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Chapter 1

INTRODUCTION

In 1939, Richard Chace Tolman; Julius Robert Oppenheimer and George
Michael Volkoff [1, 2] derived the equation ofhydrostatic equilibrium for a spheri-
cal symmetric star in the framework of general relativity. Although this equation
enables us to understamd thc existence of the maximum mass of spherical sym-
metric star above whieli"the star would collapse {6 a black hole, their numerical
calculation did not inglidestrong inte]'raction between matters in the star. This
is because the perturbagive method carﬁfbt be used in this strong-coupling regime
observed at low temperagure. In. 1993 Gerardus 't Hooft [3] proposed an impor-
tant work on dimensionalireduction in quantum gravity. In the following year,
Leonard Susskind [4] published ‘rhe paper with title “the world as a hologram”.
His follow up to 't Hooft’s papex fmther elaborates the idea of hologram anal-
ogy. Their works, which are wet-known as:’che holographic principle, suggest that
the information of a volumé of- space Can b“e thought of as being encoded on a

boundary of the reglﬁm

Fortunately, the first realization of this prmclple Wthh is called AdS/CFT
correspondence was discovered later by Juan Martn Maldacena [5] in 1997. This
correspondenge’ enables us, to rstudyn thesstronglyr eoupledzgauge theory on four
dimensional Minkéwski'spacetime«(1, ), a'cousinref quantum chromodynamics, by
avoiding the uncontrollable non-pérturbative calculation; dueo the weak-strong
dualityguwe can deal with this problem by just doing calculations-in the tractable

weakly interacting string theory in five dimensional Anti de Sitter space (AdSs).

In 2009 and 2010, Jan de Boer, Kyriakos Papadodimas and Erik Verlinde
[6, 7] found the matching between the degenerate conformal field operator in M,
and degenerate Fermi gas in AdS;. With the aim to find interesting behavior of
the conformal field operator, they study the Fermi-gas filled star, in particular a
neutron star, at zero temperature in Anti de Sitter space. In other words, this
study may give rise to an understanding of the phenomena in the gauge theory

through the dynamics of the degenerate star in higher-dimensional space.



In this thesis, we will use the holographic principle to compute mass limit
of degenerate star at finite temperature in the presence of external magnetic field
and study other properties of star in five dimensional Anti de Sitter space in order
to understand a degenerate star in four dimension under influence of the strong

interaction (if we can find the duality in the future).

AULINENINYINg
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Chapter 11

THEORETICAL BACKGROUND

In this chapter, we recall briefly concepts and some basic knowledge for this
thesis. We divide into five parts. First, the ideaof holographic principle which we
express its statement and discuss thesapplications.. Second, the relevant thermo-
dynamics and statistical*mechatics, we review some concepts and the necessary
formulation. Third, EmStein” cquations for a spherieally symmetric star, we con-
sider first in 4 dimengional space—timle before extending to 5 dimensional AdS
space in the next chaptef. Foutl, the éqhations of state of degenerate star which
we examine a model of an ideal(non—ix%cergcting) degenerate Fermi gas. Finally,
we see non relativistig' Landau energy devel when a particle move in a uniform

magnetic field. T
iiA /N
/)

2.1 Holographie-.pr;incipié#-—

Holographic principleiis one of the most interesting ided which came from study-
ing quantum gravity-and string theory. Inspiration-of this principle arises from
studying the space-time geometry of black holes which is the analogy between
properties of black holes and' thermodynamics,a black hole’s area and entropy
[8, 9]. Tt states'that the description of a volume of space can be thought of as
encodedy onca boundany«of thecregion) dty was preposed by Gerard 't Hooft and
Leonard: Susskind“in 1993 and“1994; respectively {3] 4}. Holographic ideas have
found several applications in physics and one of the most interesting realizations
of this idea is the AdS/CFT correspondece which is a duality between string the-
ory in Anti de Sitter space and a conformal field theory(without gravity) living
on the boundary of the AdS space [9]. This application was conjectured by Juan
Martn Maldacena in 1997 [5]. Mostly, AdS/CFT is applied in the study of non-
perturbative phenomena in the supersymmetry quantum chromodynamics (SUSY

QCD).



In conformal field theory(on the boundary), we can find an expectation value
of an operator via a generating functional, (e(fsd ¢°O)> where ¢ is a restriction of
the scalar field ¢ at the boundary of AdSg, 1, O is an operator and S¢ is a d-sphere.
For string theory, we have Zs (¢g) = e(=1s(?)) is the supergravity partition function
on Byyi(open ball in d 4 1 sphere). The relation of the conformal field theory on
the boundary to the supergravity in the AdS space is that [10]

(efs1 %) cpr = Zs (o). (2.1)

For gauge theory, it is similar to.the scalar field. We assume the AdS theory
has a gauge group G(global symmetry group of the conformal field theory on the
boundary), dimension n, with gauge fieldsA* ¢ =1,...,n. J, are currents in the
boundary and Ag is an arbitrary soui_:;ze. Thus relation between the supergravity

or string theory partitionfunceion and generating functional in the conformal field

theory is expressed by [10] |

" |

(I o = 2o (Ag) (2.2)

Then the partition fungtion of st}ing tH:_bofy on AdSs x S® should agree with the
partition function of N =4 super Yang-Mills theory on the boundary of this space

[11]. So the relation becomes ... ";Jf-'..!

il

-I - — W
e~ PUGRA T Z.S'U'ing = Zgauge — € ) (23)
- oy

b A f gl

where W = SF is ’gh_e free energy of the gauge theory di_vided by the temperature
[11]. This idea hop_éfully enable us to computes the‘qyroperties of the strongly
coupled gauge theory on the boundary via partition function of the string theory

in the bulk of the same_space(AdS space).

2.2 Thermodynamics and statisticalomechanics

2.2.1 "First law and the standard thermodynamic relations

The first law of thermodynamics is a principle of conservation of energy. This
principle is very important in physics. It tells us that a store of energy in the
system, called the internal energy dU, can be changed by causing the system to
do work, dW, or by adding heat, d@, to the system [12]. The change of the internal

energy is in the form

dU = dQ — dW. (2.4)



The first law is always true. It does not depend on a change of state whether it is

reversible or irreversible [13], Then
dU = erev — dWyer = inrr — dWip. (25)

Let us consider adding another particle to the thermodynamic system. If the
number of particle is allowed to vary, then we put dWW = udN by hand as the
energy change due to the change of the particle number by dN particles. The
quantity, u, is called the chemical potential, represents the resistance of the system

against addition of particles. So equaftion (2.4) becomes

A= dQ) LA i N,
— Td5 — Pevietpd N, (2.6)

where T, S, P and V ares€nperature, entropy, pressure and volume, respectively.
From equation (2.6), wesan defermine T, P and fuvia
U U

T = £p—

W N 7 NN T
The chemical potential; is fhen given bff,_
v f 75 N
© =" Jar Sl — =7 (2.7)
ON P —- (‘g—]‘\/]) dn

where p and n are the energy denmty dndThe number density, respectively. More-

over, when we consider an adiabatic process (dQ T'dS = 0), we have

5 dU "‘_ AN
dU_—Pdv+ﬂdN Y = —

p+ P =fun. (2.8)

So we have the, standard “thermodynamic relations ‘of energy density, pressure,

number density and chemical poténtial following equations (2/7) and (2.8).

2.2.2 Quantum statistical mechanics of Fermi-Dirac statis-

tics

Statistical mechanics has made the connection between a microscopic system and
macroscopic world. The fundamental concept of statistical mechanics is that all
macroscopic observable quantities of a state follow from taking mean values of mi-
croscopic properties, weighted with probability densities. Then the role of statisti-

cal mechanics is to find a way or process of taking mean values, of the microscopic



quantities by realization that a system can assume a large number of microstates.

This idea is now to be transferred to quantum systems [12, 13].

In classical statistical mechanics, a microstate corresponds to a certain point
in phase space (7; (t),p; (t)). For quantum mechanics, we do not determine the
coordinates and momenta of the particles simultaneously and possibly think state
of particles or a system described by a wave function (wave-particle duality). So
we replace the classical phase-space coordinate (7 (), p; (t)) to the time evolution
of wave function W (7,...,7,,t) of the system [13]. Furthermore, we promote
measurable observables to mathematical operators. When we measure the sys-
tem, it jumps to an eigenstate of the dynariical variable that is being measured

according to eigenvalue equatioil.
AV = aV. (2.9)

In general, eigenvalues a'of the Systcﬂn can assumie only certain values. But in
the macroscopic world, the cigenwalues (e.g. energy) are very close to each other.
Then they should haye a lot of states heﬁnng eigenvalues between two-eigenvalues.
We define OO (7, ... i@, 1) to be the sﬁemﬁc microstates corresponding to differ-
ent wave functions. In quantum statlstlcal*mechamcs we can measure the most

general expectation values of opeLator by/ b
’ Z 7k @%4\@““ (2.10)

Notice that expeotaéion values in quantum statisticélsmechanics are multipli-

cation of the probéﬁility pri in statistical mechanics ahd the expectation value
(WO|A|W®) in quantum mechanics. If we let W= S al(i)wl and ¢ = k in
equation (2.10), then pj = p; and

<A> = Z(Zﬂz@k ak’) wk|AWk’>

k,k’ i

N\ o @A S DU @il de) (b Bk,
k. k' kK’

= Y (wwlpAlpw) = Tr (pA), (2.11)
x

where ppp = >, piag)*a,(f,) and we now let probability p be the matrix elements

of an operator p =), pZ]\If,(J,)ﬂ\IJS)\, it is called the density operator [13].

In statistical mechanics, the grand canonical density operator is given by

_ (En*HN)
e kpT

(2.12)

Pn = (En—pN) ’

Zn N e kpT



where E,, u, N, kg and T are energy, chemical potential, number of particle,
Boltzmann constant and temperature, respectively. The grand canonical partition

function becomes

Z(T,V,p)=> e " . (2.13)

Since

_(#H=pN)
Tr (e kBT )

where H and N are spectively. We can change

equations (2.12) an , In quantum statistical me-

chanics, which can b

(2.15)

.\ 5
In the classical point view, we can always determilie/all coordinates and mo-
menta of the partic a1l kéep track of particles even

though they may loois]a alike. But e point of Qew in quantum mechanics,

we cannot specify all coordinates and mementa more accurately in phase space

than the sieff] LBk b T BB Bt acording to uncr.

tainty principlél! we can mention only the total probablhty of ﬁndlng a partlcle in

e, N T LA, pTublmih IVt )i A

Because of the indistinguishability of identical particles which does not exist
in classical mechanics, we see that the quantum Hamiltonian should be invariance
under the enumerated changing of the particle coordinates and momenta. We can
define the permutation operator Py, which commute Halmiltonian operator H.

Then the eigenvalue problem of the lf’lk has a form

PV () = N T e,
U (P T = AU T P,



where ) is a eigenvalue of the permutation operator Py If we permute again, it

holds that
P2U (. F T ) =W (P ) = XU ) (2.16)

Thus, the permutation operator Py, can have only the eigenvalues A = £1. If
A = +1, the wave function is said that symmetric and if A = —1, the wave
function is said to be anti-symmetric. In other words, there exist two kinds of
particles in the nature. Particles which are described by symmetric wave functions,
they are called bosons, and particles that are described by anti-symmetric wave
functions, they are called fermions. Theresaze two interesting property of bosons
and fermions. The wave function consttuétion in such a way they are either
completely symmetric or-eompletely=anti-symmetric. The fermions must obey
the Pauli exclusion principlesi.e., two equal fermions cannot occupy the same
one-particle state. Buf hosons can Vlﬁilate this prineiple, i.e., bosons can occupy
the same one-particles &latel M01eover the spin-statistics theorem, implies that

fermions have half—lnteger spig and_bosgns hayve integer spin [14, 15].
We shall now congider ideal and -hoﬁ—interacting quantum systems. Hamil-
tonian operator can be split into, ?i sum'.._‘_cl'),’ﬁ ene-particle operators

H (Fla e 77?71_3413*;7 T ;pn ,g’;,__ﬁz h (7:;7]71) .
IEEE Sy —

Each operator h (75, p;) satisfy T (F) = Emﬁk{f’) where Yy, (F) is a one-particle

functions, then the géneral eigenfunction is j“

i n N

\I/kEl’ En (Fl,...,Fn) = HQL‘]% (7_;)

e i=1 -
This product wave funétien can be writtén’in Dirac’s notation, we have ket state

vectors are
kr, o e = ) o) s Fen). (2.17)

It means that al partiele no.k isyin the quantunmestate &y, a particlé no.2 is in the

state ko, etc. And the bra state vectors are

When we consider the anti-symmetric wave functions, the fermions, they can be

written in Dirac’s notation

1 A
by, k)t = =) (=1 Plky,. . k),
P

= —=> (-1 Plkp, ..., kp,), (2.19)



for the symmetric wave functions, bosons, they are similarly

ki, k) = ZP|k1,..., :

n'nl'ng

T S Pl 220)

and if we act the Hamiltonian operator on the wave functions, the eigenvalue

problem are

Hlky, .. k)% = Elky, .

,>S’A with  E=>) ¢ (2.21)

i=1
/&he index k, then each state |k)

} ﬁermme n-particle state. For

If we enumerate the one-
has the occupation nu

fermions, each occup \ - 0 1 but occupation number
of bosons have valu : n Ver, get the occupation number

condition, Y .7 ng 2.21) can be expressed in

We instead repreg » quantum numbers of the occupied states by the

(2.22)

Then, we have

Hlny, ng, .. Yoo =Einrme oy St——with— 4 Z e, (2.23a)

N|n1,n2,--->s >SA

with

n= an (2.23Db)

o v EUHANININGIDG, -
z@wqa@ﬁﬁm PUTTY (H )

We consider only fermions, then

1
(e1-w\ ™ (-m) \ "2
ZEP(T, V,u) = Z (e_k3;> (e_’“BT) ce
=0

—n|n1,n2,...

= G0
- H l+e ksr), (2.25)
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and

(c=n)
mZ=Y In (1 b tpT ) . (2.26)
k

From statistical mechanics, the grand canonical potential is

O (T, V,pu)=—kgTInZ(T,V,u) =U —TS — uN = —PV, (2.27)
then
P—kBTTan(T,V,u), (2.28)
and another thermodynamics quantities
9} - 1
N (T, ‘/, ,u) = I{/’BTg— In Z'T,V =_ Z T, (229&)
“a = (ew i 1>
0 = €
U (T, )at) = o In Zi|z,V N Z ﬁv (2.29Db)
) | P (6 kT | 1>
where z = T [13]. ——t
g

2.3 Einstein equafibns 9f spherically symmetric

star ot ez

......

d el

General relativity is-the physical theory of gravity, it4was constructed by Albert

Einstein in 1915. Thi& theory use the notion of the metric to measure the distance
between two points 1n space-time, denoted by ds? = guwdx'dz”. The distance
square is invariant under Lorentz transformations and the form of metric tensor,
Guv, come from the energy and matter that is present in a“given region of space-
time. The existences of the energy and matter determine geometry of space-time
and the equation which connects energy-matterand geometry“together is called
the Einstein’s equation. So we may say that thedundamental idea of this theory is
to deeply relate gravity, energy-momentum tensor, and the curvature of space-time

together.

2.3.1 Einstein equations and Tolman-Oppenheimer-Volkoft

(TOV) equation in 4 dimensions

We find solutions of Einstein’s equation of hydrostatic equilibrium for a spherical

symmetric star. The general form of metric in 4 dimensional space-time, spherical
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coordinates, is defined by [16]
ds* = A(r)cdt* — B(r)dr® — r* (d6? + sin® 6d¢?) , (2.30)

where the two arbitrary functions A(r) and B(r) are determined by the energy
and matter that we consider and require that A(r)c? — ¢, B(r) — 1 as r — oo
[17]. We assume the energy and matter to be described by a perfect fluid, so that
[18]

(2.31)

(2.32)

(2.33a)

(2.33b)

(2.33¢)

(2.33d)

T
The others of Christgle symbol are all zero. The R efnann tensor

AuER TSN en Ty
ammzf‘i@@mmﬂﬁﬂ



There are only four non zero components of the Ricci tensor. They are

R, = R}, + R%,

+ R%

12

¢t
A// A/B/ A/2 A/
= — — 2.34
5AB  1AB® 1A2B | rAB’ (2.342)
R', = R, + R%, + R%,,
A// A/B/ AIQ B/
_ _ _ — 2.34
2AB 4AB? 4A2B rB?% (2:34b)
R’ = R" + R + R%,,
| (2.34¢)
(2.34d)
From Einstein equation
(2.35)
where G and ¢ are N ) ce light, respectively. We can
calculate G* - ﬁi =4 \
L J
e 3 B-1
P 3T g (2.36a)
B-1
— 2.36b
e (2.36D)
]
, @ B 9
2AB | 4AB® ' 41A2B  20AB | 2B (2.36¢)
(2.36d)

Rk

T8N

Consider G*, domponent in perfect fluid case, We can solve to find the function

awwmmty&

1NENY

¢e= rB2 rQB o pe,
rB’+B—1 8rG N B-1 8rG 2.
= r r = r
B2 B c2 P B CQ p
1 1 )
B(r) = Y el where M —/0 pdrradr. (2.37)

c2r
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Consider G", component in perfect fluid case, we have

B-1 A’ 8rG
= - = - PTJ
¢ r’B rAB c
2GM 2GM\ A 81G A GM g 8B p s
c2r3 r JrA " A 2 (1— 240y 7

(2.38)

A _2GM ([ Arrt PN () 26M -
A 22 M 2 c2r ’

Moreover, we consider the energy momentum conserved V,T%, = 0 by let v = r,

c=1land P, = Fy, = Fy, = P. it ls to the important equation, called the
Tolman-Oppenheimer-Volkoff equatio 1at

fr P,,,)
(~Fy)).
dP
— 2.39
dr (2.39a)
2GM\
= ¢ ) (2.39b)
r
The TOV equatio complot fermines the stricturd f a spherically symmetric

body of isotropic al equilibrium. Further-

more, equations (2.3 interior of a spherical, static,

relativistic star. L - Q/
AUHINENINYINT
2.3.2 Relg'l;ion between thermodynamic property and TOV

o ddmaeia 1 LAV IVIE R E

Notice that the TOV equation (2.39a) concerns energy density and pressure of mat-
ter. From thermodynamics, we know that both quantities are related by equation
(2.8). Then we can connect the thermodynamic relation and energy conserved
condition with the TOV equation (2.39a). Taking derivative of equation (2.8), we
get

dp dP d dn

A A
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use equation (2.7) (... u‘jl—: = Z_Z . ‘Cil_:f = %)

dP dp du dp du
i T oA N 2.4
dr dr+drn+dr " (2.40)

substitute into TOV equation (2.39a)

dP 1 dA dup 1 dA

%—l—ﬂ%(p—i—P):O — n%—kﬁd— —0,
Iu/ A’_ B
L tar=0 1n(u\/Z>_C,
C
e
) & , 2.41
M= 241

where C' is a constant. I we consid(_e}" at-zcie-temperature and » = 0, then we

have u (T = 0) equal to Eerimi energy; denoted-by cp.

)
2.4 Degenerate star -

— -
i

The term compact star (sometin-i:esr callgddl;compact object) is used to refer collec-
tively to white dwarfs, neutron s,térs, (;.ﬁhen exotic dense stars, and black holes.
They form the endpoint of stellax'_evolut-'i‘-d'n.! A star radiate all the time so it loses
nuclear energy reservoir in a‘finite timei&!’i‘len the nuclear fuel of the star has

been consumed, the gas pressure of thet"li:og interior can no longer support the

gravity of matter i%l- the star and the star collapses to _-é denser state. We call the

compact star which s built by degenerate matter tha,‘ﬁ-a degenerate star. There
are two major differeﬁ_ces between degenerate stars and normal stars. First, they
do not use nuclear fué-l to generate thermal pressure égainst the gravitational col-
lapse, they ang,supported hy the préssure, of degenérate matter. Second, the size
of degenerate stars is smaller than normal stars when both of them are having the

same mass [19, 20].

White ‘dwarf was the first ‘'object of compact star which' was studied. Ini-
tially, Frederick William Herschel [21] investigated double stars. Then many as-
tronomers, e.g. Friedrich Georg Wilhelm von Struve, Friedrich Wilhelm Bessel,
Otto Wilhelm von Struve, Walter Adams etc., had studied continuously via ob-
servation. Willem Jacob Luyten [22, 23, 24, 25] appeared to had been the first to
used the term white dwarf in 1922 and the term was later popularized by Arthur
Stanley Eddington [26]. In December 1926, Ralph Howard Fowler [27] applied
non-relativistic Fermi-Dirac statistics to explain electron degeneracy pressure hold-

ing up the star from gravitational collapse. Then Subrahmanyan Chandrasekhar
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28, 29] improved this idea to describe the structure of white dwarf star in 1930.
He uses the relativistic form of the Fermi-Dirac statistics for the degenerate case.
He showed that the white dwarf should have a maximum mass of 1.4 times that
of the sun (now known as the Chandrasekhar limit, is an upper bound on the
mass of bodies made from electron-degenerate matter). In 1932, James Chadwick
[30] discovered the neutron. Immediately, the ideas formulated by Fowler for the
electron was generalized to neutron. The existence of a new class of compact star
was predicted with a large core of degenerate neutron, the neutron star. In 1934,
Walter Baade and Fritz Zwicky [31, 19] proposed the idea of neutron star, pointing
out that they would be at very high densifys@nd small radius, and would be much
more gravitationally bound than ordinary séar. The first neutron star model cal-
culations were performed by Richard!‘bhace Tolman, Julius Robert Oppenheimer
and George Michael Volkoff 14939 [1, 2|, describing the matter in such a star as
an ideal degenerate neutzon gas: Theii]l calculations also showed the existence of a
maximum mass, likedn the case of white.dwarf, above which the star is not stable
and collapses into a black hole. They f(;lﬂnd a maximum stable mass of 0.75 times
that of the sun [1, 2, 20]. An uﬁper b:i;buﬁd of the mass of stars which compose
degenerate neutron, the sicufron star, l’i_dsf;,.called the TolmanOppenheimerVolkoft
limit (or TOV limit). The TOV limit is analogous to the Chandrasekhar limit for

white dwarf star. et 2220

The coupled equations 6f Telativistic stellar structure is derived first by Op-

penheimer and Vollgé)ff (eqautions (2.37), (2.39a)). Bv rewriting them we can

arrive at the physiéa‘f interpretation Nt

dM (r) = 4mr?p(r)dr, (2.42a)
smr*dp(r) IR AT (TZfM(T) (1 } %) (1 £ —4”; (P; §T)) (1 - —2Gﬂf (T))_ .
(2.42b)

Let us think'of a shell'of matter ity the'star by radius rand thickness dr, equation
(2.42a) gives the mass-energy in this shell and equation (2.42b) expresses the
balance between the force acting on a shell of matter due to material pressure
from within and the weight of matter weighing down on it from without. The
first factor of equation (2.42b) is the attractive Newtonian force of gravity acting
on the shell by the mass interior to it and the other three factors are the exact
corrections for general relativity. So these equations express the balance at each
r between the internal pressure as it supports the overlaying material against the

gravitational collapse of the mass-energy interior to r. Since the derivative of
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pressure is negative, it is clear that the pressure decreases monotonically in a star.
Moreover, the equation of state P = P(p) is the manner in which the properties

of dense matter enter the equations of stellar structure [32].

There are two boundary conditions for the TOV equation. At r = 0, mass
of the star becomes zero, M(r = 0) = 0, and the pressure in the center of the
star can be an arbitrary value, P(r = 0) = Py > 0. Consider the pressure drop
to zero, it cannot support overlaying material against the gravitational collapse
exerted on it from the mass within and so marks the edge of the star. The point
R where the pressure vanishes defines the vadius of the star. Thus at the edge of
the star, r = R, the pressure go to zero /P(1.= R) = 0, and the mass of the star
is then read off at this point, M(r = __62) =Mgrar 32, 33].

Electron and neutron are fermions, particles of half odd-integer spin. They
obey the Pauli exclusiofl prmnciple; nof more than one fermion can occupy a given
quantum state. We neglect all iuteractlons so the simplest model for the equation
of state of white dwarf ,;md neutron 9ta'r can be thought of as an ideal degenerate
Fermi gas. Ideal in tHis cont s nieans ‘d'hai; all interactions are ignored and degen-
erate means that all quantam states up t0 a given energy, called the Fermi energy,
are occupied. Thus, in summmg OVeT tif;e ‘occupled states over the energies, we
want to sum or integrate over momentumﬂ}ates From quantum mechanics we
recall normalization of momeritum c;tates‘:m‘a box of dimension L [32], so that

Sy T Er o
L:»,Z m':ﬁ i

JU

For degenerate systems all energy states are filled in order up to the Fermi energy
or in the case that niomentum eigenstates are used, Up to the Fermi momentum,
and we let subscript F'.t0.denote the Fermi energy.and momentum and set ¢ =
h = 1. Then the energy density, pressure @and number density at zero temperature

are given by [32] 33]

Kr
o bk / ARV £ e, (2.43a)
0

22
Lg [* k!
=== dk—— 2.43b
gs [**
n = 27:2 / dkk?, (2.43c)
0

where gs = (2s + 1) denotes the degenerate spin state, for electron and neutron

s = % and g; = 2, and the Fermi momentum k is related to the chemical potential

w via [32, 33|
=/ k% +m2. (2.44)
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We can integrate analytically to find energy density, pressure and number density
(32, 33], we have

1 , 1N\ 1, (ptke
P= 1 (,ukp (,u 5 > 5™ In ( - : (2.45a)
1 5 3 +k
ki

These equations of state are roughly lapproximation to easy solving. Indeed, at
very high density, the nuclear force, espegially the repulsive components, will
become important. Electron would react with*proton to form neutron via inverse
beta decay or electron capture and tlie nuclear force therefore provides additional
resistance to gravitational attftaction beyond that provided by the neutron Fermi
pressure. Nevertheless, the Fepai gaﬁ model for the equations of state use the
fundamental idea, 7./ thewrole of the Pauh exclusion principle, to deal with dense
matter and this modelfcanbe 1mpLoved by (1) include the Fermi distribution at
finite temperature, (2) consider many sppmes of matter, (3) rotation of the star, (4)
effect of the Coulomb force aned _;ne_ugnetié__‘fi_‘elg‘i, (5) effect of nuclear interactions and
finally (6) phase transitions, such‘as qu%rlj deconfinement or kaon condensation
[19, 32]. So we can say that the main uﬁegértainty in degenerate star model is
the equation of state. After the vxork of T{)lman Oppenheimer and Volkoff, there

are now many mode}s of degenerate star glvmg dlffe;ent mass limits and other

properties. [~ X'}

Unfortunately, when we consider the eftects of strong interaction, the un-
derlying theory for thisgdnteraction is thegquantum chromodynamics (QCD). The
perturbative ntethod ¢annot he used in the strong-coupling regime observed at low
temperature. Hoéwever, we can use the holographic principle and the weak-strong
duality-to,deal-with thisproblem by performing-calculations of.the partition func-
tion in five dimensional Antitde Sitter space. ' Although.we domot.consider strong
interaction in AdS5 partition function, the effect of interaction has been included
in four dimensional spacetime via duality. We use an ideal degenerate Fermi gas
model in five dimensional Anti de Sitter space to study a degenerate star in the
5 dimensional AdS space. At present, the physical relevance of the 5 dimensional
degenerate star in the AdS space to the realistic degenerate star in 4 dimension
is still unclear [7]. In the future, we hope that we can use duality to describe

behavior of a degenerate star in four dimensional spacetime.
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2.5 Landau energy level

A particle that has a spin also has a certain intrinsic magnetic moment p. The

eh

5.0, where e, h, and m are

intrinsic magnetic moment of the electron is up = —
electric charge of the electron, reduced Planck constant and mass of the electron,
respectively. This quantity is called Bohr magneton. The magnetic moment of

b where my, is a mass
P

heavy particles is measured in nuclear magnetons, uy = 3
of the proton. The intrinsic magnetic moment of the proton, p,, and neutron, f,,
are found by experiment. The magnetic moment of the proton is parallel to the

spin but the magnetic moment of the neutrern.is opposite to the spin [34].

In classical mechanics, Hamiltonian of'a charged particle in an electromag-

netic field is

1 2
o - ( > \ 2.46
bi\L b+ A ug (2.46)

. 4

where p, ¢ and A are genomlized'glorrlchtum of the particles, the electric scalar
potential, and the components of'.the IIlzi':gn‘etic vector potential, respectively. If the
particle has a spin, then ghe 1ntr1n51c magnetl(, moment of the particle interacts
directly with the magnetic ﬁeld Smce t,he spin is a purely quantum effect,

vanishes in the classical limit, In quantum Ip,echamcs we include an extra term,
— - B corresponding to the energv of the nfr-agnetlc moment g in the magnetic field

B, and promote dynamical variable to the operator [34] Thus the Hamiltonian

of a particle with a &fpm 15 = -.

- 2; (p _ —A) e — B, (2.47)

In general, wesmust keep immind thatithesmementuntoperator p does not commute
with the magnetic vector potential A to expanding the square. Let us consider a
particle move in a uniform magneftic field [35]#ket A, = —ByA, = A, =0=¢
and théwave funetion in the form ¥ = e(%)(“”pzz)x(y). Theén we can obtain the

expression for the energy levels of a particle in a uniform magnetic field [34]

2

1 p
E = = = 2.48
(n+ 5 + o) o (2.48)
where wy = % and n =0,1,2,.... Notice that the energy in the x-y plane gives

the discrete energy values corresponding to motion in a plane perpendicular to
the field, it is called Landau energy level [34].
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HOLOGRAPHIC DEGENERATE STAR
UNDER EXTERNAL MAGNETIC FIELD

Analytic calculations are performed megorously in this chapter. We use the
notion of holographic description to ;tudy a-degenerate star. In de Boer et al’s
work [6, 7], they proposeshatsComposite operators in the C'F'T correspond to a
degenerate Fermi gas mAdS space. Thus, we must extend Einstein equations
from 4D to 5D in AdS space and find: the coupled equations of motion to study
properties of stronglyscoupled degenerate star. Moreover, we take into account
the external magnetic field and finite teihl)"érature in our system. Energy’s system
is separated to be energy level. called Lé:nda_-u energy level, and equations of state
of the system obey Fermi-Dirac statistiééj b

3.1 The equatidﬁbf hyifi-fa_étatic equilibrium for

a spherical symmetric star in d dimensions

We solve Einstein’s equation in d-dimensional. From the Einstein’s equation, we

have
R
G'u,/ — RMV — g“l,E = Vd,QCdflT;:, (31)

where R ¢",, R, T", Vi o, Cq_1 are Ricci tensor, metric tensor, Ricci scalar,

energy momentum tensor, the area of S%~2 and constant (%) , Tespectively.
Momentum tensor’s form is perfect fluid
pc?
_P.
T = —Py, , (3.2)
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and we use a spherically symmetric metric in d dimension [36]
ds* = A(r)c*dt* — B(r)dr® — r?dQ?%_,

d—3
= A(r)dt* — B(r)dr® — r*df} — r?sin® 0, (d@% +- 4 H sin? Hid9§_2>

1=2

d—2 j—1
= A(r)Pdt* — B(r)dr* — r*df} — r*sin® 6, (d@g + Z H sin? GidHJQ-) (3.3)
j=3 1

=3 =2

Thus, the Lagrangian of this metric is given by

Vy/ 02 + ihsm 0, 92> (3.4)

to find formulation but our

L= A(r)c*t* —

In this thesis, we use 7
calculation adjust the * respectively. Use Lagrange’s equation

to find the equation

(3.5)

In each component, of motion and affine connec-

: - oL oL
tion, respectively. Co Oy (5) = a0
we get the equation of motio
(3.6)
and the affine conneétio
r,=r, =— (3.7)
Comsiderr COFW‘EJ“’J“% d W‘ﬁ %\I EJ n3I
d—2 j—1
—2B'7% — 2B7“ = A'** — B'r? —‘Qﬁj] — 2r sinf sin? 6; 02>
YWIANNIUHNRD ﬂ
we obtain the equation of motion in r component,
. AP, B o rsm91 9 =2 -
P+ ZBt +ﬁ —Eel 9+32311_£sm 0;0; | =0, (3.8)
and the affine connection in r component is
. Al B _, —r . —rsin®
Ui=5gUn=55l0n =5 Tun="—""F5"

—rsin 6, Iy
. 7Fr0j9j = THSiHZ 91 (39)



Consider #; component, we have 0 (ae ) = g_ele
. . o d25-1
_ (27‘7'"91 + 7~201) = —r?sin 6, cos 0, (95 + Z H sin? 9“9]2) ,
j=3 i=2

we get the equation of motion in #; component is inform

d—2 j—1
0, + 7“91—31119100301 (9 +ZHsm 992> =

j=3 1=2

and the affine connection in 6; co

. . / 4 R, iy 8L\ _ oL
which 3 < j < d—2. - e have O (60.2) = oo
— (27" i 2 Sin2 919.2)
-1
sin? 0
=2
we get the equation of motionin @ com t 18 inform
. 2 . TN d—2 j-1
Oy + =10 — sin s c L] sin® 0,07 =0,
T eSS
v‘-’: = Y
and the affine conneﬁon m
I8 =% == r92 =1%, =cotf,

UIAEN N

— S11 U9 COS U2

i RN ﬁ.\&i]iéiﬁl&iliﬂﬁ@m&l @@LL which 3 3

Jj—1 Jj—1
2rr sin2 91 H SiIl2 0193 + 2’/“2 sin 91 COS 91 H Sin2 92'9193'
=2 =2
j—1j-1 Jj—1

+ 2r?sin? 6, Z H sin? 6; sin 6, cos Hléléj +r2sin? 0, H sin? 9¢éj

=2 1=2 1=2
)

d-2 k-1
= r?sin? 6, E H sin® 6, sin 6; cos 0,62,

k=j+1i=2
7]
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(3.10)

(3.11)

(3.12)

(3.13)
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we get the equation of motion in ¢; component is inform

259 T2, sin 6; cos 6, sin? 6

.2 . .
0 + ~6; + 2 cot 616,6); + ?é : 6,6,
2 ! sin?6;
d-2 k-
— Z H sin 0, cos 6 sin® 6,62 = 0, (3.14)

k=j+1i=j+1
and the affine connection in 6; component is

0, 1 o 0; 0

J

i— Sin 0, cos ; sin . // k—1
— 7 — . Kéﬂ 6, cos 0; H sin?6;,  (3.15)
——

i=j+1

R’ I, I, (3.16a)
(3.16b)
(3.16¢)
For the component ¢
Ry = Ry = Ry + Rl 408754+ A TYRERE &y

M
ﬂuzﬁ ?ﬁn%ﬁ%'?ﬂ i)
QW'fﬂﬁﬂ*ﬁfﬂl}Wﬁ“ Wreay

27"B

0o 6 2 6 6
R% thot anF %t - 8tF Z2t +T EQAFAtt =T %AFAaw
A'c?
- (27"B> ’
9,’ 9i 9i ei 62’
R ot 691.1‘ t O 0;t +T 9i>\F/\tt —I t)\FAin

(A
— \2B)’
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then
R T
9" Ry = 2’3; — ﬁ;ﬁ; — ij;); +(d— 2)%. (3.17b)
For the component r
Ry =R\ = Ry + R+ ROy + R+ +RYy .+ RO
R',,. = oI

(A/)2 A" LAB A'B’
4A2 24 ' 4AB’

R, =0
R071~61r FOl FAGN"
B
2rB’
Ref«ew - Pei,\P/\ew
Bl
B’
Rig /= 0pT%, -0, T
.ﬂ VRN (-
r2 27"B r2)  2rB’
the ﬂ‘lJEJ’J‘VIEJVI’ﬁWEJ’] ‘i
N2 "
_ A)2 A (d - (3.184)
ARA SAER
2AB  4A2B 4AB2 2 B (3150)

For the component 6,

_ A
Rol 01 — R 61201

_ 01 02 0; Oq—2
= Ry + Ryo + R0 + R+ +Rpge+ . +R 010, 201

t _ t t t A t A
R 01ty — atF 010, 801]'-\ 101 + F t)xF 0107 F 91)\1—‘ t0

L _TA'
B 2AB )’
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Rral’r‘ol = 87'Fr9191 - 891Frr01 + ]‘—‘T’I‘AFAGlGl F 01>\F 7‘917
B 1 n rB’ n rB’ 1y B
B B B? 28?2 B) 2B?

01 _ 01 61 01 A 01 A _
R 910101 - a01]‘—‘ 0101 aelr 9191 + F 91)\F 01601 - F 01)\F 0101 — 07

02 _ 02 02 0> A 02
R 910291 - 862P 9101 a61:[‘ 0291 + F 92>\P 9191 F 91)\F 92917

1 1
. ) — (cot291) zl—E,

,/ A 6 A
éf 0100 — 1 6al 0,0,

= — (— csc? 6,

Raielé)ﬂl
= ~2m)=1—é,
then |
- é) , (3.192)
ghon 1-%). (3.19b)

For the component 6,

_ A
R02 02 — R G2 A0

_ t : ; Oa—2
= Ry, +1 020,00 T F 00, 10,0

Al t A
92t92 E atF 020, — Y02 )\F Pols, F 92)\F 1059

ﬂusﬁmﬁﬁ%wa”ﬂi
O R g e

rB’sin? 6,
2B2

01 _ 01 _ 01 01 01 A
R 029192 - 801]'—\ 0292 aeQF 0102 + F P 6292 F 02>\P 9102’

= (— cos” 0 + sin® 91) + (—SIHB91> - (— cos® 91) = sin? 6, (1 — %) ,

02 02 02 A 02 A _
R 920202 a02 0 02 862F 0202 + F 92)\F 0202 - F 02)\F 0202 — 07
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0; _ 0; 0; 0; A 0; A
R 020,00 aozF 0205 802F 6,02 + I eiAF 0205 I 92)\F 6,02

‘2
= — (— csc? 92) + <— smB€1 — cos? 91) — (cot2 92) = sin? 6, (1 — %) ,

then
rA'sin?6, rB'sin®#6, 9 1
Ro,0, = — 54D + 557 +(d — 3) sin” 0, <1 — E) , (3.20a)
A’ B (d-3) 1
0205 _ B B L
97" Boo, 2rAB  2rB? r? <1 B) ' (3:20b)

For the component 6;, i >

A
Ro,0, = Rai,\ei

r _ r i e y -
Rei"'ei - 0 ol 0,6 ; r0;)

w
SHUYANININENG .
ik, L] |
AR84A %mwmmm 8
( sin 6 1 Hsm 9k> — (— cos Hlnsm ek>,

k=2
2 ]_
= Sln01||81n9k I—E s

k=2




02 _ 02 02 02 A
R 0;,0:0; 892]'—‘ 0:,0; 8911—‘ 020; + I 92)\F 0:0; F 0; )\1—‘ 620,
i—1 i—1
= | —cos?b, H sin? 0, + sin® 6, H sin? 6,
k=3 k=3

-I-( sin HIHsm 0), — cos? 91Hsm 9k> — (
k=2
i—1 1
— sin201Hsin20k (1—§>,

k=2

. 0 .
we divide R ]9i6j0¢ in three case. C = 0,;, we have

0, B 0;

k2

Case II, j < i, we hV
R0 = 00,1 0 0014

- Sin%m:isin?ek 1—§ ;
CaseIIIJ>ﬂwuaE4’J1’IEJVI’§WEI’1ﬂ‘§

CSC sSin COS
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i-1
— cos? B, H sin? 6y, | ,

k=3

i—1

| s 20, — cos® 92Hsm 0

k=3

“qif" a\;ﬂa(ﬂmyﬁﬁ gLt

cos? 0y Hsm 0y, — cos® 05 l_Ism2 0, — ... —cos

k=3 k=4

i—1
. ) 1
= sin?6, ’]:[251112 0 (1 — E) ,

291’—1) — (COt2 491) s
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then we have

oo, :_MHSIH O + rBs_mele 00

i 2AB
k=2
i—1 1
+ (d — 3) sin® 6, kl;[gsin2 O (1 — E) : (3.21a)
o Al B (d-3) 1
%% Ry.g, = - — 1——. 21
9" Roo, 2rAB  2rB? r2 ( B) (3.21b)

Thus

A/
t — R
R, = 2rAB’
T B,
o 2rB?

01
R%,
02
R,
0;
R 6

i

Consider G', = R, —
VioCy T — R, — (R T e

0q_2

0; 0
LRl R ) =
Vi_oCy_1pc?, then

(d— 2) - ——_——_;__:i 2Ca— 1PC (3.22)

{; 2rVy_2Cy_1pc ad 3)
Change%g}umwﬂ(ﬂ%‘ﬁsnm)

B o,
’QW%‘%ﬁ%ﬁi@Fﬂ%ﬂ%ﬁﬁ B e

Letb—Blnandn—?)Wehaveb—Bl3 B2 moreover, & = %%%%z
3
B° db So

(=2) dr

(3.23)

B3 db (d— 3)B B rVy_oCy_1pc? B (d—3)
(—2)dr 2r (d—2) 2r ’

Wt (d—3)2 = <(d —3) 27"‘/‘1—20‘1—1”02) (3.25)

o (d=2)
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Put equation (3.25)x7r%% we have
(d—2)r" + (d—3) (d —2)br*™* = ((d — 3) (d — 2) 7' — 2072V _,Cy_1pc?) ,

or

d—2 2
(d-3)7\’ _ . (d—4) 2r ‘/d_sz_lpC
(r=p) ((d 3)r B .

We get b in form

2%V,
or
(3.26)
If we consider an AdS _ " - olc gical constant, A), then the
Einstein’s equation ) \\\
Vo' (= N \ (3.27)
and equation (3.23) bec | )
, (d—3) Vi 2Cootpe 2Ar
B o z TE) (3.28)
Change B — B?
, (d .:%y;i :' I Ar
B ~ ) (3.29)
Let b= B'™ andn— ehaveb—B1 3 = B~? moreover, 2 = (B?'jlf — 45—
i 5 ﬂUEJ'J NENTN El'lﬂ'i
B3 db <f‘/d 2Cd 1,06 d 3 ‘ié >
, b (d—=3) 2rVaoCa 1pc? 2Ar
b +(d-3)- ( - -5t =D (3.30)

Put equation (3.30)x7r%% we have
(d—2)r" + (d—3) (d —2)br*™* = ((d — 3) (d — 2) 7' — 20772V _,Cy_1pc?) ,

or

d—2 2
(d-3)p) — -1y 2r" " VaoCaipc
) ((d 3)rl = .
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Then
262‘/:1_2001_1 2A’I“2
b=1— """ [ pri
(d—2>rd—3/’”” "Ta—y -1
or
B2 - 2¢2Vy_9Cq_1 1d 2Ar2 ' (331)
1 — St [ pri=2dr + 5
2A 1
Let @2)(@-1 — 2 then
9 1
B® = FYrormn e (3.32)
,,.d73 lz
Moreover, we have
(3.33)

Consider G", = R", — .+ Regi ...+ Rl )

\ 042
Vi oCyrT7, — BT, = ' 15C P, then
d—2
( T‘ABz ‘2‘/d—20d—1Pr-

!4 '! -
Use equation (3.22) from G*,, then e

1-2Cg1 (p + P,). (3.34)
A l
!| =) I

ﬂuﬁw%ﬂmm o

/

For A — A2 % — B% - 4 =2 5 then equation (3.35)

e R189A9 um'ﬁnmaﬂ

A/ B/ ‘/d QCd 17‘B
AT @y P tHh)

Let equation (3. 34

Solve this equation to find relations between A and B, we have

A? (r) = (3.36)
where

x(r)= ﬁ / (p (r)c® + P, (7’)) rB? (r) dr. (3.37)
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So we have coupled equations of motion from equation (3.33) and (3.37)

M (r) = (?ﬁ_;)p (r)r*2, (3.38a)
X (r) = ng%cgl (p(r) Z+ P, (7“)) rB?(r). (3.38Db)

Moreover, when we consider the energy momentum conserved V,T%, = 0 by let
v=rc=land P,=Py, =...=PFy, =...=PF, , =P, A— A% it leads to the
TOV equation in d dimension that is given by

(3.39)

Then A(r) = £ Inep —Inp(r) . X' (r) =
w

Br) _ () Ao ) .
B(r) () and the can be written new form of

M (r) (3.40a)

W (r) = 4+ P, (r)) rB? (r)) (3.40Db)

3.2 Relativ “ievel in 5 dimen-
sion

wesare DRI VNS TP S cecromegueiit.

Our calculatiofi! considers only pgﬁltlve energy solution and uses Dirac gamma

TRRIRITIUNN INYAY

ihy" 0y — mey = 0, (3.41)

where h, ¢ and m are Planck constant, speed of light and mass of particle, respec-

tively and Dirac gamma matrices are

10 0 7
0_ 3= , 3.42
! (o —1> ! (-5 o) (342

where 1 and & are 2 x 2 identity matrix and Pauli matrices[Appendix A], re-

spectively. We consider solution in two cases. First, positive energy solution,
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we have solution 1 () = u(p)e ™ = wu(p)e F*¥Z and Dirac equation is
(7*p, —m)u (p) = 0. Second, negative energy solution, we have solution ¢ (z) =
v (p) e?* = v (p) eP*="F and Dirac equation is (y*p, +m)v (p) = 0. We concern
only positive energy solution because we consider particle not the anti-particle.
Let h=c =1, then

(Vp, —m) = po+'p1 + 72+ V*ps — mlyxa = °E — 7 - p'— mlyny,

E—m)l —a-p
_ (( m) 2x2 g-p ) ) (343)
. a +
Consider particle in an external ' DPp — P — qA,
(F-q4
(" (P — qAp) —m) ( ) = ((3.44)
Ao +m) laxo
Let magnetic field be . =A.,=0,A,=DBz. So
F—qA
(v (Pu ) (3.45)
+m) laxo
Let u (p) = (%), wherd afid & are hwwo-componentispinor. From (v (p,, — qA) — m)u (p) =
0, we have (E —m) ' ' ' X=0a- (ﬁ qA) ¢, therefore
(3.46)

Use Appendix A.1, &g

—
(o (-0 2

Consider term (p' x A+

AR

i AngaY,

= €k [p]7 Ak] = ZEijk[Vj7 Ak]7

(9 A) =i(B)

Then

= p*+¢B%r* —¢B (0. + 21p,) . (3.47)
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We get equation [37]
{p2 + pl +p? — 2¢Bap, + ¢’B’s* — qBo.}¢ = (E* — m?) ¢. (3.48)

But we want to study the Fermi gas in 5-dimensional AdS space, then we put
new momentum p,, and coordinate w and consider solution in the form ¢ =

e!Pyypzztput) £ (1) So equation (3.48) becomes

{02 +p} + P2+ pl, — 2qBap, + ¢*B°2* — qBo.}¢ = (B> —m?) ¢.  (3.49)

}”/)(ﬁ by our solution. we get

Change variables to operators

_ gBo, }eiPaptnan) £ (o)

_i(i.g)g
— de \de dz ) dx’

(3.50)

az;azf:,uf,where@: -
function component f, }n function f =

ff;j‘jj w B g “VTEI IR i om i
T RRARK TRV R Y »-

If we let J = n—25 (we consider the case, x = 0, throwing away the Zeeman energy

( Ju= _11) is a Hermlte functlon Moreover,

term), then we have
1
E? =m?ct 4+ pid +plc + (j + §> 4mcupB, (3.51a)
1
= m?ct +p2c? + (j - 5) Amc’upB.  (pj =+ 1) (3.51b)

From equations (3.51a) and (3.51b), energy is quantized in « — y plane and can

be degenerate, i.e., there are several states with the same one-particle energy. We
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find the number of states g; of a discrete energy level j

s

gsLL bt gsmLy Ly
9 = 33 | dpedpydrdy = =—5=2n / pdp = =—5— L (0Ha —13),
P;
gsmLyLy 2 2 2 2\ .2 L2
= T Y (4mppB). ('.'pjc = (p2 +py) ¢ = 4jmc*upB)  (3.52)

where gs(= 2s+1 in the case of fermions) is a spin degeneracy and the degeneracy

factor g; is independent of j and vanishes for B — 0.

y'lsrcy under magnetic

We consider equati 200 F 7P VO . u the sum over all one-particle
dd 1rdd 1p

3.3 Pressure an
field at

states can be rewrit . “—a-1— where d =
space-time dimension. gons e'%i \\ 1dS5 space .d=5

3
- ) "\
Inz = C;ﬁ' iy %
7 14 _(em
= sd D, dp dsll’l (1+6 kBt}),
' _(emp)
= AP AdS lIl (1+€ kBT) y (353)
but the energy ‘ff‘ﬁm““"‘,T:T.Tﬁsm'--'-- ‘- eld is applied

mZ = / m;dpAdezdxAds 2. g;In 1+ﬁ t5T )
- @;ﬂmmmmﬁnm(w )

ARSI B UASIHAEY). o
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where (V = L,L,L,Laqs,p2 = p? + p44s) and use Appendix A, equation (A.8),

then we have

*\/m2c4+p%c2+4zm62uBB
, (3.55a)

f(x)=1In <1 +ze FpT

\/m2c4+p,,2152+4zmc2uBB

ze kgT (_4mcz,uBB) |
\/m2c4+p%c2+4wmc2“33 2k T (\/m264 _|_ p2 C2 + 4xm02,u B) =0,
1+ ze BT ’ ’ B

f' (@) a0 =

(3.55b)

where z = ¢Fs7 | Th
2 O /7 OO
InZ ~ <8g87r MiB , ' kpT

o

\/m2c4+p%02 +4a:mc2,uBB )

e

mctupB /

= lIlZQ +1HZB.

dpy
m2cA 4 p2 o2 !
k- kT

(3.56)

Consider 1St ter m2ct + p2c? + demclupB =

204 4 — “ppB g .
\/m C LY ‘j dx = 2m¢:2;LBBd‘E

/ / dxdp,p, lyg +ze_’“B+T o m
o Jo

f uzgggg o] LiiTie A
QWWMW@JM‘%WM&W

From € = m2c + (p)* 2, .. 2ede = 2p/Adp’ and p? = S — m?c%, when € —

me2 p—0 and e€—o00 p — o00. So

1 * €? — c? * —
o [ dee (5 In (1 )=—/ dpfp®In (14 2¢ 77 ).
4m02NBB/ €€ (02 m c) n\l+ze *s ImupB Jo pp-In(l+4ze *5

mc?
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The logarithm can be removed by integrating by parts ([ udv = uv — [wvdu). Let

u=In <1+ze_’m%T),dv: Bdp' . du = ze -
prap kBT(1+ze_W)

1 o __€_ 1 p/4 __€_
d / 131 <1 E T) — | (1 % T) e}
TminB /o p'p~In(1+4 ze *5 B \ 1 n(l+4ze *57) |5

1 [ee] /4 d
L )
AkpT Jo  z-1emsT 41 dp/

Consider limit of the first term p’ — 0 .. the first term — 0 and € = \/ m2ct + (p')? ¢

p 2

__€__
kT

de 7.0 _
dp,dp and v = 1

S.p— 00 €e— 0, we have In (1) =
AdmupB J, E
1% term in In Z becw—"—'

the first term vanishes and ;_;' =

InZz, = (893 Bl P
/" PR N “'(2’_16'“3%“),
_ (98” “ad , S dp (3.58)
2h B, F L3 i ' ¥
LS _F.

This is just the partition fur R tic Fermi gas without a magnetic
r) Add o

field in 5D at finite temaper ture*'ﬁhg; irst term in In Z reproduces the limiting

case B — 0). The higher

. o0 /5
COHSlder fO —
e(z‘lekBT—l—l)

(A

0 p/5 :
/0 € (z—lekb%T —El)
where f (e 2‘2}53 ﬂg ﬂje a‘iby change of variable,
we call integr t \ﬂ,ﬁ— a and € — mc®> y —

mc—

esent, corrections to the free case.
dp'.

(3.59)

, € —> 00 y — 00. Consider ¢

gqg%mﬁmw@m 40

kpTdy) kgT'd
fu+kg kaTdy+ > f(u+ kpTdy)
mkc;Tg ev+1 0 e¥ +1

kgTdy.  (3.60)

In 1% term, change T' — —T

o0 e Y
0

m2 oy eV 1 ev+1
kT

< f(u+ kpTdy)
T .61
+/0 v 1 k‘B dy, (3 6 )
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1 e¥41-1 _ e¥ __ _de
and 1 — "9 = T = a9 = 1+e o Hwelet p—kpT' =e. . dy = 77y =0,
e—>,uandy—>“k“;f,e—>mc So

[ <=/ f(E)dE—kBT/O%%dy

2 (e=p) 2
mc eFBT 41 mc

* f(p+kpTy)
e

Er dy, (3.62)

therefore

2
gsmV
InZ, =
o (2h4kBT>

(3.63)

Consider 2™ term in 1 \ ", 2€|pm0dé|p=0 = 2ppcPdp,,
p—0  €lpm0 = mep

_€| -0 i il _5|z:1

< py ze ®BT . - ze kBT €|z=0
€| . c ' 2 A . Cdazo\  pnc? delz=o;
0 =0 <1+ze_ ~ > Pn
Y
m (3.64)
_ I 1
‘a
Therefore ’J ’]
In Z z*{gsﬂm“B mC”B :l” :
ARIANN T ﬂiffﬁ Q)
q _ zgsﬂ' m iu‘B oo de|€6 0 (3 65)
N 3h4k‘BT mcz fla=0
z—le kpT 4 1
Use integrate trick following equation (3.62), then
££—mc2
 2g.m*mPuE BV 9 T dy
anB—< WAk, T (,u—mc)—kBT/O v

kpT . .
+ kg /0 ey+1} (3.66)
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From thermodynamics (equation(2.28))

kgT kgT

P:71 nz=— (an0+anB)
2
2 n 2 2 p—me? <(u—k:;Ty)2 _ m2cz)
_ (9T / C_m2?) de— kBT/ e dy
2h4 me2 C2 0 ey + 1
( (ﬂ+kBT'y)2 —m2 Cz) 2 )
i T c? 271' m ,uBB {( B 2)
M v+ 1 IRV R
“—;Z;”TC
— k;BT (3.67)
Find energy from equ and ,,fg , ETETP =5
U= / d4rff4 G \\ <
ht 17 z7lekBT +1

We apply a magnetic

9s

U=

_,L

pzdpAdS Z

j=0 Z—lek:BT

\/m2 4 ‘H’% c2 +4a:m02uB B

(2mc*upB) 2 e FBT
\/m204+p%c2+4zmc2u33
z7le kBT +1

—|amo- (3.69b)
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—\/m204+pnc2 +4mmc2uBB

U <8987r m,uBBV> / dx/ o (\/m204 + p2c? + demclupB

mctupB

1

kpT

)

+( ) [ v

&

12

2c4 + picz) <z

kgT <z‘1e

Consider 1% term in"U.

p? = p? +demugB.

R /
/ dx / Apnpn St
0 0 z-lekp®

\/m2chyp2 2
-1 kgT

3

(3.70)

(ev +1)

wWEJkWﬁ e

(3.72)

7
sl
RN T UWTSY

p—0 e|x0—>mc P— 00 €|pmg = 0

1

./
EJ{GH’QEEJO = 2p,cidp,,

2z Letle=0

Ele=

flz=0
—1lokpT +1

/0 dpnpn o (z

> kT (z

(€|pmo) 2 Le*BT

€l

2
flz=0
_16 kpT 1>
elz=0

(3.73)

)

el

ﬂ>2

—lokpT
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Again, we use integrate trick, equation (3.62), and use o o = ) ) =

(1 - ey+1) (1 - ey+1) - (1 — ﬁ + w) We have

!i—mc2
8gsm2mupBV\ [ mc*upB 1 ) FpT dy
_ - —mé®) — kT
Us ( B ) ( 12 2) | me) ks /0 (v +1)
el =R H—'mc2
< dy k eeksT T (u— kgTy)e ™
kT — de — 2kgT d

+ B /0 (6y+ 1):| [/ch k‘BT ¢ B /0 kBT (6y+ 1) y

h wdy] } (3.74)

kBT (ey -+ 1)

Find energy density, inherit ' = %, then

I GeﬁgT
/ de
———————— ez kpT

Il _
kT (U — kBTy) e yd

(n—kpTy)e
9 E d
/ (v + 1) y+/ (v 1 1)

ﬂu%%wmw gMT om
AMIAN TN INYAE




Chapter IV

NUMERICAL RESULTS AND DISCUSSION

In this chapter, we preser% om the analytic approximation and

numerical analyses. Since ider
at finite temperature, W$e result

zero magnetic field, fini

under an external magnetic field

@ses, i.e. zero temperature and

etic field, zero temperature

and finite magnetic magnetic field, and variation

)
of the radius of curv: sp e\u We study and discuss the
effect of temperature, i¢ fisld - I adius of curvature of AdS space to
the mass limit and other properties ¢ ::_ erate star in AdS space in each case.

. we integrate equations (3.67) and

2 bieid 4} !
P= ( g7 ) (3u(r)® — 10m°cpf Spu(r) — 8m°et® — 10k5T*mAc n? u(r)

+ 360k 5T mc? IQ ('_e Tt GOIBTLi, [L o= 5t
_ 20kBTq2ﬁ2ﬁ§ ﬁ(ﬂﬂ(‘)ﬁ %M 8 r] ﬂ § -
- () RANADIRAATIRIAGR e

me”—p(r)

me2— (r)
+ 10k3T?* 72 u(r)? + 30kRT*m>c® Liy <—ekBT ) — 150k3T3m*c* Lis (—ekB? )

me® —u(r) me? () Am2m2 12 B2
+ 360k5T mc* Liy (—e 57 ) — 360k%T° Lis (—e FaT )) + <—m 7; hffB )

mc?

w(r)—mc2
<1—|—e kpT )

2 —u(r) p(r)—me?

—,u(r)—kBTln(l-l—em’“BT )—I—kBTln(l—i—e BT ) ,

(4.2)
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where Lig(z) = Y po, 2—’: is a polylogarithm function. For numerical analysis,
we set G5 = Gl, G =c=h=kg = ug =1=1, m = 0.1 where G, G5, [
are the Newton constant in 4 dimensional space-time, the Newton constant in
5 dimensional space-time and radius of the AdS space, respectively. We can
transform the numerical results to the SI unit by using the table of dimensional
translation in Appendix B. We use the coupled equations of motion between mass
and chemical potential (Egs. (3.40a), (3.40b)) to find the mass limit and study
other physical properties. We set the initial conditions at the center of star to be
M(r=0)=0and pu(r =0) =e =2718281828.

4.1 Case I, zero temperature and zero magnetic

field

\
Case I, the pressure anddthg/ciefay density (Eqgs. (4.1), (4.2)) reduce to

2 4 (X 4
P = (3gszh4) (3,u(7v)5 [ 4 1Om264f£(7ﬂ)3 4 15m4csu(r) _ 8m5clo) ’ (4.32)
c i =
o (927 gt A\
pc” = (15 4h4) (3,[1(7))5 _ ’5_,21264#@}2;4+ ngcm) ‘ (4.3b)
c '

i ey
We present here the accumulajcédlma‘ss, thﬂc?-_étlemical potential, the energy density
and the pressure dist‘ributio-n_ n the degéi'lgfgﬁé star varsus the radius of the star
in Figs. 4.1 and 42-—Re}atron—between—the—t0tai—ma% '}ind the central chemical
potential of the deégnerate star is shown in Fig 4.3. ;’f{-elation between the total

mass and the energy density of the degenerate star is'shown in Fig. 4.4.

AccumulatedMass & Radius at T=0, B=0 Chemical Potential & Radius at T=0, B=0

0.8 — 3.0~
///lr/ \
250 |
0.6F g \
2:0f \
S04r / { S 15 \
/
/ 10F  \
02r N AN
/ 0.5} S
0.0l / . . . 00 B S
) 5 10 15 ~ o0 5 10 15

Figure 4.1: The accumulated mass(left) and the chemical potential(right) distri-
bution in the degenerate star at T'=0, B =0
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Energy Density & Radius at T=0, B=0 Pressure & Radius at T=0, B=0

0.8~ 0.20~
0.6r ] 0.15+
S04 §0.10f
0.2 1 0.05-
0'0010 O‘.5 110 15 2:0 0'OGO‘.O 0:5 110 15 210

Figure 4.2: The energy density(left /he pressure(right) distribution in the

degenerate star at T' =0, B ‘\';.‘\ W
las L'n& =
e I ;B‘o““
e ———

08—

0.6-

M(R)
o
e=

0.2¢

20 25

Figure 4.3: The rela,tgl between entral c@nical potential (in logarith-
mic scale) of the degenerate star at T'=(,,B = 0

o e SR AW RILANAND

e degenerate star is at r = 17.6922 where

pressu to_zerg. In iili. (le lated rows rapidly,
region, ‘gae accumulated mass increases less rapidly and becomes gradual. The
behavior of the accumulated mass is determined by the energy density and the
pressure distribution within the star. Initially, both of them, the energy density
and pressure in Fig. 4.2, decrease rapidly then they drop to zero more gradually
at larger distance. The chemical potential also behaves similarly(Fig. 4.1 (right)).
It is clear that the matter in the star becomes extremely dense in the region near

the core of the star. Figs. 4.3 and 4.4 show the maximum mass of the degenerate

star. From numerical analysis, the maximum mass is found to be 0.767302 for the
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Mass Limit at T=0, B=0

IS

0.8—

0.6-

M(R)

0.2

Figure 4.4: The relati \ nergy density (in logarithmic

central chemical poten A % or af the central energy density equal to

_0.122306' :}\QEE 2 )
o ﬁf:f. ‘

SN - 2y

4.2 Case II, finite tem

e

ature and zero mag-

netic field =~
v.-f - 5
Case 11, we include t effects of the finite temperatl.ﬂ and study changing in the
mass limit and other ies of t armg the results to the zero
temperature l'gl) gtjﬂ w ﬂlgase reduce to
ém IR Ly nh ) R
—e

F LT () + 10K3 T2 72 0(r)® — 120k3T3m2c* Lis )
me? —pu(r)

me? —p(r)
+ 360k T*mc? Liy (—e kBT > — 360k%T° Lis (—e kBT >) , (4.4a)

527
pc® = <&> (3u(r)® = 5mPc*u(r)® + 2m°c™ — SEET*m>c* r*pu(r) + ThpT m* u(r

15c¢th?
me?—u(r)

+ 10k3T?* 72 u(r)? + 30k5T*m>c’ Liy (—e FBT ) — 150k% T m>c* Lis (—e

ch— T mc2— T
+ 360k5T*mc?Liy (—e Tt )—360k%T5Li5 (—e Tt >) (4.4b)

()

)

me?—u(r)

kT

)
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We set temperature values in the simulation unit to be 0.001 and 0.002. For
T = 0.003, the energy density and pressure do not decrease to zero at finite radius
and therefore the surface of the star cannot be defined properly. We will further

investigate this case in the future work.

Mass Limit at T=0(Lower),0.001(Middle),0.002(Upper), B=0

0.6r

0.2r

0.0t
25

Figure 4.5: The relation b ) : ' \\ emical potential (in logarith-

mic scale) of the degenerate s

Ie) 0.002(Upper), B=0

0.7680F

0.7675+

M®)
3
S

n Y b |
106 108

9%

Figure 4.6: Enlargement of the relation between mass and chemical potential

In #(0)-

density (in logarithmic scale) of the degenerate star at B =0
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M‘ass‘Limit a T=O(I70wer),Q.0Q1(M iddl e),Q.OQZ(Upper), B=O

0.71 | \‘/.‘M._.

0.1r

o.o_10 ' - l \;\\;\ g
N

Figure 4.7: The relationdbevabul masssand ce \\\ nergy density (in logarithmic

('

scale) of the degenerate starat B

)2(Upper), B=0

0.7680———- E:

0.7675}

HINs
[ Angnae

0.7660

-03 -02 -01 0.0 0.1
In p(0)

Figure 4.8: Enlargement of the relation between mass and central energy density

(in logarithmic scale) of the degenerate star at B = 0
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Accumulated Mass & Radius

Accumulated Mass & Radius
0.669 ‘ ‘ ‘ ‘ ‘
0.668|
<0.667
=0.666
0.665}

0.664"~
4.80 482 484 486 488 490

r

d its enlargement in the degen-
= 0.002 (upper)

e gement in the degenerate

= 0-@2 (upper)

%mmmwmm

A7 RURL) NWI’J 188

Figure 4.10: The L’;n’:
staratho,Tzomwver —

0.20r

0.15¢

Eo-lo’ $.8x107}
0.05} 6.7x 1077}
0.00C ‘ ‘ i | | | | |
0 5 10 15 66x107 o 706 706 707 7.08

r

Figure 4.11: The pressure distribution and its enlargement in the degenerate star

at B =0, T = 0(lower), = 0.001 (middle), = 0.002 (upper)
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In Figs. 4.5 and 4.7 show that temperature increasing rarely affect the
mass limit. In addition, the maximum mass are shown in Figs. 4.6 and 4.8
which take the numerical value as 0.767451(r = 23.8829) at 7" = 0.001 and
0.767903(r = 38.5232) at T" = 0.002. This is because the small increase in the
temperature affects the Fermi-Dirac distribution very slightly. It enables almost
the particles are still in the quantum states as before, degenerate state, and very
small part of the particles obtain influence by gaining more pressure. Conse-
quently, when temperature increases, the maximum mass also grows. Temperature
increasing results in the increase of pressure and energy density as shown in Figs.
4.10(right) and 4.11(right). However the ¢hanges are quite small as are shown in
Figs. 4.10(left) and 4.11(left). Certainly, the*accumulated mass also increases in
figure 4.9. :

)
4.3 Case I zero temperature and finite mag-

netic field Nz v
(N A

Case III, we turn on the magnetlc field and study the mass limit and other prop-

erties at zero temperature By cofiipariing t‘ro“‘ohe results of Case I. The pressure and
[ .“
energy density in this case betome to : .

-.‘I—’-‘V i

< I ) (3u(r)? - 1-O.mzc4u(7’)?;+ 15m4c8/£(_) gm’c'?) (4.5a)

30cthd
9 gs2m . 9 4 3 5 10 - 4m?2 % B2
- 2
pc <15c4h4> (3M(T) S5m=c u(r)® +2m°c )‘ w(r) <—3h4

(4.5b)

Notice that the pressure of the star hascthe same form' ag the pressure in Case

I since the correction term of the magnetic field contains the temperature. But the
4m27r2u23 B2 >

energydensity becomes smaller due to the contribution'from theiterm —pu(r) ( T

We let the numerical values of the magnetic field to be 0.01 and 0.1.
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Mass Limit at T=0, B=0(Upper),0.01(Middle),0.1(Lower)
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Figure 4.13: Enlargement of the relation between mass and central chemical po-

tential (in logarithmic scale) of the degenerate star at 7= 0
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Mass Li‘mit‘at T=O, B;O(Upper),0.0l(Mjddle),Q.l(Lower) |
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Figure 4.14: The relati nergy density (in logarithmic
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Figure 4.15: Enlargement of the relation between mass and central energy density

(in logarithmic scale) of the degenerate star at 7' = 0
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Accumulated Mass & Radius Accumulated Mass & Radius
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Figure 4.16: The accumu and its enlargement in the de-

generate star at 7' = 0, = 0.11 (lower)
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Figure 4.18: The pressure distribution and its enlargement in the degenerate star

at T'=0, B = 0(upper), = 0.01 (middle), = 0.11 (lower)
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Figs. 4.12 - 4.15 show that the mass limit decreases when the magnetic field
increases with the maximum mass equal to 0.767036(r = 16.1099) at B = 0.01
and 0.751856(r = 9.92797) at B = 0.1. We can see the cause of this effect from the
equation of state in the energy density part (Eq. 4.5b), since the coupled equations
of motion between mass and the chemical potential of the star (Egs. (3.40a) and
(3.40b)) involve the energy density. Decreasing the energy density leads to the
decrease of mass and the chemical potential of the star. The decrease of the

chemical potential leads to the decrease in the pressure of the star subsequently.

Numerical analysis confirms these‘ ur as are shown in Figs. 4.16, 4.17 and

4.18.

4.4 Case IV el re and finite mag-

Case IV, we consider fi / X ire agnetic field to study the

mass limit of the star f ave the full form according

0.7690

0.7685-
0.7680r

AU NN

QNN TN ING]

0.76600

M®)

-03 -0.2 -01 0.0 0.1
In p(0)

Figure 4.19: The relation between mass and central energy density (in logarithmic

scale) of the degenerate star
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Mass Limit at T=B=0(Middle), T=0.0035 & B=0.01(Upper), T=0.0035 & B=0.1(L ower)
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Figure 4.20: The relation betweon mass and central energy density (in logarithmic

scale) of the degenerate stap T

i
|

In this case, we gee the sir-.nilar l?glr‘iaviour as in the second and the third
case, temperature increage leads. to the----increase of the mass limit whereas the
effect of the magnetic field is the ()pp&é&@_. In Fig. 4.19, although we set the
temperature T' = 0.001, the magnetic ﬁei'_é ‘B = 0.01 has more the effect on the
profile of the star. The mass limit is SIIlallEr.' than the mass limit in the case of the

zero temperature and magnetic field. Surely, when we'raise the temperature, the

mass limit also grow.;, up (the upper line in the Fig 419) In Fig. 4.20, we set the
temperature 1" = 0.0@35 and the magnetic field B = 0.01. In this case, it turns
out that the mass limit has increased with respect to the case when T'= 0, B = 0.
When we change ‘the ‘magneti¢ field ‘tol B-= 0.10, the mass"limit becomes smaller
than the zero-field zero-temperature mass limit. Namely, the influence of the

magnetic has overcome those of the temperature.

4.5 Case V, variation of the curvature radius at

zero temperature and magnetic field

We vary the curvature radius of AdS space, [, and study the changes in the profile
of the star in this section. For simplicity, we will set the temperature and the
external magnetic field to be zero. We let the curvature radius to be 1,3,5 and

7, and observe considerable changes in the mass limit of the star as are shown
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Mass Limit at T=B=0, I=1(Lower line), |=3(Dashed), |=5(Dotted), |=7(Upper line)
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in Fig. 4.21. The masg li ¢ de ate star increases evidently when we

raise the curvature radiu the “AdS: Ha Vloreover, the peak of the mass

limit curve shifts to the ~central - i ide. For [ = 3, the maximum

fkipis 4 . .
mass is 1.96473(r = 27.4029) Etne oot emical potential u = €%3%?° or the

central energy density p = ¢ =5.35018

E: he maximum mass is 2.92023(r =
33. 5921) for the central chemical potential 1 = ¢

tral chemical | p = 22 or the central energy density
p=e &ML For [ v 39 ' 38.4035) for the central

I
chemical potential . or the central energy density p = e
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Chapter V

CONCLUSIONS

increases. Then the eater due to the larger pressure.

This is the typical beha¥ion6 / ] \‘r\‘ temperature.

‘-

In the presence© ass limit decreases when the

magnetic field increasg 2qs. (4.1) and (4.2), an increase in
the magnetic field will resulf i naller ¢ oy and pressure density as well as a
smaller chemical potenti \

The radius of curvature of the AdS so affects the mass limit evidently.
When the radius of curvatur _ ass limit increases appreciably as

are shown in Fig. 4.21. Interest of the mass limit curve shifts to

the lower central demsity side

Pee——3
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Appendix A

Useful Calculation

Al Pauli

Pauli matrices are a se 0 They are

0'1:

where subscripts 1, 0,05 d 2, re ively. Properties of Pauli

matrices are firstly,
=1, (A.2a)

(A.2b)
(A.2¢)
3. (A.2d)

. \ij‘f tation and commutation

Secondly,
y

relations
‘e {0/,0;} = 39 I5yo, (A.3a)

AU VI WRNT (A3

Thlrdly, Pauli %ctor is defined by‘g =01Z+0 —l— 03%. COHSl er d = a T + asy +

T@W%Nﬂ‘im M’]'WIEI']Q d

= Z Q0 — +as @ ZCLQ) (A4)

a; + ZCLz —as

and we have a very important identity

-a)(7-0) = (Z o—jaj> (Z akbk> ZZ <%{oj,ak} - %[amd) a;by,
_ Z > (i
- (a-b>—|—w~(axb). (A.5)
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A.2 Hermite function

When we have the differential equation in the form
VI () + (2n+1—2%) ¢, (z) = 0. (A.6)

Solution of this equation is a Hermite function

(A7)

(A.8)

¥
AU INENTNYINS
RN TUUMINYAE
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Appendix B

Table and Codes

B.1

. physical variable

neutron etc.) and mﬁ 10

ﬂ‘UEJ’JVIEJVIiWEJ’]ﬂ?
ammmmumqwmaa
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B.2 Mathematica Codes

We present the principal mathematica codes for simulation. Our codes presented
here consider the case for zero temperature and magnetic field and the curvature
radius of AdS space [ = 1. For other cases, we can adjust the parameters to match

the case of our interest. There are three main codes.

1. Mathematica code for finding the mass limit of the star.

2R
For [j =0, j <36, j ++, {Qear;, G=1(x6.6 ! and G=@ (el_-l) ~d,
di us of AdSsx);,
. 3806503x1072%4); ,

[ ‘-je62364*10‘24*); ,

the distance Ris the radion,
Cc = 1(%x299792458%);, h =2 % Pi
uB = 1(xfor electron 9.274

V3=2*Pi2;, | =1.;, C4=

=.1(xfor electron 9.1093 ‘ . 67492729%107%74); ,

1. 6749272910727
(( 6 9m9*0 )(2

o0 =
(299792 458)4 (

o (299792458)*
r =

(6.67428 + 10°™) (o0

2 n?

Plr_1:=
30c4ht

T2t m® ulr] + 7k T4 % ur] +

me2-p(r]

10K2T2 72 (u[r])®-120 kSIgr'- _ +360 k* T* mc? Pol yLog[4, e | -

AP ulr] +7kA T A% ur] +

me2-utr] me2-uir]

TOKE T (WD) 30 K" T2 f o Pol yLog[2, -e™T ] 150K T nif o Pol yLog[3, ~e 7] +

o PG TR =5
qenai T

Mathematica code for simulation of the mass limit of the star Part 1
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solution =
NDSolve [{

2
O Mr]=—*«Vaxrdxplri,
3

é QM[r1+ﬁ -
GG (oIr1+PIr1)

}. MaxSteps - 1000000000 |;

O pufr] =ulr]

M[107%?] =0, u[10

RO = Last [Last [Fde i3 ala i - uBB =0, {1 }]]]

R1 = Last [Last [FindRoo ion . } N

R2 = Last [Last [FindR /.. solut - vl 31115

R = Last [Last [FindRoot % TN

Print [Ro, " " RL" 1 /.soluton 7, "
First [Log [u[107?]] /.8 0-*?]] /. solution ~ ]," ",

(80) (r0)*

(299792 458 )2

*, f’-‘l
First [M[R] /. solution ] @R.

(2;‘;07)92?5&)3‘1)2 First R} 250 {-* r ]
F ] irst f[Log [1[107*2]] /. solution  ];,
O -

plj 1 =First [Log[p ‘&"}':n'* "J solution  1; }]

Table[{u[j 1, M1} ¢, 0, 36 "
Li st Pl ot [Tabl e[ {ulj 1, }, {j, 0, 36}], PlotRange » {{-1. .6}, {0, .8}3,

Frame » True, FranelLabel - Tr adi tional Form/e {"In p(0)", "M(R)"},

First [M[R] /. solution 1,

BaseStyl e » {Font Fanmily - s", Font Si ze-»ﬂ Pl ot Label -»"Mass Limt at T=0, B=0"
Mesh  Ful | ﬁ%ﬂ(ﬂrﬂ E)JW‘E W%}q‘ﬂtfi 2, T=10720, B=0, m=. L4)
Tabl e[{o[] I,

Li st Pl ot [Table[{ , M[j 1}, (., O, 36}] Pl ot Range -» {{-10.5, 7.8}, {0, 8}}

Frame » True, Fr amaLabeI - Traditi onal orm/e {"ln p @), "MR)"},

R TR TS HEagy L.

Mathematlca code for simulation of the mass limit of the star Part 2
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2. Mathematica code for finding the relation between the mass, chemical

potential and energy density and radius of the star.

Cd ear;
2R
G=1(%6.67428+%107*! and G=d (eT-l)zG, the distance R is the radion,

| is a curvature radius of AdSs#); C = 1(%299792458x); h = 2 » Pi (%6. 626068%107>*x); k = 1
(#1.3806503%1072%x); B = 1(«for el ectron 9.27400915+1072* and for neutron -9. 662364%1072%x);
_ 16 * Pi * G« |
Va=2x%Pi% 1 =1, CG=s—m— m=.1
3% V3
(+for electron 9.10938188+1073! and for neutron 1.67492729x1072");

((1. 67492;29*10-27 ) (299792 458)2)5 .

¥

o0 =

(299792458) ¢ (22200e10

o [ (299792 458)*

(6. 67428 +107'1) (00)

Plr_]1:=
2 72

C

*\! T2rfctm® pu[r] +7k*Tn* ulr] +

me2-ufr]

.- T4 mc2 PonLog[4 e T ]_

10k2 T2 7% (u[r1)s -

360 k® T5 Pol yLog [5,

p[r_]:=—27r2[3( A ur] +7kA T % upr] +
15¢c4 h*
me2-ufr \ me?-u(r]
10K2 T2 72 (u[r1)® +30 T A1 k3T3m?c4PonLog[3 -e 7T ]+
02l ws s me2-u(r]
360 k* T mc2 PolyLog[4 —e og[5, -e ¥ ]J+
e
2 %2 n? 72 (#B)Z B2 < oz O — uir 1-me?

Ty s el

Mathematica code for l‘slmulatlon of the mass chemical potential, pressure and

AU EI“”JgWETW?W iR Ifp)
a‘mmmm UA1AINYAY
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$RecursionLimit = Infinity;
solution =

NDSolve [{

2
O Mr]=—*Vaxrdxp[ri,
3

LG =176 i)t
O ulr] = ulr]

R = Last [Last [FindRoot [{
Print [RO, " ", R1," ", R2,"
First [u[R] /. solution 7],"

First [Log [p[107*2]] /. solution "m0 xR,

(60) (10)* First [M[R] /. sol - ; 3 ‘ AR

(299792458 )2 1.98892 « 10%°
Plot [{M[r] /. solution '}, {r,0,R 1}, ge .
PlotLabel - "Accumulated Mass & i
Frame - True, FrameLabi
BaseStyle - {FontFamily

Plot [{u[r] /. solution V.

PlotLabel - "Chemical Potential & —
Frame - True, FrameLabel TraditionalFo " u(r)"y, m
BaseStyle - {FontFamlIy - "Times", FontSize - 161}]

Plot [{p[r] /.solution 1}, {r, ‘h} PlotRange -»{ },
PlotLabel - "En nsi
Frame - True, Fral %Hrz@l ﬁrﬁ] j w EJ ’] ﬂ i
BaseStyle - {Fo - 16

Plot [{P[r] /. soluti }, {0, 2 , PlotR - {0,0.2 },

o WEFARTH R IR g e -

Mathematica code for simulation of the mass, chemical potential, pressure and

energy density distributions Part 2
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3. Mathematica code for comparing the mass, chemical potential, pressure

and energy density distributions when some parameter values are changed.

2R
For[i =0.j s2,j ++ {Clear,G = 1(+6.67428 10" and Gs=Gl (el_-l] ~Gl,

the distance R is the radion, | is a curvature radius of AdS 5%);,
C = 1(%299792458 x);, h =2 % Pi (x6.626068 *107%*x);, k = 1(%1.3806503 *102%x);,
uB = 1 (xfor electron 9.27400915 %*1072* and for neutron -9.662364 *107%x):,

- 16 * Pi G« | 1
Vz=2%Pi%, 1 =1;C 4= — ;X = —;,
3%V 2

m=.1 (+for electron 9.10938188 %1073 and for neutron 1.67492729 %1072 %) ;,

((1.674927?: *10-27) (299792458 )2)5
o0 = .

- 4
(299792458 )¢ (R0 > )

0 (299792458 )*
n =
(6.67428 +107')

3+15wm_10k2ﬁm?c4n2 ulr] +
W

m-ulr]
TKAT 7% ppr] + ) 1 ::s'u»

KT +360k4T4mcz

- . \ ulri-me&

PolyLog [4, -e f h 7 ¢4 (uB)? B? Log[1+e o ]]
2 4 | )
plr_]:i= — 25 4 et o) R K A ur] + 7k T At ] +
15¢c* h* J = \

m&-ulr]

10k2 T2 n2 0k T3 n? ¢ PolyLog [3 —e T ]+
360k* T4 m¢

ulf] ]]
ulrj-mé

242n¢ n? (uB)? B? ]+kTLog[1+e o |8

3h*

$RecursionLimit
solution =

NDSolve [{

O M[r] ==

2412 12

o ulr --u[rl” e - (oIr1+PIr])

oL WE%‘I?WET‘]TTT"""]

Mathematica code for 51mulat10n of comparing the mass, chemical potential,

awmmﬁmﬁa*ﬁ erid
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RO = Last [Last [Fi ndRoot [{u[r] /. solutio

2)2+2mc2uBB =0, {r, 1.)]]];,

1115,
r, LML,

Rl = Last [Last [Fi ndRoot [{p[r] /. S
R2 = Last [Last [Fi ndRoot [{ (o[
R = Last [Last [Fi ndRoot [{P[r
Print [Plot [{M[r] /. soluti
Pl ot Label - "Accunul at ed
Tradi tional Form/e
Print [Plot [{u[r] /. solutj
Pl ot Label - " Chenic i adi Us : aneLabel -
Traditional Form/e {" 2 : "Ti mes", FontSize - 16}]1];,
Print [Plot [{p[r] /. S
Pl ot Label - "Energy De
Tradi ti onal Form/e
Print [Plot [{P[r] /. soluti
"Pressure & Radi us",
BaseStyl e » {Font Fa
M[j 1 =Plot [{M[r] /. soluti
ulj1 =Plot [{u[r] /. solutis
p[j1=Plot[{p[r] /. sol uti on
AxesLabel - {"r", "p"}, Pl i
P[j]1 =Plot [{P[r] / sol uti on}, (r

}.
e, FraneLabel -
- "Times", FontSize - 16}11;,

"Ti mes", FontSize - 16}]11];,
Pl ot Label -
al Form/e {"r", "P(r)"},

8}, AxesLabel -» {"r", "M'}],
, AxeslLabel -» {"r", "u"}],
. 8},

0.2},

Show[M[0], M[1], M[Z]’L[%t Label -»"Accunul ated | ame - True,
FrameLabel - Tr ad|t| onalFEoLm/ie M

Frame -» True, FraneLabel I Tradi ti ona
BaseStyl e » {FontFanmily - "Ti mes", FontSize » 16}]
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