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CHAPTER 1V

EARLIER APPROXIMATIONS TO STATISTICAL
: PATH INTEGRALS

!l/

In Chapter III we kL - di ssed integral approach to quantum
| m—— _
statistical systems. After having e on function of a general system in

path integral form, we a harmonic oscillator. In

this present chapter, an v and study some methods

of approximation to d he path integral cannot be

solved exactly. We shall find he ; | : ral approach is an excellent

way of approaching to the erested in a simple system of

one particle of mass M movi the one-dimensional potential

of that system.

V(x). We want to find the 0]

T T AT TE) (R

period of motion 1s very small. Thus, id calculating the partition funetion for which the
il poi| 01 a9 kol e e sk, Qb the i ddral [o, ),
each path s‘!arts from x, and comes back to x, again in a very short time. In this
case the particle requires a high velocity or a large kinetic energy for a path far form x,.

For such a path the exponential function appearing in the expression

- pr
7w e-ﬁF=f Dx exp |- }J d’t[%i2+V(x)] (4.1)
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becomes negligibly small, and it will contribute a negligible amount to the sum over all
paths. Under this assumption, the path we will consider in evaluating the potential V(x)

never move far from the initial point. Thus we can assume [Feynman and Hibbs 1965,

Feynman 1972]
(4.2)
and we have
zZ = f W W Df axp - (VR [ dTMi 2/ 2 . (4.3)
The path integral in (4. particle in Chapter II, Eq.

(2.83). By setting x, = e reduced to

(4.4)

This is the well kno ‘.: \tist - all mechanics recovered for
B - 0 in the cla551 g W@ec that,for example, for a

harmonic oscillator with Mw?x?2 / 2.th arutlon function in this case can be

sty e Gk IlEWI'i BIN3
QW’WG*}H@WNW‘D‘I&H%@H @s)

so that we have the partition function

z = b (4.6)

and then the free energy is
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F = Jﬁ-lnﬁﬁw : (4.7)

Remember that these results were obtained from the classical approximation.

ich :-;, ;, &mt adequate. It therefore is
——

\““' sng the path. Then, instead of

NS
. : \\

necessary to include the.

approximating V(x) byt \ aylor expansion for V(x)

oose to expand it about

around x, However, t0 inci€ase A \
iti ny gpagficular pe P\%\ \ nman and Hibbs 1965,

the average position of¢@ny

Feynman 1972]

(4.8)

| 2l
We then have . m

(g %m%mm
ammnm}m Mgay

Notice that the second term of (4.9) is zero l;'y virtue of (4.8). The path integral

expression of a partition function becomes, keeping terms up to V',

oo e ph 2
z zf dxoe’ﬁ"(to)j Dx exp %j dr[lzlx2+L;—°Lv'(xo) . (4.10)
0

Xa
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This path integral must be evaluated under the constraint

B A
f (x - xoMdt = f ydt = 0. (4.11)

0

0

(4.12)

in order to manipulate

By multiplying . delta function expressed in

(4.12), we finally obtain th

y2- zky] (4.13)

) zi;mﬁm t i u;i‘ff‘i,,?"é"lili
AR R e

= (Const.) x Jr dxg exp‘ [V(xo)+ prM |4 (xo)]} (4.14)

Here we get Const. = VM [2nB#? by comparison with the classical case (4.4) and

now we have the correction term, (ﬁﬁzl 24M) V’(x), which is clearly quantum

mechanical in nature.
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For the case of a harmonic oscillator we have its partition function

- 2
5 PMw?x? B “h%w 2}
2 - o[ anea| BIOEETY g
from the gaussian integral we obtain
(4.16)
and then the free energy can
(4.17)
This free energy is differ assical one in (4.4) by the quantum mechanical

The method basg on variz or thﬂpproximate evaluation of

path integrals was firstly’ introduced by Feynman [Feynman and Hibbs 1965 ,
Feynman, 1972]&13\“5&[&% &mm&‘m ﬁ method which may

be useful later. For the partition function Z in pathdnte Ee]xgicséwn EiJn Lagrangian

- ARIAAT TN

Z = ¢FF = f Dx(t)e-SH (4.18)

where the path integral is calculated over all closed paths and S is the euclidean action.

For the case of a particle with potential V(x), the action is
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B
S 22
T fo dt[%x +V(x)]. (4.19)

Now we wish to evaluate the energy F of a system with potential V(x),

which cannot be done directly. Let us suppose a trial action §, of another simple

(4.20)
and
(4.21)
To connect the original .
Dx e -Solfig - (s )k (4.22)

. ﬂuﬂawaﬂswaﬂni
AN TRIRYINYIAY 2

where (_. . Jo denotes the expectation value with the trial probability distribution

exp { - So/fi). For an arbitrary functional O[x] of the path x(7) we define

(olx])o = Zdlf Dx e -S4 O[x] . (4.24)
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We now apply the Jensen - Peierls inequality [Golden 1965, Symanzik 1965], which
is based on the first order cumulant expansion [Kubo 1962],

(e9) > elo) (4.25)

for any probability distribution. Then 3) and (4.24) we see that

(4.26)
or
(4.27)
The inequality (4.27) gi
(4.28)
Because the action S a (-{ 5o ave same kinetic part, in case of time
independent potential wlhave L [

Vo

Ra

')
00 - m (4.29)

== AUHINGNITNYING
ARANTUARTING 18 Y

If the trial Botential Vo is chose to be the potential W(xp) at the average point xg of

(4.30)

any particular path by then W(xg) becomes a variational parameter to be determined
by minimizing the right hand side of (4.28) or (4.30). The physical interpretation is that
the particle, constrained to move in one dimension, propagates along the path as a free
particle being subjected at the average point xq to an effective potential W(xp) which

account for the quantum mechanical effects.
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By taking into account the particular form of the action (4.19), this condition

reads
SR T ;AT TR ] =0
oo| = 0. (4.31)
W(xo) ph
The procedure of calculation can be
(4.32)
An equivalent form is d point of each path xq
(4.33)
and firstly integrating over all periodic p ing (4.33) with a fixed xo and

secondly integrating o' V

N, s

-E’(Xo)
[

2

dz (V(xg) - Wlxo))

N

i = J oW 0

(‘g -SO) L r‘ -. ;‘ . V (] '\ a: ! g
U . o M2

dxg e - P¥(x0) Dx exp - dt ( - é }\‘- W(xc)]

ARIANNIUANRINETRE

The detailed calculation of this path integral can be found in Feynman’s books

(4.34)

[Feynman and Hibbs 1965, Feynam 1972], which is similar to that in the previous
section. The result of (4.34) is



f dxoe-ﬁw("o)f dxg (V(xa) - W[x0)) € - 6M(xa - x0)*/ B
L(s -s0) =

ﬁ i = - 6M(xa - X0)% | PA*
fdxoe'W(xo)I dxg e

(4.35)

The integral over xg in the demonitor i

integral to be V7pAi2/6M an

35) can be easily evaluated as a Gaussian

the W(x,)-term by defining the

function
K(xo) Mg z0)” | A (4.36)
we then have
(4.37)
It should be noticed f;,f a ,t: ussian with a smearing

width =«/m
o ‘i"i’é’fﬁ"%‘éﬁ NN mﬁ‘:“"
ol axaﬁ’is*@zwﬁﬂma gj; = 9

and changing

Wixo) — Wixe)+ TW(xo).- (4.39)

Since the trial partition function
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& 1/2—_”%] e-ﬂW(Xo), At (4.40)

(4.41)
sL(s -59 =
vl ‘, 0) - Wixo) | Ldxo e - B¥(xo)
s - (4.42)
AU N[N g
e EARIN TUNAINYINY
Wxo) = Kixo), (4.43)

which is the best choice of W(xg). Now, the potential in the definition of Fy has been
‘ replaced by the potential W(xo) defined as K(xp) in (4.36) so called that the effective
classical poténtial. |
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Let us consider the harmonic oscillator with potential V(x) = Mw 2x 2/ 2.

Eq. (4.36) gives us

K(xg) = Wxo) = 1}1-(4L2x(,2+—ﬁ—'?i (4.44)

= e DA AN NN (4.45)

nechanical correction to the
classical result by expanding '_‘ Mab uk he average position of the path and

fore. Let us conclude that that

approach was a special applicatiop of th ariationa \ proach.

prio ; : 3 4

F,, } 00827 08546 0.9660 0.9906

Ro ol 1) B 0088 | 08 11 TS | rooes
Y 0.0000, 06931 | 09324 ,| 06931

e VIAIAINIEIA

simple numerical comparison is e free energies calculated by
different methods, in unit of 2w .

Tests of the validity of the approximation when it is applied to a harmonic oscillator can

be presented, for which the exact value of the free energy obtained in Chapter I is
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Foe = -;-ln(Z sinh ‘3'72"’) : (4.46)

Now we have the following approximate free energy for this chapter

Ey = ;—lnﬁﬁw , (4.47)

and the approximate free energy give | .’1" he Fgynman variational approach

(4.48)

The numerical comparisoi
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