CHAPTER 1

USEFUL FUNDAMENTAL CONCEPTS

et of generalized coordinates

q1, - - - ,4n , the associa i _ “aN and Langrangian[Goldstcin 1980,
Landau 1976] |

(1.1)
The dot denotes the tifne d Zens the dynamics and is, at

most, a quadratic functio of q, Thc umc mtegral
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over the L'a grangian along an arbitrary path g; () is called the action of this path.
The path g; (¢ ) that is actually chosen by the system as a function of time is called the

rty of extremizing the action in comparison with

classical path, ¢; (¢). It has
all neighboring paths

qi(t) = q(r)+8q(r) (1.3)



with fixed end points g (¢ ) , ¢ (£ z). To express this property formally one introduces

the variation of the action as the linear termin &g; (¢) of the changes of S [g;].

&[g] = {Sla +8u]-Slaln . e (1.4)

The extremal principle for the classical path is then

(1.5)

for all variations of the i (t) = qi (t)- g, which

vanish at the end points;

(1.6)

Since the action is a ti s extremality property can be

phrased in terms of diff ulate the variation of S [g;]
explicitly,
&[a) = [sla+

. R
= f dt{v : p z(t)m) L(‘Ix(t)v‘h(t) t)}lm

. fdnuyipenns
‘4 RI1aNN I URIINYIAY

& ik
ki f' a (2 -ddt—aq‘}tsq,(t)+———5q, (z)l (1.7)

The last expression arises by partially integrating the & ¢; term. Here, repeated indices

are understood to be summed. The end pointterms at ¢, and ¢, may be dropped,
due to (1.6). Thus we find, for the classical orbit g; (¢ ), the so-called Euler-Lagrange

equations:



dt 9g; 9gi (1-%)

There is an alternative formulation of classical dynamics which is based on a

Legendre transformed function of the Lagrangian called the Hamiltonian

H(p: (t)qi (t)t) = r- -"(I)‘L(Qi (t)qife)r). (1.9)

&me system. According to the
: _

general theory of Legend natu ariables in H are no longer
gi (t) and g; (r), bur"g; : J- alized momenta p; (¢) defined by the
equations

(1.10)
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, ¢i (t),t) in terms of its proper

.
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variables p; (t), gi (¢), the tions { pi (t) have to be solved for ¢; (z),

et i (1.11)
=l

and inserted into (1.9), giving H as
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, ¢ a [y, (1.12)
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S[p.q] = f dt [pi (t)Gi (¢)-Hpi (¢), qi (¢).7)]. (1.13)

This is the so-called canonical form of the action. The classical orbits, now specified

by p; (t), g;* (¢), extremize the action in comparison with all neighboring orbits,



where g; (¢) is varied except at fixed end points , and p; (1) is varied without

restriction :
qi(t) = ¢ (t)+dq (1), 0 (ta) = i (tp) = O,
pi(t) = pi(e)+pi (). (1.14)
This gives a variation
! 3 . (). 5, OH
50p.q) = ) B, )5, o5
= oH) o
- o)
(1.25)
Form this we find the H: for the classical orbits,
(1.16)

e Y ]
These agree with the B:lcr—La ange equations (1. 8)@& (1.10), as can cas1ly be

varified.
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In terms of the bra and ket notation, the Schrédinger equation can be expressed

in a basis independent way as an operator equation [Sakurai 1985, Kleinert 1990]

Alwe)) = HE.R0)|P0) = i%]¥()), (1.17)

to be supplemented by the following specifications of the operators,



p - i fidy , (1.18)
I = x (1.19)

If the Hamiltonian operator has the special form H = H (p, X ), i.e., if it contains no

explicit time dependence, the basis independent Schrodinger equation (1.17) can be

integrated to find the wave functio any time ¢,, given the state at any

other time ¢,
(1.20)
The operator
(1.21)
is called the time displaceniér dtor 1t nverse btained by interchanging the
orderof ¢, and ¢,: ‘ . - »
-1 i '1 » 4 AR =S
U’ (tp,tq) sdedEs toll U'(tp,ta). (1.22)

——— _:H'j |
“ Unitary operator, with the
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l?T(tb,ta) = e i(ts-1)A 1

As an exponential of

defining relation

= -t IR - T b (1.24)

If H (})\,. % t) depends explicitly on time, the integration of the Schrédinger
equation (1.17) is somewhat more involved. The solution may be found iteratively :

For ¢, > t, thetime integral is sliced into a large number N+ 1 of small pieces of



thickness & with € = (tp -14)/(N + 1), slicing once at each time ¢, = t, +ne
for n = 1,..., N. Then we use the Schrédinger equation (1.17) to relate the wave
function in each slice approximately to the previous one:

Ia +E

de B(e)||¥ (),

[P(e, +e)) = (1-"—

"-"
- i

t l‘I’(ta +Ne)). (1.25)

21- ' dt ,,,)

VLR

awwaﬂnrﬁj "”ehaﬂ

Hence the time displacement operator is given approximately by the product

tN+1 t
Ultp,ta) = (l-lﬁ-[ dtN+1 H(tNH))x...x(l-‘gI dtl H(tl)). (1.27)
t . £y

N

The product can be multiplied out and we find in the limit N — oo the series



Ly ty ta
Ulty.ta) = 1#] dtI?(t)+(-‘—é—)2f dtzf dtyH(t5)H(ty)
ta ta ta

(_z_,f d"[ dtzf dt H@ea)H(@)H(E)+... . (1.28)

This is known as Neumann-

Notice that each it ts in the Hamiltonian operators
ordered causally: Operatozs 0 left of those with earlier times.

Propagator as The T'_ ¢

By construction, propertles which we now list

[Sakurai 1985, Kleinert 1990

: ny. = ) :
If two time translatiorns a: then the corresponding operators

U are related by the op tor product,

U(ﬂﬁ&lw EW“}M ARG, a2
i “@%‘*ﬂ*ﬁﬂw § PR s s o o

see. It Makes the U operators a representation of the abelian group of time

translations.
b) Unitarily

Initially, the time displacement operator 7 (tp,14) isderived only for the causal time

arguments, with ¢, later than r,. We may, of course, define U (t5,1,) also for
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the anticausal case, with ¢, earlier than ¢,. To be consistent with the above

composition law (1.29), we must have

Uty ta) = Ultarts)!. (1.30)

(1.31)
the order of succession es by U (t ith):
(1.32)
This is the time displace Frator U 5, from a later time 7, to an earlier
time ty = V
For the case that the Ham \’ ar isindependent of time, where the time
dlsplgcemcnt operator is know ? ,i:'-r H
Ulto.ts) = il )it} o< (1.33)
it is in accordance tr’ y , ed before in (1.23),
[ — .
Ults.ta) = tb) b= (ta,tb) £y <ty (1.34)
c) Scbrodmgcqjeyatgg ’;or H:rb, a)ﬁ I] ﬂ ‘j
Since Q qua ﬁnljm!umbmmaﬁ azc ifferent times,
|¥(5)) = Tleoora)l #(ra)), (1.35)

the Schrodinger equation (1.17) implies that the operator U satisfies the equations

#0 Ult,ta) = HU(t,1a),

[
=
S

#id Ult,t4)! (1.36)
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In the subsequent development, an important role will be played by the matrix elements

of the time displacement operator in the localized basis states,

(s5 1xata) = 5 |T(s,1a)lxa) - (1.37)

They will be referred to as time drsplaccmcnt amplitudes. The functional matrix

(xptp | xat a)lsalsocalledmc‘ /// »

The operator equatio 15 (1:36) im y r@ators satisfy the Schrodinger

equation

(1 (- i ridet! 41 o) (1 [ X alg= 0. (1.38)
For the quantum mechanic ettt ] 16 'y propagators from earlier to
later times will be relevant. e convenie _'noduce the so-called causal

£ % (1.39)

(xbtblxa A A b <idgts

——— <5

Since this differs from (‘938) only for iy et a “and all ﬂ’mulas to be written down

in the subscqucrﬁxu'mﬂiv‘rﬁwmm does not distinguish ‘

between the two amplitudes.
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The Partition Function

Consider a physical system without explicit time dependence in the
Hamiltonian. Let it have a constant number of particles N. If it is brought in contact
with a thermal reservoir at a temperature T then, after equilibrium is reached, its

thermodynamic properties can be obtained through the following rules [Feynman and



12

Hibbs 1965, Kleinert 1990] : At the level of classical mechanics, each volume element

in phase space
dpdq _ dpdq - (1.40)
h 2nh

is occupied with a probability

(1.41)
where kg is the Boltzm:

(1.42)
The quantity 1/kg T i " ¢ o of an inverse energy is commonly
denoted by S. ) |

The integral over the

(1.43)

is called classical p .-'.".?~ _, il] lassical thermodynamic

information of the sys m Of course, for a gencral Hamiltonian system with many

st M AN TR o o

u tum statistics, the arhiltonian e opefator H and the
integral cﬁl’]ﬁ g f)]lg ﬁJ mjiﬁuﬁ g?] ﬁj the quantum
statistzcal partition function

Z(T) = it (e-#G.D1wT) = ¢ (e-HikT), (1.44)

In terms of all eigenstates |n) of the Hamiltonian, we can also write the partition '

function as
Z(T) = Y ebBlkT (1.45)
n
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where En is the energy eigenvalue of the nth state.

At this point we make an important observation: The quantum partition
function is related in a very simple way to the quantum mechanical time displacement
operator. To emphasize this relation we shall define the trace of this operator as the

quantum mechanical partition function:

Zau(ts t) = -\,\a‘!‘ w/)w(’a W HIA) (1.46)

Obviously the quantum stafistical partitior fu : “"1-'4( ) may be obtained from the

uvantum mechanical one by €0niifuing thi ~:.Ki erval g - t, the negative imagin
q : a & ginary

value

(1.47)

For this simple formal reasg ment operator is sufficient to

understand also all thermodyr erties of a quantum system.
Given a partition fun d particle number N, the free

energy is defined by | V—‘—

m F(T) -'kB”T In Z(T) y

o fl uafwlﬁmwmm e
a,,mmqmmm wwwmaa

E = wlile- H/ksT)/u(e HkT) (1.49)

It may be obtained from the partition function Z (T) by forming the temperature
derivative

L

d
_lk 22Ty = - 2
78T 5 2(T) BT 57

InZ(T). (1.50)
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In terms of the free energy (1.48), this becomes
0
E = -T a—T—F(T)+F(T). : (1.51)

In thermodynamic considerations, another quantity of fundamental interest is the
entropy, which is defined directly by

(1.52)
and then
(1.53)
At this point we have mad€ sgmg/in partantobservations that will be useful from now
F-i i AR
on.
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