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CHAPTER V

SYSTEMATIC IMPROVING FEYNMAN
VARIATIONAL APPROACH
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We now see that the result (3.71) can also be obtained by using this decomposition of S

= 27m /Bﬁthh

harmonic oscillator is m

together with the following measure of integration

dxo dxjf dujft (5.3)
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where the short notation xj¢ = Rex, and xi* = Imx, . We can make use of the
measure in above by showing, in the high temperature limit, the path integral
representation of any quantum partition function reduces to the classical partition
function. We start out with the Lagrangian formulation (3.37) and inserting the Fourier

% | Xm |2 , (5‘.4)
S

decomposition (5.1). Then, the kinetic

, (5.5)

. We now observe that,

where a prime symba |
A
~ q diverge like 27m / Bh.

for large temperature, the

EI ’
This has that the Boltzmann factor for the ﬂuctuauons beco es sharply around xg. The

Mo 1)L 111 AL g

in its arguments,‘We can approxmate it by V(xo) plus powers of X,,- For large

oy YT IO 508 41 BA e o o

is time depﬂndent and then, in the high temperature limit, we obtain

2 134 f@xexp {ﬂM 5 a»%lxmlz-ﬁV(Xo)}- (5.6)
m=1

The right-hand side is quadratic in the component x,. Thus, if we use the measure

(5.3), we can do the integrals over x,, and obtain
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2 TAe 2y = f X0 o -pVixo) (5.7)

e V27PH2 /| M

This also agree with the classical partitioh function (3.19). Notice that the zero

component is
X iy (5.8)
which is the average posi thidiscus befc e In previous chapter.
The Effective Classica .L-r_
4 1 12534 \\\
We now consider the path integral a | parti oving in one dimensional

potential V (x(7)). The pa antum mechanical partition

function

2 = oo @ ngea il B ve) 69

@

involves an infinite productof-ordinary integrals, After a Fourier decomposition of the

peioic pats asmafmm ¥ Aoiurd Hod e expressed in e

of the Founer com ncnts

aN [l UUMINYIAY

- amenl s
e V27PH2IM m=1|) mIPM®?

oo ﬂﬁ oo
xexp\-pM Y, wn%lx.mlz‘%‘f d'tV(xo +(z x,,.e"‘“-f+c.c.)) :
m=1

0 m=1

(5.10)
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we imagine that we could succeed in integrating out all real and imaginary components

of x, with m # 0. This would leave Z as a simple integral over the remaining

zero frequency component xo. Then we can write

Z - > : ’ .

[ =t (5.11)
where in high temperature — &tential Veff, ct (xo) is some
function of xq, which is ition of the fluctuating path on the time interval

[0, ﬁﬁ] The remainin

0) (5.12)

resulting in the classical limit “{xg) as T — oo. This is why the

pot ential and to the integral

function Vg, c1(xo) iswefer
(5.11) as the effective. dlassical p:  functic ‘ounts for the effects of all

quantum fluctuations [mean and Hibbs 1965, eynman&?Z].

It is imeﬁi%%}z?}% %‘5:%&]1’} ﬂtﬁé case of a harmonic

oscillator where 1&an be calculated exactly. Then e Boltzmann aaytor in (5.11) is
sty ) WIANTIEU 111&’1'3718'1@ e

e- Mo P12 (5.13)

cXP{-ﬂM Y (@2 + ©2)] xn|2

w=1

The integrals over x,¢ xim can be performed with the result

Z = “__dE___ i [__w,_i__] -BMo 2 (5.14)
j.. N2xph? /M m1—=Il of+w? .
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The remaining Boltzmann factor contains the potential energy at the average path

position xo only. The accompanying product over the frequency ratios was evaluated
before in (3.70),

ﬁ . . me

(5.15)
h(ﬂﬁw/Z

he single integral of the form
(5.11), with the effective

Veg, c1(x0) =

(5.16)

Thus, in the case of the harmg c ogefita

changed which respect to the ClaSS at ' he average path position xo by an

tive classical potential is simply

additional temperature dépen emperature we have,

fa

YV 5+ Vixo) , (5.17)
ie., the addmonaﬂnuﬂ’l m&mn&’lﬂ.‘j mechanical zero-
TRV T

- V21BA2 /M

=i PNeL (5.18)

with the zero-point oscillations in 1/T:
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Feynman-Kleinert Variational Approach

For a general quantum mechanical system with any potential V (x) it is

impossible to calculate V. 1(xo) exactly. We, however, try to find a simple but very

accurate approximation to Vg o (xg which, moreover, approaches the true

pefpesition of harmonic oscillator path

integrals centered at varius-average positions xo them having its own xg-

dependent frequency Qxg). A d, the uperpe ‘and the frequency will be

chosen optimally in such®d w3 the effe f ‘;. : . ential of the trial system is

The trial potential of the potential ¥, ' pned for the trial action §; a's

i(£0) (5.19)

. “ S e e ; "'L'

i

i ~
Thus, the partition functicJ to be used is given by

eﬁuﬂf%ﬁlﬂﬂ’iwmﬂ‘i
q Wl@ﬁﬂ Tiy ;‘l u’s]z Eo) (x - xo)’] 1) . (5.20)

It involves two unknown xo-dependent functions, the superposition function Li(xo)
and the frequency Yxp), where F; is defined as the free energy corresponding to this
trial partition function. Expanding the kinetic term into its Fourier components, it

contributes to the exponent a term
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-pM Y, (w,3+92(xo))lxml-2. (5.21)
m=1

We can then perform the integrals over xj¢ , xi just as in the case of a harmonic

oscillator in the previous example, Eq. (5.13), and obtain

7 = f = .';

sin
This may be rewritten as a

e - Aixo) | (5.22)

(5.23)

with an approximate effect
+ Ly(xp) - (5.24)
We would like to determine the two trial ) xg) ot Li(xo) in such a way

that Wy(xo) becomes amoptimal upper bound and hus a'very good approximation to

A

To solve i%s problem we take fecourse in an-extremal principle. We shall first
find n fidabdity kil eniioh S0 dnd) YUhGe) hbing enar 2, s
always smqéller than Z and select those functions which make Z; largest. For the
corresponding free energies F; and F this will supply an optimal upper bound F;
for F. Afterwards we shall extend the inequality by proving that it holds also locally in
the form Wi(xo) 2 Vg . It will turn out that for many potentials V(x), this
procedure will bring F; socloseto F that the difference is only a few percent, even

at zero temperature where the effect of quantum fluctuations is most relevant.
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To find the optimal bound we are based on the Jensen - Peierls inequality and
the variational approach as fundamentally described before in Chapter IV We rewrite

the original partition function as follows

I Dxe -(11%)S

(5.25)

7
where §; is the trial eu : 3.19) of } : \: lion function (5.20) whose

path integral was redu € second expression for Z

may further be rewritte

(5.26)
where the bracket { - -)1 déno £ value calculated with the trial

probability distribution exp rbitrary functional O[x]

of the path x(7) we def ,}. —

g[x]), e (llﬁ)sna@] (5.27)
ﬂum ‘VIEJ INYINT

we now observe that, for any probablhqulstnbuuon € expectation of an exponential

o AP T ) 111161 £

€9 > el ' (5.28)

This inequality, Jensen - Peierls inequality, can therefore be used to write down

immediately an inequality for the partition function Z in (5.26),

Z > Ze-(A)is-sh (5.29)
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for the free energies F = - (l / B)In Z , this implies the upper bound

F < Fi+L¢-5),. (5.30)
ﬂﬁ 1

Since the two actions S and §; have the same kinetic term Idr(M /2)% 2 (this is

how §; was constructed), only th s survive in the difference and we
remain with
P nad 02-Liw) . (531)
On the right-hand ¢ 1"'.; cal the expectation of the potentials
V (x(7)) and of the trial pot ( ithin the me: 3 ¢ of the partition function
Zy. Let us start with V (x(g)) Bor'this = ecompose. V (x(7)) into its Fourier
components

(5.32)

—

Using the partition functio Zy in the form (5 10) and (5.27), the cxpectatlon is
¢a

s 118111181913 WEIN
v i sl

X exp{ -BM z (a)m2 + Qz(xo))| Xmiz - ﬁLl(XO)}

m=1

v f dk g e b+ 22er et (5.33)
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As far as the x,-integrals are concerned, the only new term with respect to the partition
function Z, itself is the exponent exp { ik Z;: =1Xme%n T+ c.c. , This can be

combined with the exponent of the kinetic term by a quadratic completion, giving

1/BM
w2 +Q (xo)

e _@H}

2
re - ik cos w,,.r)

=1

exv{ l?M Z (wm+

+ |, (5.34)

where a?(xp) is the s
(5.35)
It has the dimension o : AU « integrals over x,5¢,xj”® can

now be done just asin Z;

i X x0) / 2
i (BrCxo)/ 2)

f et ﬂn@waﬂa 6
Noncahmla a&‘nﬁ“m %mn’qlwnﬂqlﬁﬂg the Fourier

reprcscntanon of V (k).

Vi) = f dx Vx)e - ik | (5.37)

we can perform the k integral, again via quadratic completion, and the last factor in

(5.36) becomes
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g dx’ . 2 ’ .
Vaise = o, -(x5-x)"12a%x0) :
Yx0)X0) [" S 0 e o V(xo) (5.38)

Thus V,2(xp) arises from the oriéinal potential by smearing it out in the neighbourhood
n of width a(xo). This smearing accounts
' w//az (x0) we find
=

P Q(xo)/2

of each point x, with a Gaussian distri

for the quantum statistical fluc

V(x(9h R ~—4..h ; Q(xo)/z)
(5.39)
which is the ﬁrst expectati
It is now also quite easy 50 : econd ¢ pectation in (5.31), namely

smeared out version of (x - xg)?,

(Q%x0)/2) x(®) - 20)2).

f %uﬂﬁﬁﬁﬂijﬂﬂ)ﬂﬂ)ﬁ(x -x)?] . (5.40)
Usmsuﬂﬂﬂﬁﬁé%ﬂim UA1AINYAY

_dx o -(112a)x"-5)’ (5’ - n!lan _ [even
We (x x)'l { }for n { (5.41)

we have

(x-x0)% = (x-xp)2+a2. (5.42)



According to (5.39), the expectation «x(r)-xo)z)l is an integral over the
corresponding Va¥x,fX0) which in this case requires forming the smeared potential
(x -xo),Z;(XO) and inserting x = xp intoit. Butfor x = x the first term in (5.42)

vanishes and only a(x¢)? survives.

The expectation in (5.31) reduces therefo g-independent single integral
B =

b L. o

e T Wen g
o et <o
&, = -pzi(6Lixo , i (5.45)

and hence

oF, = (&I(X()»l. (5.46)

Furthermore,
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8Vatxa) - 4 @ w0)a Xx0) - L))
1

o V27B2 ) M sinh{BrQ(x0) / 2)

X |Vaxo) - Y a%xo)a o). L (xo) e i)

2 5{21.1“ dg ___ PiQ(x)/2

= B| (1ol (vatx
OL1(xo) x ([ (5.47)
This shows that the rig
(5.48)
The second derivative pro Then F is bounded directly by
F; from above
(5.49)

with F; given by

~ Fﬁuﬁfﬂ%ﬂﬁﬁ%ﬁ’ﬂ@»- o
wenRENRI DR N AINENAY

Wilxo) = g-ln s‘"; ﬁ:::;:)z 5 Vaslao)- M-Q xo)a%xo).  (5.51)

Having obtained this result one may suspect that the inequality F < F, when written

in the form
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_Q.Le-ﬁvq.a(xo) > I -;d&__e'ﬁwl(xo) {(5.32)
o V2npR2 /M w V21pR2 I M

holds also locally at each point xq, i.e.,

. e BVega

g7 X ’),2 e-PWi(xo) (5.53)
Indeed, this can easily be show 1by inv %Pmeﬂs mcquahty at each ﬁxed

X0, using a slight modification of the meas hich only the x,,’'s with m # 0 are :

integrated. In other are all satisfied with the

measure | Dx(1)&xo -

trial function Lj(xg) di

ch a local derivation the

We are now ready 10 g ine n t al function Qz(xo) by

minimizing W(xo). The partia .- v of 4 x | with respect to Qz(xo) has two

i
‘ ,_2‘ ‘4 i

terms =
x'_.r' A

dW L’ ) ¢
a0 )

o

The first term is equal o

ﬂ(lj H&g M mcoth @Q” f} a 2(xo) (5.55)

QW']’GNﬂ‘EEH ARNINYTA

and happefis to vanish automatically due to (5.35). Indeed, the sum there is easily

(5.54)

calculated as follows

o0 2
_2,__3_21,, @ + € fi_(x_o)
BM 39 m=1 wm

i _1_ yd lnsinh (ﬂﬁﬂ(xo)/ 2)
BM Q 0Q B (x0)/ 2

a?{xo)
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.

Thus we merely have to find the minimum of W;(xo) with respect to a %xg), i.e.,

0. - (5.57)

With (5.51), this gives the relation:
(5.58)
~ Moreover, since V,{xo) is'giyenby * ’
i Q) =
y B oL
the derivative 2(3/ aa2) Va2 t : actor -k 2 inside the Fourier
representation, so thz v.,‘.-v..._....._ : 4
T a Y
g(xo LI Z—v,1xg a : (5.60)
axo a?=a%{x,)

‘a Y
Note that the pa%uﬂ\gmm HMﬁset equal to a?%(xo)
attheend. _ .. .. . | ‘ ¢ i /
ARIAINIUNRIINYNY
The potential Wy(xo) with this optimal choice of Q(xo) and aZxo)

determined from (5.56) represents the Feynman-Kleinert approximation to the effective
classical potential V., oi(xo) which we wanted to calculate.

Notice that since (5.56) makes
Wilxo) _ o (5.61)

30 ’(xo)



94

itis possible to consider both functions Q 2(xo) and a?xq) as arbitrary trial functions
in Wy(xo) of Eq. (5.51) to be determined by independent. The author introduced an
alternative way of choosing Q as (5.60), see the Appendix.

Application to Anharmoni il

At this point we consi ator as the first application due to
the Feynman-Kleinert vari : pach. Consi -..‘ anharmonic oscillator under
the potential /

L 1> > “ N (5.62) :
where g is the positive 'he euclidean action of this system is
written as |

§ A L5 b atad ox ). (5.63)
The smeared potential o [

o - [ gAY INNN S
AR R D 3 R B

+i;[x 4+ 4x 3(x' - xo) +6x 2()&' - xo)2 +4x (x' - xo)3 + (x' - xo)4]} . (5.64)

Using formula (5.41) we obtain

Vad{xo) = 520—-+§x0“+42—+;23-gx02a2+-34£a4. (5.65)



From now on we shall always use natural units with M = 1,% = kg = 1, for

convenience. Differentiating (5.65) with respectto a2/2 gives, by (5.58),

Q%x0) = (1+3gx¢+3ga?). (5.66)

(5.6;1)

~at each xg, by itcra_tiov,t/ | »7 ling this into (5.67) to get

a2 = B/12, calcﬁl_aﬂ \ o), and so on. The iteration

converges rapidly. In ' ﬁ ‘ (5.65) and (5.51), we obtain

our approximation for t doing the integrals over xg

we find the approximati Z . The associated free
energies

(5.68)

are plotted as a functio f ﬂ For the detailed discussijluof this application, see the

iy ﬂﬂﬂ’)ﬂﬂﬂ‘ﬁ?ﬂmﬂ‘i

Mﬁ“ﬁu“mmiﬂ'mm TRNINYIA Y

A further example is the anharmonic oscillator with a negative harmonic term,

the double-well potential [Feynman and Kleinert 1986, Janke and Kleinert 1986]

- <E2gd
V(x) 5 +4gx4. (5.69)

The smeared potenﬁal Va4xo) is the same form as in (5.65), except for a sign change
in the first and third terms. In this case, the trial frequency
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Qxg) = -1+3gxd+3ga, (5.70)

can become negative, although it remains always larger than - 47 2/B 2, i.e., it remains
to the right of the first singularity in the sum (5.35). Thus the smearing width a2 -

remains always positive. For Q 2 e (- A%/ B 2, 0), the sum (5.35) gives

: 1). | (5.71)

This is, of course, the \ iti nued to imaginary <Yxo). The

above procedure for finding the' g™ )} i ne i :‘ Dy iteration of (5.70) and (5.71)
or (5.67) is not applicab ? tra \ = double well where it does not
converge. But it is easy to ing for the zero of the function of

Q2

1+0% 3552 (5.72)

with a%(xo) calculated 33 a function of Q from (5.71) or (5.67).

Themﬂe%d% %6}18%‘% 6 4 bF i pfproximation, such as the

particle dlsml%tlons[Klemert 1986, Janke and Kleinert 1986]°Jnd the Coulomb-

Ywaﬂpﬁr@mﬁﬁ@%%ﬂﬂﬂ nanae

New Improvement to Variational Approximation

Recently, Kleinert has improved the Feynman-Kleinert approximation to
increase the power of the accuracy. The first improvement is given by introducing a

separate trial frequency for each principle quantum number of a quantum system and
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apply it to the calculation of all energy levels of anharmonic oscillator[Kléinert 1992].
Another type[Kleinert 1993] of improvement is based on the expanding the action into
powers of the fluctuation path around the average position and extending the action by
bilocal external source. However, at this point we do not give in detail for those two

improvement. Now we focus our attention to the other method of his improvement

r t0,any other ones. This method requires
%nd yields, for the anharmonic

oscillator, extremely good approxiiation) orﬁlg constant g including the

\\\ es around the mean point

Vix) = 001V o)y 3 (4 %0)2 V ro)

[Kleinert 1993] because it is gneatly \ ‘

the evaluation of only a fe

- strong coupling limit. The

Firstly we exp

~ xg for each path.

(3.73)

Thus, the action § can.

dtV(xo’+

ﬂ%ﬂ’lﬂﬂﬂ‘i?’lﬂ?ﬂ‘i
q RIMAIUNAIINGIRY oo

Notice that the time integral of the second term of expansion vanish because of the

definition of xp in (5.8). Now we can split the action § into the local trial action

5 A e . gXo
Q plus the interaction action 9int then we have

S = Sp+S%+SR (5.75)
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where

B
Sqg = j-d:t[ﬂzl-iz-f- %Qz(xo)(x-xo)z] (5.76)

\\

The local partition function % \\ 1€5s6d. as

with xo) as the trial frequency and als , parameter of the optimization.

X/hg-SRIF

{5:77)

with Z as the trial pagti — tion, 8(F - %0) = V27ph/ M 8% - xo) as a

modified & -functlon which f equal to xp, and (- )’3 as the

expectation calculafs . After expanding the
V—_ A
exponential exp{ m d using of the third cumulant
ey J
expansion :

f UHA N BRI NGNS
ammmm%ﬁﬁﬁﬁé’a

from (5. 77) we obtain

Z% = e-PW®

= CXP‘ BV(xo) - ﬂvxo l( mt)ﬂ+2;2<smz)aoc'6;3<srg3>aoc



99

where the subscript ¢ defines the connected correlation functions via the cumulant

expansion

(sgl)a. = {s&')a- (Sfxfx)n

(sw)ae = (si)a; s )alsin)g +2(SB)8 . (5.80)
where W3° defines the app et ch al potential corresponding to this

method. We may carry § [, but for this purpose we shall go only this

far. The approximate Ig obtained by extremizing W3°

defined by (5.79) wi the original Feynman-Kleinert

approximation correspfds £0 s ectation of S,

To see the greatly impfo: d 'z at ut-by the new terms consider

first the partition function of th

ohF/2+gt14) . (5.81)

',;::j — ;

For convenience we nm' drop the locality label xg, consider the interaction action

AUEARININGINS
ol ammwﬂﬁa’mﬁ% ]

= Prglrxd +xs)/4 : e
with r = 2M (a)2 -Q 2) /g . The correlation function are simply

(Sinda = g(3a%+ra?)/4
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(Si,2l c = g2(6a®+3a6r/2+a%r2/8)

(s3)ac = g3(1188a12+288a10r +27a8 2+ a®r3)/8 (5.83)

m

with
y WMQ &
Let us finally illusiza - the qualit / pproximation for the path integral
of the anharmonic osci n h \ er only the worst possible case

of a vanishing temp zero and can be dropped in all |

equations, the value /4 3 \:‘\\“ .\\u ion EZ for the ground state
energy. The correlai 3 ’\ \ ion entering into W3 of (5.80)

i vt

(Sixzu)ﬂ.c = ﬁﬁZgz 21ad /8% 4 ,-.:,

(S3u)n.c = #fog3 (333a 12/ 29 2/4+a%3/32) /522
L (5.84)

S (YTt VLTI < e o SR

o+ gr/2M and expanding everything in pewer of r up towA.

ARIAINITUUANINGIA Y

For all detailed discussion of this chapter, see the next chapter.



	Chapter V Systematic Improving Feynman Variational Method
	Functional in Fourier Space
	The Effective Classical Potential
	Feynman-Kleinert Variational Approach
	Optimizing the Trial Partition Function
	Application to Anharmonic Oscillator
	Application to Double-Well Potential
	New Improvement to Variational Approximation


