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CHAPTER III

PATH INTEGRALS IN QUANTUM STATISTICS

has attracted much interest. In-pringiple, the dyna 'c properties of a quantum-
mechanical system are com on function is known. As we

shall see in the sequel, it the path integrals.

Path Integral Approach

The path integral approach is ) und _ & also the thermal equilibrium
properties of a system [Feyn an'a b’ ) é man 1972]. We first assume

the system to have a _time i. 2_and to be in contact with a

:‘g bulk thermodynamic
atistical anition function [Kleinert

reservoir of tempcra 6= T—AS

?::nozities can be dem@d om ¢
U IYnT o,
s i e Ay b WOUANIANARY, e

partition function

Zom = ”(e-i(t.-t.)ﬁ/ﬁ) (3.2)

with the imaginary time
if

BT = -iff . (3.3)

tb'ta = b
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In the local basis [x ), the quantum mechanical trace corresponds to an integral over
positions so that the quantum statistical partition function can be obtained from the time
displacement amplitude or propagator by integrating over x , = X, at the analytically

continued time,

to WRAL G iaee L B

By splitting the Bol _into a productef N + 1 factors e'&?/“ with

gral representation.

X(lN+1le'5 _ ..-><<X1|e'€”’”|xN+1).

(3.5)

The matrix element sed, just as in the quantum

mechanical case, as y— 1 J

(X |e sg ipa(Xn - Xn- 1)/ﬁ -e¢H(pn, xn) lﬁ (3.6)

f Vit T 'ﬁ%’ NYINT
e gy e v o o o e

Hamiltonidn. The product (3.5) can thus be written as

7 o UE fdx,.fdp" exp {-ﬁlsé"}, (3.7)

where S Y denotes the sum



50

N +
SQ’ = Z [- i pnlxn 'xn-l)"'d'I‘Pn,xn)] . (3.8)
=1

In the continuum limit & — 0, the sum goes over into the integral

S e[p. x] //)1(7)*‘”@(7) x(c))]. (3.9)

In this limit we shall write ) funl Qntegral

(3.10)

In this expression, p (7 )4 18 paths running along the

“imaginary time axis” T =i , \ x] is very similar to the

mechanical canonical actior erns the quantum statistical path

integrals it will be called quantu _ atistical Another name for § , is euclidean
action, recorded by el

The Density Mggjxm
(4

AUYINININYNT

The partition funéfion does not detenmnc local thermodynamlc quantmes which may

oo = R A SRIOIHN LI N o

example, in the thermal analog of the time displacement amplitude HilaT Ixa
Consider, for instance, the diagonal elements of this, renormalized by a factor Z ! , to
be denoted by p (x, ) [Kleinert 1990] : '

plxa) = Z s |e"7“‘”|xa). (3.11)
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It determines the thermal average of the particle density of a quantum statistical system.

Due to (3.11), the factor Z - ! makes the spatial integral over p equal to unity,

]dxp(x) o (3.12)

(3.13)

Since | yn (xa)|? is the stem in the eigenstate |n) in

configuration space, and lized probability to encounter

the system in the state | ents the normalized average
particle density in space as a

Note the limiting pr t . T— 0, only the lowest

energy state survives distribution in the ground

state

AusInghdgang o
e QAN AR DEIHNAL Y e - o

irrelevant dnd the partition function should converge to the classical expression given in

Section 1.4, which is the integral over the phase space of the Boltzmann distribution,

2. e - fdxj i%e'”(l’-x)/"ﬂ. (3.15)
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We therefore expect the large-T limit of p(x,) to be equal to the classical particle

distribution

ol 1225 pule) = ZCII 54‘— @ 9L6T (3.16)

At this place we may be satisfi s: Take the original time-sliced

path integral (3.5). For large T} “ice., small 7 5 - kpT , we may keep only a

(3.17)
with
(3.18)
Substituting € = Tp = ,_r____,_________,______ ally speaking, for high
temperature, the path hz ‘T ' P' d only one term in the
)
product of integrals needs to be cons1dered.
If H(p, ﬂ
Sk ko] S 215
(3.19)

AR A S SN g Y

the momentum integral is Gaussian in p and can be done using the Gaussian formula

i _dl_e-apz/% = —-—1——-,
2nh V2nta
: - (3.20)

Then we obtain the pure x -integral for the classical partition function
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Zy = dx e V@I kT (3.21)
w N2TH2/MkgT

In this case the large-T limit of p (x) becomes simply

p (x) e V@) /T

/MkpT (322)

The expression in the d e dimension of a length. In

fact,

(3.23)

in the thermal (or eucli t,) introduced earlier, in
(2.81).

Let us now turn to the ge { ase and write down the path integral
representation for p {(x). We sitiply omit he final trace integration over

Xp = Xz and normalizet

a

0% 2 ¢S 0 AIh, (3.24)

ﬁhﬂa ninging
BCE e ) i

given by

Ok

Z1Y e-BE(n |0 |n). (3.25)
n

In the local basis | x ), this becomes
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(6)1' = Z -II I: dxp dx, (Xb Ie'ﬂ?lxa>(xa Ialxb)- (3.26)

Thus, unless one wants to calculate only expectations of functions of the position

',/-@a ) () = f & p () F(x).

(3.27)

operator X in (3.25),

the off-diagonal elem are also relevant. One

therefore defines a de

(3.28)

Its diagonal values give the a Ve

It is then useful to antum mechanics and quantum

T

statistics as close as possible and treat both cases. e time, by considering the

>0
| ﬂ’ﬁﬁl’ﬁ NN &
) "T ST R (R .

7o |%aTa) = (|0 (ts.t)lxa), 75 >7a. (3.30)

time translation operato@ong ¢ imagin:

As in the real-time case, we shall only consider the causal time ordering 7, > 7,.
Here it is essential to do so since the partition function and density matrix does not exist
for 7p <7, if the system has energies up to infinity. Given these imaginary-time

amplitudes, the partition function is found by integrating over the diagonal elements



and the density matrix by dividing out Z,

= ’)r #B |x40). (3.32)

For the sake of generality we may so 51der also the imaginary-time

displacement operators for timg depend 3 d the associated amplitudes.

They are obtained by timg ' )] patrix elements of the operator

U(ts. 7 (3.33)
Here T is an ordering opgf: forig .‘,VQ;‘-u .' times axis 7. It must be kept in
mind, however, that for this to'be physicall; 5 : P ving thermodynamic problems,

the time dependence of the Ha must be extremely slow, must
slower than the time :' d fc ibriation. Only then can/the system remain close

d to evaluate the physical

response of the system as ? function of time. Thls is the range of validity of the so-

s e ) 912191 W71 5

In any ca$ the imaginary-time dlsplaccmcnt amplitude (3. 301) has certainly a

s g AR LI, W G e s

mtcgrauon in that expression and relaxing the condition x, = X, :

enough to equilibrium hat equ

N o N+1
(7o lxta) = ]I f H I = e.xp{sN/ﬁ} (3.34)

a=1

n=

with the time-sliced euclidean action
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N+1
SY = J] [ipa(n-24-1)+EH@n, %, T4)l, (3.35)
n=1

where we have omitted the factor -i inthe 7-argumentof H. In the continuum limit

this is written just as (3.10) as a path integral

ch{ -Ls,p, x]} (3.36)
For a Hamiltonian in ’//// \\\\\\ +V(x, ) with a smooth

potential V(x,7),then

(xbfblxa'ra) =

as in (2.25), and we find the

A NN b

euclidean version of the puge \

(75 [xa7a )= *“fi !\\w )+ Vi, r)]}

ﬂudﬁwﬂﬂsWHWﬂﬁ oy

In the case that V (x, 7) is independent of 7 we.calculate the quantum statistical

priion ki e b il URINEA

Z = I dx(x i |x,0) = f ' Dxe-Sdx3iE ,  (3.38)
i (#8)=x(0)

where S .[x, ] is the euclidean version of the Langrangian action
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Soti ]l = f d’t[%f-fcz+V(x)]. (3.39)

Ta

Here the dot denotes differentiation with respect to the imaginary time. As in the

quantum mechanical partition function in (2.30), the path integral JDx  now stands for

(3.40)

It contains no extra 1/ ] { as in. e to the trace integration
over the exterior x.

The condition x orced by expanding x (7) into

a Fourier series

(3.41)

where the frequencies @,

(3.42)

ey e cuto USRI S B2 Sountry contion

x(0) = x ﬁﬂ ) Iworeover when considered as fupctions on the entire 7 axis, the

pon e ey oo apble.dl V1714 VIE) 16 E

x(t) = x(t+#B). (3.43)

Thus the path integral for the quantum statistical partition function comprises all
periodic paths with period # . In the time-sliced path integral (3.37), the coordinates
x (7) are needed only at the discrete times 7, = ne . Correspondingly, the sum over

m in (3.41) can be restricted to run from m = - N/2 to N/2 for N = even and
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from -(N-1)/2 to (N+1)/2 for N = odd (see Fig. 3.1). In orderto have a real

x (7 ,) we have to require that

i X (modulo N + 1). (3.44)

Note that the Matsubara frequencies in the expansion of the paths x (7) are now twice

since they run over positive and-negative integers, The only exception is the zero

which ran over positive

frequency w,, = 0 w e .
Mt el 9 no; ded. 1S \\ to cribe paths with arbitrary
nonzero end points x p = _ " ﬁ\ \.\ er when forming the trace.

mddd "'-‘ 1

e f TrrAEy
Quantum hrfhohit: Osch -'3lL~'
, ot R

F T
P iy

a quantum statistical path integral

As a particular example w?_-.; Teati

[Kleinert 1990), consider the harmonic oscillator I the T~ %; s is slicedat 7, = ne ,
/

with £ = /(N + 1) (=G

!
N — o of the sliced cxpressmn

gua& ﬂ"ﬂi ’mﬁ o
QW']MT] UNAIINYAE

where § Q’ is the sliced euclidean oscillator action

on is given by the limit

N+1

s¥ = My S (- e2VV + e202)x, . (3.46)

n=1

Integrating out the x,, s we find immediately
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zZ¥ = 1 : (3.47)
‘\/detN+1(- eVV + ezwz)

Let us evaluate the fluctuation determinant via the product of eigenvalues which

diagonalize the matrix - £2VV + £ 2@ ? in the sliced action (3.46). They are

(3.48)

AULININTNEINS

Figure a; mmm‘?} Odnc’n‘%%&l ﬁ qcé" matrix in the

with the Matsubara frequencies @ ,,. The eigenvalues 2 - cos @, €, are pictured in
Fig. 3.1. The action (3.46) is diagonal on the Fourier components Xm . Their real and
maglnary parts of the diagonal Fourier components Re Xm , Im Xm , when arranged to a

TOW vector
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(Re xy,Imx; ; Rex3, Imxy ;5 ...; Re xp , Im xp, ; ...),

are related to the time-sliced positions x, = x(7,) by a transformation matrix with

the rows

%—27: -1 sm—m—127r = =

\ % 275 n, ) s

n

(3.49)

For each row index m = 1 .runs from zeroto N / 2 for
even N ,andto (N + # -"0"5 " s odd case, the last column

sin Iv’ﬁ—l— 2x-n withn = b 2. I_/ ide tically and must be dropped so

that the number of col in T 154 v:v‘-’r 7 hould. In this case, the second-
last column of T ,,, ;—T“T‘_—__“—“—;‘i‘—%} 17 Hence, for a proper
normalization, the sequege has to be by an extra normalization factor 1 /VZ,
similar to the elements in the first column. It igieasy to verify, by an argument similar to

(2.70), (2.71), aﬂ M&lagmtg mm&n ﬁ can diagonalize the

sliced actlon in 3 46 as follows

Seyd Hﬁ']?) 1BRY, ...

sy = 27‘0 +(~QN+1)/2-QN+1)/2+0) )xlﬁl (3.50)
7t 2 3W-012( o +w2)|x,,,|] for N =odd .
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The orthogonality of T ,,, implies that the measure H,,f dx (1) is transformed

into :
f i &m for N = even
= ’ = ,—J_ :
f d.mf dxyi+1/2 for N = odd
(3.51)
Performing the Gauss inte

: | 2

1/2

ﬂuti wmwm 60
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or odd than?cs to the periodicity of the eigenvalues under the replacement n— n+N+ 1.

It is important to realize that in contrast to the fluctuation factor (2.100) in the
real-time amplitude, the partition fl;hcﬁon contains only positive square roots of positive
quantities, the unique result of Gaussian integrations, and there is no phase distinction

as in the Fresnel integral (2.23). In order to calculate the product we observe that if we

decompose
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. 2 EQ * E® . EW
sin ———&2 = (1 + cos ———m~2 ) (1 cos —1‘—2 ) . (3.53)
the sequence of first factors
EQm _ m
1+ cos T 1 + cos e (3.54)

75

runs, for m = 1, ... N, through th N\ by ye sequence of second factors

EOp _ T R (ﬂ Nil-m (3.55)

2 ey "

0 \\\\ erm, we can rewrite (3.52)

1 - cos

except in opposite order.

in the form:
. : 2 ‘ <113
2N o L Y | P T | ) )
o s B i SN W i 2EPm
(3.56)
The factor in curly brack is the quantum mechanical
determinant of the .",;"‘“':—""?""-_'m'_" Vi 1, see (2.78), so that

-

we obtain for both even y odd

<242
%mﬁm (3.57)

To a4 "nﬁﬂ IO LRI LA - o

odd. For N = even where every eigenvalue occurs twice (see Fig. 3.1) we obtain

: N O 3 |
zy Il[ 1Rt (3.58)
g’ 4 sin 2-M% _ :
N+1

For N = odd the term with m = (N+1)/2 occurs only once and must be treated

separately so that
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o . 2”2(N-l)/2 i -
ZN = kT |y .LGL) I fsociel .
fio 4 - 4sm2N-m—+l

(3.59)

defined by
(3.60)
together with the product fg ) alre ady in (2.103)
(N-1)/2 [ ‘\\\ :
(1- ¥ 11758 L\ (W 1) ] . (3.61)
& 2 = \,_ 1)
m=1 ‘ . \
and we find :
A4
ZN = l)meelz]] (3.62)

(3.63)

”ﬁ . ﬂ-n ¥ i SR 1)x]
‘1(4 -w%‘w Taiich
o S 'ﬂ“W‘T’a’ﬁ’f‘rTﬁﬁ@ﬂﬁ Eag "

both cases, the partition function on the sliced imaginary time axis is giv
4 (3.64)
2sinh (ﬁco,ﬂ 12}
The partition function can be expanded in the following series
ZN = e-ho./2ksT 4 g-%a /2ksT - /2kaT 4 (3.65)



This is the usual spectral expansion of a partition function, displaying the energy

eigenvalues
E, = [n+ 1) (3.66)
of the system. They show the typicz sing oscillator sequence with
(3.67)
playing the role of the er
In the continuu is' gOes ove e well-known oscillator
partition function
(3.68)
Now that the continu ] o oduct in (3.57) can also be taken
factor by factor. Then Z ' : 7
==
(3.69)

T NN ST TS
| kpT _fio/2kpT (3.70)
awwa@ﬁ"a‘fﬁwﬁwm’ J

The reason why we are allowed to take the continuum limit in each factor of (3.57) is,

of course, that the product involves only ratios of frequencies. Just as in the quantum
mechanical case, this procedure of obtaining the continuum limit can be summarized in
the sequence of equations arrivixig at a ratio of differential operators

zN = [dctN+1(-£2V€+e sz)]-uz



[dctN+1(-e2V§)]"”[¢¢N+1(-82V§7+izw2)]-1/2
dCtN+l('82VV) .

Gk &B_T_'_[ = wm2+a)2]-”2 = kBT [det(-612+w2)J'”2
m det’ ( af)

(3.71)

ions which are periodic under

1genvalues ol of  -9%

h appears only once. In the

Here 0. is the differenti
the replacement 7

occurs twice, except fo

*\
t e product to reproduce the

lower determinant, this eig
left-hand side. This fact 1s wéco
Let us finally mention t [{L&“ f 1 :\ ection could also have been
’wJﬂ e :' .

obtained directly from the guantuin mechanic nplitude (2.112) by an analytic

"'-F

continuation of the time differenceat, 4 toimaginary values -i(Tp - T4),

w(@-ra)-ZXbx,]’. (3.72)

oy s aum DUNINYAN T
zwammmw ThGDi s s

AWty -Ta)/ b-Ta)

2 hsinh (@O(Tp - T4)l/0OM 1
2sinh [0(Tp - T4)/2] © 2sinh [0(Tp -14)/ 2]

(3.73)

Upon inserting 7p - T, = #if§ we retrieve the partition function (3.68). The main

reason for presenting an independent direct evaluation in the space of real periodic
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functions was to display the different frequency structure of @,, ’s of periodic paths, as
compared with the frequencies v, ’s of the quantum mechanical fluctuations with fixed

ends, and to show how to handle the ensuing product expressions.

AUEINENINYINS
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