets.

Audio Clips Training (min) | Testing (min)
Car engine 11.6 3
Construction 9.68 2.5
Crowd Applause 11 3
Crow Cheering 12 4
Fire 10 3.7
Helicopter 11.36 3.08
Office 12.16 3.24
Forest 12.64 3.6
Road, Restaurant Stores 12.02 3.8
Transportation - Motorcycle 12.72 3.58
Transportation-Train 11.04 3.2
Water, Weather - Wind 12.56 3.54
Weather - Rain and Thunder 10.24 3.56
Household 13.28 3.32
Airplane 9.76 2.44
Water(Ocean) 16 4.8
Chicken Farm 17.84 4.45
and Auto Racing 18.56 4.64
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Figure 4.47: Classification accuracy obtained from different time duration.

By KNN using with spectrogram windows of sizes 8192 and 4096,
the classification accuracy ranges from 84.11% to 87.09% for the window of size
8196, and 78.29% to 86.10% for the window size of 4096.

Tables 4.7 and 4.8 show the overall classification rates by using KNN
with K 10 on spectrogram with different time duration. For window size of 8192, the
following eight classes, i.e. Car engine, Crowd Applause, Fire, Outdoor Sounds -
Forest, Outdoor Sounds - Road, Transportation - Train, Household, and Auto
Racing, achieve the accuracy rate more than 90%. From these experiments,
when the duration of audio clip is short, the results from the feed-forward neural
network outperform the results from KNN. In addition, the accuracy rate depends
upon the length of the audio clips.
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Table 4.5 The average accuracy of all classes from feed-forward 30 hidden neurons with spectrogram using window size of 4096 in
different time duration.

Window Sizes 4096 1s 1.5s 25 2.5s 3s 3.5s 4s 4.5s 5s 5.5s 6s
Classl 9463 96.09 97.56 99.39 100.00 100.00 100.00 99.63 100.00 100.00 100.00
Class2 68.60 68.97 70.54 70.68 68.92 70.09 68.72 71.57 72.48 76.23 74.33
Class3 88.58 87.87 88.27 89.79 93.23 93.09 92.11 89.80 90.00 91.86 91.06
Class4 9545 9599 95.74 97.92 96.58 98.00 98.67 97.34 96.67 96.65 98.88
Classb 90.89 90.13 92.05 90.63 92.91 90.76 92.35 92.26 91.43 93.95 94.59
Class6 7541 79.22 79.38 82.25 82.95 82.98 83.00 81.22 84.13 85.21 85.10
Class7 68.91 70.71 72.55 73.72 73.83 72.43 74.91 76.40 76.65 75.58 77.53
Class8 96.75 96.27 98.45 100.00 98.19 98.85 100.00 99.68 99.55 99.44 100.00
Class9 77.00 85.62 81.09 81.47 86.00 86.08 89.15 87.83 92.65 88.00 91.80

Class10 76.00 77.46 79.04 80.26 78.23 79.65 79.75 80.08 80.79 80.69 82.36
Classl11 78.17 8275 81.49 84.46 82.90 84.50 86.78 85.33 89.01 90.57 92.77
Class12 72.00 75.62 75.09 76.47 77.00 79.08 82.15 80.83 82.65 82.00 84.80
Class13 9798 98.65 100.66 99.43 100.00 100.00 99.86 100.00 100.00 100.00 100.00
Class14 70.20 71.06 71.03 70.70 70.62 72.43 71.53 70.68 74.09 70.81 72.75
Class15 67.25 68.27 70.04 69.88 69.57 73.19 70.64 72.71 73.66 75.22 76.79
Class16 96.57 98.03 97.19 98.75 99.44 98.10 99.39 99.21 100.00 100.00 100.00
Class17 60.16 61.27 61.39 61.45 62.04 63.04 64.60 63.61 64.73 64.77 65.22
Class18 87.05 86.33 88.17 89.50 89.49 89.10 90.29 89.12 88.96 90.41 90.61
Class19 93.71 96.42 98.06 98.33 99.89 99.81 99.67 100.00 100.00 100.00 100.00
Class20 68.54 68.67 68.80 70.54 71.45 74.50 73.38 75.68 75.56 74.75 76.68
Average 81.19 82.77 83.33 84.28 84.66 85.28 85.85 85.65 86.65 86.81 87.76
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Table 4.6 The average accuracy of all classes from feed-forward 30 hidden neurons with spectrogram using window size of 8192 in
different time duration.

Window Sizes 8192 1s 1.5s 25 2.5s 3s 3.5s 4s 4.5s 5s 5.5s 6s
Class1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Class2 81.10 80.00 81.11 83.33 82.61 83.87 82.14 86.27 85.11 86.09 85.37
Class3 98.90 96.00 98.44 100.00  97.96 97.73 100.00 100.00 100.00 100.00 100.00
Class4 93.33 93.33 92.19 94,55 93.88 93.18 97.50 100.00 96.97 96.77 96.43
Class5 95.61 95.74 95.06 95.71 96.77 98.21 98.00 95.65 97.62 94.87 97.22
Class6 82.00 81.93 84.51 83.87 83.64 85.71 86.36 90.00 86.49 88.24 87.50
Class7 74.64 74.78 75.51 77.65 76.32 79.41 78.69 78.57 78.85 79.17 81.82
Class8 96.43 97.10 100.00  98.04 97.78 100.00 100.00 96.97 100.00 100.00 100.00
Class9 99.01 100.00 98.59 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Class10 77.50 77.27 77.19 81.63 79.07 79.49 80.00 81.25 82.76 81.48 84.00
Classl1 82.61 80.52 83.08 87.72 86.00 84.44 85.37 91.89 97.06 97.55 97.10
Class12 71.01 73.84 75.51 72.87 7ol 74,51 74.19 75.29 75.64 76.39 73.13
Class13 98.86 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Class14 71.01 73.84 75.51 72.87 72.81 7451 74.19 75.29 75.64 76.39 73.13
Class15 79.76 83.45 86.55 85.58 86.96 85.54 85.33 86.76 88.89 86.21 92.59
Class16 98.39 98.04 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Class17 73.98 77.45 75.86 76.32 77.61 78.33 80.00 76.00 73.91 76.19 76.92
Class18 83.78 83.70 82.28 82.35 85.25 87.04 83.67 86.67 90.24 90.84 90.71
Class19 89.47 93.65 94.34 93.48 92.68 91.89 90.91 93.33 96.43 96.00 96.67
Class20 65.71 68.97 68.92 69.23 73.68 7451 73.91 76.19 79.49 75.00 78.79
Average 85.66 86.48 87.23 87.76 87.79 88.42 88.51 89.51 90.25 90.06 90.57




69

Table 4.7 The average accuracy of all classes from 10-nearest neighbour network with spectrogram using window size of 4096 in
Different time duration.

Window Sizes 4096 1s 1.5s 25 2.5s 3s 3.5s 4s 4.5s 5s 5.5s 6s
Classl 78.00 8292 69.29 77.38 71.48 79.58 82.68 74.78 84.88 88.98 84.08
Class2 71.27 76.39 68.00 79.19 78.80 76.13 79.03 74.93 85.83 72.73 78.63
Class3 87.25 92.15 88.04 94.55 89.59 91.94 99.72 92.49 101.27 96.04 99.82
Class4 7353 7449 80.73 75.19 73.93 77.82 75.92 77.02 75.12 84.22 71.32
Class5 7197 79.70 83.13 81.15 78.71 76.92 76.21 85.50 81.80 82.09 77.38
Class6 95.21 96.04 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Class7 70.86 70.65 67.09 68.11 65.37 72.81 74.95 73.09 73.24 79.38 79.52
Class8 92.11 87.39 85.59 92.41 88.15 93.61 97.89 101.17  99.45 100.00 100.00
Class9 86.35 85.48 85.72 83.79 92.56 95.52 94.94 96.36 90.78 91.20 88.61

Class10 53.84 61.07 65.00 66.16 66.84 68.51 61.93 73.35 64.77 70.19 77.61
Class11 75.00 7792 74.29 75.38 76.48 78.58 81.68 79.78 81.88 83.98 84.08
Class12 7227 73.39 72.00 74.19 73.80 74.13 74.03 75.93 80.83 77.73 82.63
Class13 91.25 93.15 91.04 93.55 92.59 94.94 97.72 96.49 98.27 98.04 08.82
Class14 75.53 78.49 76.73 76.19 76.93 78.82 77.92 80.02 80.12 79.22 76.32
Class15 76.97 77.70 78.13 78.15 78.71 80.92 77.21 80.50 80.80 82.09 78.38
Class16 98.21 98.04 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Class17 67.86 67.65 68.09 70.11 70.37 70.81 72.95 74.09 74.24 75.38 79.52
Class18 89.11 92.39 90.59 92.41 93.15 95.61 97.89 98.17 96.45 99.74 100.00
Class19 82.35 85.48 87.72 86.79 88.56 91.52 89.94 91.36 87.78 89.20 88.61
Class20 56.84 62.07 60.00 62.16 62.84 63.51 65.93 70.35 69.77 69.19 73.61
Average 78.00 8292 69.29 77.38 71.48 79.58 82.68 74.78 84.88 88.98 84.08
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Table 4.8 The average accuracy of all classes from 10-nearest neighbour network with spectrogram using window size of 8192 in
Different time duration.

Window Sizes 4096 1s 1.5s 25 2.5s 3s 3.5s 4s 4.5s 5s 5.5s 6s
Classl 99.02 9555 99.00 99.01 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Class2 7421 7323 77.14 71.11 75.64 75.36 79.03 75.00 78.43 78.72 75.00
Class3 96.54 9281 97.37 96.70 96.00 96.88 98.21 93.88 97.73 97.50 97.22
Class4 8559 78.29 87.61 81.11 85.33 84.38 85.45 83.67 86.36 85.00 86.11
Classb 96.88 95.29 95.80 95.61 94.68 95.06 95.71 95.16 92.86 94.00 95.65
Class6 73.23 7041 7222 71.00 73.49 71.83 72.58 69.09 73.47 72.73 75.00
Class7 68.53 71.68 70.29 72.17 71.43 76.47 73.68 76.47 73.77 75.00 75.00
Class8 88.65 90.48 90.48 89.86 89.83 92.16 91.11 90.24 91.89 93.94 93.55
Class9 9294 9449 93.07 95.24 97.18 93.55 96.36 95.92 95.56 95.12 97.30

Class10 58.52 70.30 60.00 68.18 61.40 65.31 65.12 69.23 68.57 68.75 65.52
Classl1 68.59 74.14 72.83 72.73 69.23 71.93 74.00 73.33 73.17 72.97 76.47
Class12 9294 9449 93.07 93.63 93.69 93.76 93.82 93.88 93.95 94.01 94.08
Class13 88.59 90.09 88.64 87.67 88.71 87.04 87.50 88.37 87.18 88.57 87.50
Class14 78.39 83.08 80.68 83.14 78.23 81.40 78.95 83.33 81.72 80.00 79.49
Class15 82.38 79.17 82.73 80.67 83.65 84.78 83.13 84.00 83.82 82.54 84.48
Class16 97.44 96.77 98.04 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Class17 67.53 67.48 69.61 71.26 72.30 73.63 74.97 76.30 77.63 78.96 80.30
Class18 88.49 82.88 86.96 83.54 85.12 85.45 85.78 86.11 86.45 86.78 87.11
Class19 86.32 82.89 83.02 88.89 87.24 88.02 88.81 89.59 90.38 91.16 91.95
Class20 9742 89.81 92.11 93.92 96.77 101.75 97.93 97.11 95.29 100.00 100.00
Average 99.02 9555 99.00 99.01 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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CHAPTER YV

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this dissertation propose an algorithm for Thai singing voice
recognition in monaural poly- phonic music based on the time-frequency domain
feature technique of power spectrogram with neural classifier and classification
algorithms. The advantage of spectrogram is its ability to magnify and represent the
relevant information of an audio signal captured under a defined window segment.
This approach is simpler than the existing methods which used MFCC and LPC as
features. Our approach achieved higher accuracy than the other techniques. However,
the performance depends on several factors such as window size. The experiment
showed that feed-forward network performed better than accuracy rate more K-
nearest neighbor network than 94%. . Especially, this algorithm can recognize Cross-
Language Music Data.

We also presented the result of time-frequency domain feature
technique for unstructured environmental sound classification by using spectrogram
pattern. All possible relevant factors such as sampling rates, window sizes, and
different features are thoroughly studied to conclude which factors actually define the
acceptable classification performance. The experimental results show a promising
performance in classifying 20 different audio environmental. Both KNN and feed-
forward neural network can effectively classify unstructured environmental sound. In
particular, feed-forward neural network gives the best result in this experiment. A
longer duration was increase classification accuracy within each sound clip.

However, the use of spectrogram is also limited. When converting
from audio signal to a spectrogram. A dimension of Spectrogram is higher than other
feature. Therefore, Spectrogram was using more memory than the other types feature
vector in same windows size. As compared to using the MFCC feature performance
close to the Spectrogram. When used a same size of Windows to create spectrogram
and MFCC feature. This research apply dimension reduction technique for reduce
spectrogram feature dimension. This research found, by using feed forward neural
network (ANN) with spectrogram feature with dimension reduction technique. The
recognition performance is greatly reduced. However, when compared with K-nearest
neighbour (KNN) and spectrogram feature with dimension reduction technique.
Recognition performance was not reduced as much as the using feed forward neural
network (ANN).
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