การตรวจสอบการดูดซับและสภาพเลือกจำเพาะของคาร์บอนไดออกไซด์บนซีโอไลติกอิมิดาโซเลต เฟรมเวิร์ก-78 โดยการจำลองพลวัตเชิงโมเลกุล

นางสาวสุนทรีย์ พวงจำปี

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

สาขาวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2554

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR) are the thesis authors' files submitted through the Graduate School.

INVESTIGATING ADSORPTION AND SELECTIVITY OF CO_2 ON ZEOLITIC IMIDAZOLATE FRAMEWORK-78 USING MOLECULAR DYNAMIC SIMULATION

Ms. Suntharee Phuangjumpee

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Petrochemistry and Polymer Science

Faculty of Science

Chulalongkorn University

Academic Year 2011

Copyright of Chulalongkorn University

Thesis Title	INVESTIGATING ADSORPTION AND SELECTIVITY OF CO_2			
	ON ZEOLITIC IMIDAZOLATE FRAMEWORK-78 USING			
	MOLECULAR DYNAMIC SIMULATION			
Ву	Ms. Suntharee Phuangjumpee			
Field of Study	Petrochemistry and Polymer Science			
Thesis Advisor	Professor Supot Hannongbua, Dr.rer.nat.			
Thesis Co-advisor	Oraphan Saengsawang, Dr.rer.nat.			
Ac	ccepted by the Faculty of Science, Chulalongkorn University in Partial			
Fulfillment of the R	equirements for the Master's Degree			
Saiamaa	Dean of the Faculty of			
Science	(Professor Supot Hannongbua, Dr.rer.nat.)			
THESIS COMMIT	TEE			
	Chairman			
	(Professor Pattarapan Prasassrakich, Ph. D.)			
	Thesis Advisor			
	(Professor Supot Hannongbua, Dr.rer.nat.)			
	Thesis Co-advisor (Oraphan Saengsawang, Dr.rer.nat.)			
	Examiner (Assistant Professor Somsak Pianwanit, Ph.D.)			
	(Arthorn Loisruangsin, Ph.D.)			

สุนทรีย์ พวงจำปี : การตรวจสอบการดูดซับและสภาพเลือกจำเพาะของคาร์บอนได ออกไซด์บนซีโอไลติกอิมิดาโซเลตเฟรมเวิร์ก-78 โดยการจำลองพลวัตเชิงโมเลกุล. (INVESTIGATING ADSORPTION AND SELECTIVITY OF CO₂ ON ZEOLITIC IMIDAZOLATE FRAMEWORK-78 USING MOLECULAR DYNAMIC SIMULATION) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : ศ.คร. สุพจน์ หารหนองบัว, อ. ที่ปรึกษาวิทยานิพนธ์ร่วม : คร. อรพรรณ แสงสว่าง, 55 หน้า.

การแยก แก๊ส คาร์บอนไดออกไซด์ออกจาก แก๊ส ธรรมชาติซึ่งมี แก๊ส มีเทนเป็น องค์ประกอบหลัก เป็นกระบวนการที่สำคัญในอุตสาหกรรมปิโตเคมี โดย ZIF-78 ถือเป็นวัสดุ หนึ่งที่ได้รับความสนใจในการนำมาใช้เพื่อการแยกคาร์บอนไดออกไซด์ออกจาก แก๊สผสม โดย งานวิจัยนี้จะศึกษาพฤติกรรมของการดูดซับจำเพาะและการแพร่จำเพาะใน ระดับโมเลกุลของ แก๊สผสมระหว่างคาร์บอนไดออกไซด์ และมีเทนด้วย ZIF-78 โดยใช้ระเบียบวิธีแกรน ด์ คาโนนิ คอล มอนติคาร์โล และการจำลองพลวัตเชิงโมเลกุล ผลจาก RDF พบว่าแก๊ส คาร์บอน ออกไซด์ถูกดูดซับที่อะตอม ออกซิเจนของหมู่ไนโต ร (-NO₂) ของ ZIF-78 และแก๊สมีเทนถูกพบ มากที่สุดที่บริเวณอะตอมไฮโดรเจน ของตัวเชื่อมต่อไนโตรอิมิดาโซเลต (nlm) ส่วนค่าการแพร่ ของแก๊สคาร์บอนไดออกไซด์นั้นไม่ขึ้นอยู่กับความเข้มข้นในขณะที่ค่าการแพร่ของแก๊สมีเทน ขึ้นอยู่กับความเข้มข้น และพบว่าค่าการดูดซับจำเพาะ (8.08) มีค่ามากกว่าค่าการแพร่ จำเพาะ (~0.3) อย่างเห็นได้ชัด ซึ่งแสดงให้เห็นว่าการดูดซับจำเพาะมีบทบาทสำคัญมากกว่า การเลือกผ่านของเมมเบร น ดังนั้นการใช้ ZIF-78 สำหรับการแยกในรูปแบบสมดุลดีกว่าการ แยกแบบเมมเบรน

สาขาวิชา<u>ปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์</u> ลายมือชื่อ ปีการศึกษา.......2554......ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก....... ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

5272591023 : PETROCHEMISTRY AND POLYMER SCIENCE KEYWORDS : ZIF-78 / SIMULATION / ADSORPTION / DIFFUSION / SELECTIVITY SUNTHAREE PHUANGJUMPEE : INVESTIGATING ADSORPTION AND SELECTIVITY OF CO₂ ON ZEOLITIC IMIDAZOLATE FRAMEWORK-78 USING MOLECULAR DYNAMIC SIMULATION. ADVISOR : PROF. SUPOT HANNONGBUA, Dr.rer.nat., CO-ADVISOR : ORAPHAN SAENGSAWANG, Dr.rer.nat., 55 pp.

The removal of CO₂ from natural gas that mainly contributed by CH₄ is most important elementary step in up-steam petroleum industry. ZIF-78 is a promising material for the separation of CO₂ from a gas mixture. In this work, the molecular behavior of CO₂ and CH₄ in ZIF-78 as well as the adsorption selectivity and diffusion selectivity of CO₂ in CO₂/CH₄ mixtures were investigated using Grand Canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulations. The RDF results show that the CO₂ is strongly adsorbed at O atoms of the $-NO_2$ group of ZIF-78 whereas the CH₄ is mostly observed at H atoms of the nitroimidazolate linker of ZIF-78, respectively. The self diffusivity of CO₂ does not depend on the concentration but it is the case for CH₄. From both kinds of selectivity, the significantly higher of adsorption selectivity (8.08) than diffusion selectivity (~0.3) indicates the main contribution of adsorption selectivity in membrane permeability. It demonstrates that using ZIF-78 in equilibrium-based separation will be more efficient than using them in membrane-based separation applications.

Field of Study : Petrochemi	stry and Polymer Science	Student's Signature
Academic Year :	2011	Advisor's Signature
		Co-advisor's Signature

ACKNOWLEDGEMENTS

This work would not be possible without person who support and encourage. I would like to express my appreciation to all these who gave me the possibility to complete this thesis.

Firstly, I would like to thanks my family for all their support. Especially, my father who supports me throughout. Furthermore, I would like to gratefully thanks my advisor Prof. Dr. Supot Hannongbua and co-advisor Dr. Oraphan Saengsawang for all advices and helps. I also would like to thanks Prof. Dr. Siegfried Fritzsche, Dr. Rungroj Chanajaree and Assoc. Prof. Dr. Vudhichai Parasuk for several nice suggestions, discussion.

I would like to thanks Prof. Dr. Pattarapan Prasassrakich, Asst. Prof. Dr. Somsak Pianwanit and Dr. Arthorn Loisruangsin who act as the thesis committee.

Finally, I would like to acknowledge the Thailand Research Fund (TRF:RTA 4980006), the Deutsche Forschungsgemeinschaft (Schwerpunktprogramm SPP 1392), the National Research University Project of CHE and the Ratchadaphiseksomphot Endowment Fund (AM1078I) for the financial support and also the Asian Development Bank (ADB) scholarship, Petrochemical and Polymer science, Chulalongkorn University for all support. The Computational Chemistry Unit Cell (CCUC) at Department of Chemistry, Faculty of science, Chulalongkorn University is acknowledged for all computer resource and other facilities.

CONTENTS

ABS	ГRAC	CT IN THAI	iv
ABS	ГRAC	CT IN ENGLISH	v
ACK	NOW	LEDGEMENTS	vi
CON	TEN	ГЅ	vii
LIST	OF	TABLES	X
LIST	OF I	FIGURES	xi
LIST	OF A	ABBREVIATIONS	xiii
СНА	PTEI	R I INTRODUCTION	1
	1.1	Motivation	1
	1.2	Separation of CO_2 from CO_2 and CH_4 mixtures	2
	1.3	Zeolitic imidazolate frameworks (ZIFs)	2
		1.3.1 Application	3
		1.3.2 Zeolitic imidazolate frameworks-78 (ZIF-78)	4
		1.3.3 Properties of Zeolitic imidazolate frameworks-78 (ZIF-78)	5
	1.4	Literature review	5
	1.5	Scope of this study	7
СНА	PTEI	R II THEORETICAL BACKGROUND	8
	2.1	Grand canonical Monte Carlo simulations	8

Page

2.2	Molecular dynamics simulations			
2.3	Comparing GCMC and MD simulations			
2.4	Molecular simulation techniques			
	2.4.1	Periodic boundary conditions	14	
	2.4.2	Lennard-Jones and Coulomb pair potential		
	2.4.3	Long-ranged interactions	17	
	2.4.4	Radial distribution functions	17	
	2.4.5	2.4.5 Self-diffusion coefficient		

	3.1	ZIF-78 structure preparation		
	3.2	Force field parameterization		
	3.3	Molec	ular dynamic simulation	23
	3.4	Evaluation		
		3.4.1	Radial distribution functions	24
		3.4.2	Probability density in z direction	25
		3.4.3	Self-diffusion coefficient	26
		3.4.4	Adsorption selectivity	27
		3.4.5	Diffusion selectivity	27
		3.4.6	Membrane selectivity	27
		3.4.7	Knudsen selectivity	28
CH	APTE	R IV R	ESULTS AND DISCUSSION	29
	4.1	Valida	tion of guest-host interaction parameter	29

4.	2 Structure of CO_2 and CH_4 in ZIF-78 lattice	30	
	4.2.1 Radial distribution functions, RDFs	30	
	4.2.2 Probability density	33	
4.	3 Self diffusion	35	
4.	4 Adsorption selectivity	37	
4.	5 Diffusion selectivity	38	
4.	6 Membrane permeability	39	
CHAPTER V CONCLUSIONS 40			
KEFERENCES			
APPENDICES			
А	PPENDIX A: Module used in Material Studio Program for this thesis	46	
CURR	ICULUM VITAE	55	

LIST OF TABLES

Table Particular

1.1	Compositions of natural gas found in Thailand	2
1.2	Properties of ZIF-78	5
2.1	The difference between GCMD and MD simulation	14
3.1	Lennard-Jones potential parameters for adsorbate-adsorbate and adsorbate-ZIF	
	interactions	21
3.2	The intermolecular interactions obtained from the Lorentz-Berthelot mixing rules	22
4.1	The calculated diffusion selectivity of $\rm CO_2$ in $\rm CO_2/CH_4$ mixture at different ratios	38

LIST OF FIGURES

Figure

1.1	The bridge of metal by imidasolate where IM denotes imidasolate ring	3
1.2	Crystal structures of ZIF-78	4
2.1	Step of calculation of adsorption isotherm in GCMC simulations	10
2.2	All type of potential (U)	12
2.3	Step of calculation in MD simulations	13
2.4	The periodic boundary condition	15
2.5	Lennard-Jones function	16
2.6	The volume of annular $\Delta V(r)$	
3.1	Crystal structures of the ZIF-78 used in the simulations (a) $1 \times 1 \times 1$ unit cells and	
	(b) 2×2×2 unit cells	19
3.2	Atomic partial charges of (a) ZIF-78 (b) CO_2 and (c) CH_4	20
3.3	Adsorption isotherm from the experiment	23
3.4	Part of ZIF-78 structure and the atomic label	24
3.5	The ZIF-78 in each axis	25
3.6	An example of mean square displacement	26
4.1	The calculated adsorption isotherm at 298 K for $\rm CO_2$ and $\rm CH_4$ in comparison to	
	that obtained experimentally	29
4.2	Two types of linker, <i>i.e.</i> , nitroimidazolate (Type I) and nitrobenzimidazolate	
	(Type II) coordinated to Zn ion are shown. The atomic labels are also given	30
4.3	RDFs from ZIF-78 to atoms of CO ₂ , i_ZIF $c - j_CO_2$ where i are the atoms of	
	ZIF-78 (see Figure 4.2 for label) and j represents the atoms of CO_2	31
4.4	RDFs from ZIF-78 to atoms of CH ₄ , i_ZIF $c - j_CH_4$, where i are the atoms of	
	ZIF-78 (see Figure 4.2 for label) and j represents the atoms of CH_4	32
4.5	Schematic of the adsorption sites of (a) CO_2 (yellow) and (b) CH_4 (green) in	
	ZIF-78	33

Figure

4.6	The snapshot of (a) 10 molecules of CO_2 and (b) 5 molecules of CH_4 in ZIF-78,	
	as well as probabilities density in z-direction of (c) 10 molecules of C atom of	
	CO_2 , (d) 5 molecules of C atom of CH_4 , (e) 10 molecules of O atom of CO_2 , (f)	
	5 molecules of H atom of $CH_{4^{+}}$ Here, the dash line show the edges of lattice	
	channel	34
4.7	The probability density in z-direction for (a) C atom of CO_2 and (b) C atom of	
	CH ₄ for various concentrations	35
4.8	The calculated MSD with loading dependence of (a) $\rm CO_2$ and (b) $\rm CH_4$ in	
	ZIF-78	35
4.9	The self diffusivity with loading dependence of (a) CO_2 and (b) CH_4 in	
	ZIF-78	36
4.10	(a) Adsorption isotherm of CO_2 and CH_4 calculated from GCMC simulation of	
	equimolar mixture at 298 K, as well as, (b) the corresponding adsorption	
	selectivity calculated from Eq. (3.7) at different pressure	37
4.11	Adsorption selectivity, diffusion selectivity, and membrane permeability of	
	ZIF-78 for CO ₂ /CH ₄	39

LIST OF ABBREVIATIONS

ZIFs	=	Zeolitic imidazolate frameworks
ZIF-78	=	Zeolitic imidazolate framework-78
MOF	=	Metal organic framework
Im	=	Imidazolate
nIm	=	2- nitroimidazolate
nbIm	=	5- nitrobenzimidazolate
LJ	=	Lennard-Jones
GCMC	=	Grand canonical monte carlo
MD	=	Molecular dynamic
PW91	=	Perdew Wang 91
DND	=	Double numerical basis set plus d function
GGA	=	Generalized gradient approximations
DFT	=	Density functional theory
ESP	=	Electro static potential fitting
Å	=	Angstrom
Κ	=	Kelvin
kPa	=	kiloPascal
ns	=	nanosecond
fs	=	femtosecond
RDF	=	Radial distribution function
MSD	=	Mean square displacement

CHAPTER I

INTRODUCTION

1.6 Motivation

Adsorption is one of the methods that are commonly used to separate mixtures or contaminations in raw materials. Even a small amount of the contamination was found to disturb the processes, damage the devices or, reduce the quality of products, *e.g.*, in the natural gas industry, which contains a high percentage of CH_4 , the CO_2 must be separated, otherwise it can cause pipe corrosion.

To date, there are many materials used to separate CO_2 from gas mixtures, *e.g.*, poly membrane, zeolites, metal organic frameworks (MOFs) and zeolitic imidazolate frameworks (ZIFs). ZIFs have high thermal, chemical stability and also a large variety of ZIF structures. Thus, ZIFs are a new promising candidate for this application [1-3]. Banerjee *et al.* [4] studied physical properties that control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. The results showed that ZIF-78 is the most effective CO_2 adsorbent and shows the highest selectivity for CO_2 from binary mixtures that include CH_4 , N_2 , and O_2 . Phan *et al.* [5] collect the data of synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. They also found that ZIF-78 is the material that shows highest CO_2 capture and has the highest selectivity for the CO_2 separation from binary mixtures.

Although, experimental data have already shown that ZIF-78 is one of the best material for adsorption and separation applications. However, understanding of adsorption and diffusion of CH_4 and CO_2 in micro- or nano-porous materials at molecule level is also very important. This, then, becomes the rational good of their study. Here, adsorption and diffusion of CO_2 and CH_4 in ZIF-78 were investigated using GCMC and MD simulations.

1.7 Separation of CO_2 from CO_2 and CH_4 mixtures

Gas type	Texas Pacific	Bongkoch
Methane	58.39	65.71
Ethane	4.98	5.03
Propane	2.45	2.48
Butanes	1.02	1.2
C_5 and higher	0.37	0.7
N_2	0.78	0.91
CO_2	32	23.97

Table 1.1 Compositions of natural gas found in Thailand [6].

As seen in Table 1.1, natural gas contains a high percentage of CH_4 as well as CO_2 . Moreover, in case of cryogenic processes at reduced temperature and increased pressure, CO_2 becomes solid which, then, reduces the heating efficiency and also takes up volume in the pipeline. These effects lead to very high maintenance cost per year. In addition separation of CO_2 from landfills gas which arises from fermentation helps also to reduce the greenhouse effect. This CH_4 recovering process also helps to reduce the use of fossil fuels [7].

1.8 Zeolitic imidazolate frameworks (ZIFs)

ZIFs are porous material, a novel subfamily of metal organic frameworks (MOFs). They are composed of a tetrahedral cluster of MN_4 units (M = Zn, Cu, Co, etc.) covalently joined by bridging simple imidazolate (Im) and its derivative ligands (see Figure 1.1).

Figure 1.1 The bridge of metal by imidazolate [8] where IM denotes imidazolate ring.

The properties of ZIFs with a remarkably low density, potentially large surface area and many sites available for gas adsorption as well as chemical and thermal stability are considered as great candidates for gas storage and gas separation applications.

1.3.1 Applications

1.3.1.1 Catalysis

The porous material becomes a promising targets as catalyst in petrochemical industry because it has a high surface area, *e.g.*, zeolite used as catalyst in olefin polymerization industrial. For ZIFs, ZIF-8 is the most promising one. It was synthesized and used as an efficient heterogeneous catalyst for the Knoevenagel reaction [9].

1.3.1.2 Gas Storage

This is a consequence of its large surface area, chemical and thermal stability and many sites available for gas adsorption. For example, ZIF-8 and ZIF-11 [3, 10-13] were used to storage H_2 . In addition, ZIFs was very interesting for storage of CO₂. Yaghi and his team synthesized 25 ZIFs crystal structures, three of which showed a particular affinity for capturing carbon dioxide (ZIF-68, ZIF-69, ZIF-70). They found that one litre of the crystals could store ~ 83 litres of CO₂ [14].

1.3.1.3 Gas separation

ZIF membranes can be used for the separation of gases, *e.g.*, ZIF-8 membrane is one which has high CO_2 permeability for equimolar mixtures of CO_2/CH_4 and also shows high H_2/CH_4 selectivity [15-17]. On the other hand, the selectivity studies of ZIF-68, -69, -70, -78, -79, -80, - 81and -82 found that ZIF-78 has the highest selectivity for CO_2 from binary mixtures [4].

1.3.2 Zeolitic imidazolate frameworks-78 (ZIF-78)

ZIF-78 has a GME (gmelinite) topology with Zn linked by mixed imidazolate linker, which is 2- nitroimidazolate (nIm) and 5- nitrobenzimidazolate (nbIm) (Figure 1.2).

Figure 1.2 Crystal structures of ZIF-78 [4].

1.3.3 Properties of zeolitic imidazolate frameworks-78 (ZIF-78)

Material	ZIF-78
Unit cell $(\text{\AA})^a$	a = 26.1174,
	b = 26.1174,
	c = 19.4910
Cell angel (deg) ^{<i>a</i>}	$\alpha = 90$
	$\beta = 90$
	γ =129
Zeolite topology ^{b}	gmelinite (GME)
Volume $(\text{\AA}^3)^b$	11,514
Density $(g/cm^3)^a$	1.198
Surface area $(m^2/g)^b$	620
Pore Diameters(Å) ^{b}	7.1
Pore Apertures(Å) ^{b}	3.8

Table 1.2 Properties of ZIF-78.

^{*a*} from XRD crystal data [4], ^{*b*} from ref [5].

The polar functional group in ZIF-78 makes it possible for polar gas adsorption. Another advantage of ZIF-78 are thermal stability (~ 390 °C) and chemical stability (boiling benzene, methanol and water for 7 days). [4]

1.9 Literature review

In 2009, Banerjee *et.al* [4] studied the factors that control the pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. The results show that ZIF-78 is the most effective CO_2 adsorbent and has the highest selectivity for CO_2 from binary mixtures that include CH_4 , N_2 , and O_2 . Their experiments have also indicated that CO_2 uptake capacity was influenced primarily by functionality effects rather than pore metrics.

In 2009, Liu *et al* [18] studied adsorption and diffusion behavior of CO_2 in ZIF-68 and ZIF-69 using GCMC and MD simulations. The calculation results indicated that the small pores formed by the nIm linkers in ZIF-68 and ZIF-69 were the preferential sites for CO_2 adsorption at low pressure. This work demonstrates that the chlorine atoms in 5-chlorobenzimidazolate (cbIm) linkers in ZIF-69 lead to enhanced adsorption of CO_2 .

In 2009, Andrew *et al* [19] studied the nature of guest binding sites and selectivity in the ZIF-68 and ZIF-69 by GCMC and MD simulations. The results found that the CO_2 molecules associate strongly with the benzene rings of benzimidazolate anion and the binding energies of CO guests in the lattice are much smaller than those of CO_2 . They also found that the size of the guest and aperture size in lattice affect the diffusion rates considerably.

In 2009, Rankin *et al* [20] studied the adsorption and diffusion of light gases in ZIF-68 and ZIF-70 using geometries obtained from density functional theory (DFT) optimization. The framework charges obtained from Bader charge decomposition (periodic DFT calculations) and ChelpG charges (cluster DFT calculations). The results found that the N₂ adsorption isotherms in ZIF-68 and ZIF-70 are well agreement with experiment when charge-quadrupole interaction (CQI) terms are included. In contrast, the simulations over predict the amount of CO₂ adsorbed at 298 K compared with experiments.

In 2010, Phan *et al* [5] collect the data of synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. They found that ZIF-78 is material that shows the highest for CO_2 capture and has the highest selectivity for CO_2 from binary mixtures.

In 2010, Hou *et al* [21] calculated uptake and selectivity of CO_2 in ZIF-68 and ZIF-69. Calculation results indicate that the strong Lewis acid–base interaction exists between the gas molecules and nitro groups of nIm linkers and the stacking of gas molecules in the small pores thus preventing the further entry of gas molecules. The large pores of ZIFs are the key to controlling adsorption ability of ZIFs because O atoms of CO_2 can interact with the H atoms of the phenyl rings in large pores. The presence of electron withdrawing groups in the phenylimidazole linker of ZIF increases the interaction between the O atoms of CO_2 and H atoms of the phenyl rings in its large pore.

In 2010, Smit *et al* [22] studied the separation of CO_2/N_2 , CO_2/CH_4 , and CH_4/N_2 by ZIF-68 and ZIF-69 using GCMC simulation. The results show that ZIF-69 is more beneficial for separating CO_2 than ZIF-68, due to the presence of chlorine atoms in cbIm linkers. The overall separation performances of these two ZIFs for separating the chosen mixtures are comparable to typical MOFs and zeolites.

In 2011, Keskin [23] studied atomic simulation for adsorption, diffusion and separation of CH_4/H_2 , CO_2/CH_4 and CO_2/H_2 in ZIF-3 and ZIF-10. The results suggest that using ZIF-3 and ZIF-10 in equilibrium-based separation processes will be more efficient than using them in membrane-based separation applications because the adsorption selectivity is higher than the permeation selectivity for all cases. And the results also found that the separation performances of ZIFs are comparable to other MOFs.

1.10 Scope of this study

1.5.1 GCMC simulations were used to calculate the adsorption isotherm, which is used to validate the parameterization, and also used to calculate the adsorption selectivity.

1.5.2 MD simulations were used to study the radial distribution function (RDF), the probability to find number of guest molecule in z direction, the self-diffusion coefficient and the diffusion selectivity, where:

1.5.2.1 The ratio that is used to calculate the membrane permeability, which is calculated from the diffusion selectivity and the adsorption selectivity, is 1:1 at 298 K 101.3 kPa. 1.5.4 Loadings of the guest molecule in MD simulations at 298 K are 10, 80, 150, 220 molecules for CO_2 and 5, 25, 45, 65 molecules for CH_4 .

CHAPTER II

THEORETICAL BACKGROUND

Computer simulations aim to understand the structural and dynamical properties of assemblies of molecules based on their microscopic interactions. Simulations are mainly used in comparison with experiments, and can also be used to test the theoretical developments based on the same model. The simulation can be performed at extreme temperatures or pressures, which are difficult or impossible to achieve in a laboratory. The details of molecular motions, which are invisible for the experiment, can be obtained from the simulations [24]. In this work, the Grand canonical Monte Carlo simulations were carried out to obtain the adsorption isotherms of the guest molecules in ZIF-78, in order to validate the force field parameter and obtain the adsorption selectivity. Then, the validated force field parameters were used for the molecular dynamics simulations to obtain the dynamical properties of guest molecules in ZIF-78 e.g. the self-diffusion coefficient, the diffusion selectivity, etc.

2.1 Grand canonical Monte Carlo simulations

The adsorption isotherm explains the number of guest molecules inside the porous materials as a function of pressure at the given temperature. It can be obtained from the Monte Carlo (MC) simulations [25] with the Grand canonical ensemble [26]. In this ensemble, the chemical potential μ , the volume V, and the temperature T are constant, whereas, the number of particles N can fluctuate during the simulations. This is achieved by means of trial insertion and deletion of molecules. The procedure is set up with equal probability for the process of guest molecule displacement, insertion, and deletion. A trial particle is first randomly chosen whether an insertion or deletion is attempted. If insertion is chosen, a particle is placed with uniform probability density inside the system. If deletion is chosen, one particle out of N particles is randomly deleted. Then, the trial move is then accepted or rejected according to the usual MC procedure. The acceptance criterion of a displacement from an initial configuration (v_1) to a generated configuration by MC move (v_2) is

$$w_{\tau \to \tau'} = \min\{1, \exp\left(-\frac{\Delta E}{kT}\right)\}$$
(2.1)

where ΔE is the differential of total potential energy of the system.

The acceptance probability for insertion is

$$w_{N \to N+1} = \min\{1, \frac{PV}{(N+1)kT} \exp\left(-\frac{\Delta E}{kT}\right)\}$$
(2.2)

And the probability for gas removal from the solid ZIF phase is given by

$$w_{N \to N-1} = \min\{1, \frac{PV}{(N+1)kT} \exp\left(-\frac{\Delta E}{kT}\right)\}$$
(2.3)

The steps of GCMC are following as Figure 2.1

Figure 2.1 Step of calculation of adsorption isotherm in GCMC simulations [26].

- i. Specify the initial configuration (v_1) in term of Cartesian coordinate system and calculate the potential energy of the initial configuration (v_1) , which assume to be E_{v_1}
- ii. Add a particle randomly to the new Cartesian coordinate system as same as new configuration (v_2) and calculate the potential energy of the new initial configuration (v_2) , which assume to be E_{v_2}

iii. Calculate the difference of the potential energy of the configuration

 $(\Delta E = E_{v_2} - E_v) \text{ and consider the acceptance of the new configuration by}$ $\rightarrow \text{ If } \Delta E \leq 0 \qquad \text{mean the new configuration is stability than the old}$ one. Thus, accept the new configuration. $\rightarrow \text{ If } \Delta E > 0 \qquad \text{give the chance to accept new configuration by}$ $\text{consider } w_{N \rightarrow N+1}, \text{ where}$ $w_{N \rightarrow N+1} = \frac{PV}{(N+1)kT} \exp[\frac{1}{2}(1 - \Delta E/kT)]. \text{ To consider the}$ $w_{N \rightarrow N+1}, \text{ the random number } (\xi), \text{ where}$ $(0 < \xi < 1) \text{ were random and comparing with}$

$$v_{N \to N+1}$$

 \rightarrow If $w_{N \to N+1} \ge \xi$ accept the new configuration
 \rightarrow If $w_{N \to N+1} < \xi$ reject the new configuration.

- iv. Repeat the iii step unit the potential energy of system decrease to stability.
- v. Collect the data.
- vi. Analyze the data, which is adsorption isotherm [25-26].

2.2 Molecular dynamics simulations

The molecular dynamics simulation (MD) technique was developed by Alder and Wainwright [27] in 1957 in order to simulate the behavior of an ensemble of hard spheres depending on the thermodynamics conditions. This was a field of current investigation at that time among statistical mechanism specialists. MD is used to study the structural and dynamical properties on a molecular scale, through the solution of the classical equation of motion for classical particles representing the atoms and molecules of a chemical system.

The particles usually interact through a potential, which in most investigations, is taken to be the sum of suitable pair potentials, depending on the distances between particles. The forces acting on the particles are evaluated from the derivative of the potentials, and Newton's law of motion is applied (see Eq. (2.4) and Eq. (2.5))

$$F_i(t) = m_i a_i(t) = m_i \frac{\partial v_i}{\partial t} = \frac{\partial x_i^2}{\partial t}$$
(2.4)

where F_i can be obtained through Eq. (2.5)

$$F_i = -\frac{\partial U(r)}{\partial r_i} \tag{2.5}$$

Where $F_i(t)$ is force acting on atom i at time t. m_i is mass of atom i. a_i is acceleration of atom i at time t. v_i is velocity. x_i is coordinate. U is potential energy.

The potential energy is expressed as

$$U = U_{bond} + U_{nonbond} \tag{2.6}$$

Where $U_{bonded} = U_{bond} + U_{angel} + U_{dihedral}$ $U_{non-bonded} = U_{VDW} + U_{Coulomb}$

All type of potential (*U*) was shown in Figure 2.2.

Figure 2.2 All type of potential (U) [28].

There are many different force fields exist. *e.g.*, UFF [29] and DREIDING [30] and in case of U_{vDW} Forcefield was using from paper of Liu *et al.* [18]

The steps of MD are following as Figure 2.3.

Figure 2.3 Step of calculation in MD simulations [31].

- i. Specify the initial configuration (v) and velocity in term of Cartesian coordinate system.
- ii. Calculate Force (F_i) , which from the react with m_i
- iii. Move a particle to the new Cartesian coordinate system as same as new configuration (v_2) by $F_i = m_i \vec{a}_i$
- iv. Repeat the ii step unit the potential energy of system decrease to stability.
- v. Collect the data.
- vi. Analyze the data. This might be radial distribution function, concentration profile and Self-diffusion coefficient [29].

The statistical averages of interest are calculated from the positions and the velocities of the particles as time averages over the trajectories of the system in its phase space. Since it is possible to calculate the forces acting on all particles from the potential, which is assumed to be known. Unfortunately, an analytical solution for the resulting system of equations is not possible in general since the motion of one particle is affected by all other particles. However, the time integration algorithms e.g. velocity Verlet algorithm [32], the leap-frog algorithm [33], and the Beeman algorithm [34], etc, have been developed to predict positions, velocities, and accelerations.

2.3 Comparing GCMC and MD simulations

To compare GCMC and MD simulations, Table 2.1, which express the difference between GCMC and MD simulations, are shown.

Table 2.1 The difference between GCMC and MD simulation [25,31].

GCMC	MD
1. Only one atom was moved randomly.	1. All atoms were moved by equation of
	motion ($F = ma = m \frac{\partial v}{\partial t} = m \frac{\partial^2 x}{\partial t^2}$).
2. The lattice and guest molecules are	2. The lattice and guest molecule can be
treated as rigid.	treated as rigid or flexible.
3. Stochastic movement and independence	3. Deterministic movement and depend on
on time.	time.
4. Potential energy is the determination for	4. Potential energy, pressure, temperature
stability system .	and force can be the determination for
	stability system.

2.4 Molecular simulation techniques

2.4.1 Periodic boundary condition

To model a macroscopic system by a finite simulation system of N particles, the concept of periodic boundary conditions is introduced. The simulation box is replicated in all directions to

give a periodic array. In Figure 2.4, the two dimensional box is surrounded by eight neighbor box. When the atom moves through a boundary, it is replaced by its corresponding images entering from the opposite side; therefore, the number of particles in the system is constant.

Figure 2.4 The periodic boundary condition.

In the simulations, there are non-bonded interactions i.e. intermolecular interactions or intramolecular interactions between particles. To deal with these non-bonded interactions efficiently, the cutoff radius is applied with the concept of the minimum image convention. In the minimum image convention, the energy and force are calculated only for the shortest distance between a particle i and a particle j or one of its images j'. When the spherical cutoff is applied, the interactions between particles, which are not in the cutoff radius, are set to zero. When the minimum image convention is also used, this cutoff radius must be equal or less than half of the smallest box edge [35].

2.4.2 Lennard-Jones and Coulomb pair potential

The intermolecular interactions are described by pairwise-additive Lennard-Jones potentials [36] as shown in Eq. (2.7).

$$u(r_{ij}) = 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right]$$
(2.7)

The $\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12}$ term of the equilibrium is responsible for small distance repulsion and the $-\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{6}$ term provides an attractive term which approaches zero as the distance between the two atoms increased [36].

The σ and ε parameters for each atom pair are obtained using Lorentz-Berthelot mixing rules[37] as shown in Eq. (2.8) and Eq. (2.9).

$$\sigma_{ij} = (\sigma_{ii} + \sigma_{jj})/2 \tag{2.8}$$

$$\varepsilon_{ij} = \sqrt{\varepsilon_{ii}\varepsilon_{jj}} \tag{2.9}$$

Figure 2.5 shows a representation of Lennard-Jones 12-6 function

Figure 2.5 Lennard-Jones function.

2.4.3 Long-ranged interactions

The charge-charge interactions, which decay as 1/r, are long ranged. It is problematic in molecular simulations. Therefore, the long-ranged electrostatic interactions were handled using the Ewald summation technique [38]. The Ewald summation is the most rigorous technique for calculating electrostatic interaction in a periodic system, but it is computationally quite expensive.

2.4.4 Radial distribution functions

To describe the structural averages, the radial distribution function (RDF) is used. The RDF is one of the tools in statistical mechanics that demonstrate a probability to find a particle at distance r away from a given reference particle. It is expressed by the average number of particles in each shell at distance r from any determined atom and normalized by dividing by the number of particles, by the volume of each shell and the average density of particles in the system; see Figure 2.6 and Eq. (2.10) [25,31].

Figure 2.6 The volume of <u>annular</u> $\Delta V(r)$.

$$g_{ij}(r) = \frac{N(r)}{\rho_{ij}\Delta V(r)}$$
(2.10)

Where

 $\Delta V(r)$ is the volume of <u>annular</u>.

N(r) is the number of atom, which found in volume of <u>annular</u> $\Delta V(r)$.

 ρ_{ij} is the number density of all pair ij that found in simulation cube,

which the volume is V.

2.4.5 The Self-diffusion coefficient

The self-diffusion coefficient (D_s) is the displacement of the tagged particle (or molecules) in the absence of concentration gradient. It can be obtained from the NMR measurements [26] or from the slope of the mean square displacement (MSD). The relation between D_s and the MSD is given by the Einstein's relation:

$$D_{s} = \frac{1}{6N} \sum_{i=1}^{N} \langle [r_{i}(t) - r_{i}(0)]^{2} \rangle$$
(2.11)

where *N* is the number of diffusive atoms in the system.

 $\sum_{i=1}^{N} \langle [r_i(t) - r_i(0)]^2 \rangle$ is Mean square displacement (MSD), which is the account of the positions of an atom for a period of time[39].

CHAPTER III

CALCULATION DETAILS

Both GCMC and MD were calculated using the Material Studio package [40]. The GCMC simulations used the *Sorption* module whereas, the MD simulations used the *Forcite* module in Material Studio packages.

3.1 ZIF-78 structure preparation

One unit cell of the ZIF-78 structure was obtained from the X-ray crystallographic data [4] and it was, then, extended to the simulation boxes used in GCMC and MD simulations having the size of $1 \times 1 \times 1$ and $2 \times 2 \times 2$ unit cells, respectively. The MD simulations have been carried out at 298 K for the loadings of guest molecules of 10, 65, 80, 150, 220 molecules for CO₂ and 5, 25, 45, 65 molecules for CH₄.

Figure 3.1 Crystal structures of the ZIF-78 used in the simulations (a) $1 \times 1 \times 1$ unit cells and (b) $2 \times 2 \times 2$ unit cells.

3.2 Force field parameterization

To validate the force field applied, the GCMC simulations were used to calculate the adsorption isotherm of CO_2 and CH_4 molecules in ZIF-78 under the pressure of 0 – 110 kPa and at 298 K. The adsorption isotherms were also used to calculate the adsorption selectivity. Here, the ZIF-78 lattice was treated as rigid during the simulation and only one unit cell is sufficient to represent the physical properties in the adsorption isotherm.

The Lennard-Jones potential parameters with the columbic potentials parameter were used to calculate the intermolecular interactions between CH_4 , CO_2 and ZIF-78. All the partial charges were extracted by DFT calculation using *Accelrys Dmol*³, Material Studio packages. The partial charges of ZIF-78, CO_2 and CH_4 were calculated using the PW91 GGA density functional and the double numerical basis set plus d-functions (DND) and electro-static potential fitting (ESP).

The Lennard-Jones parameters and the partial charges of ZIF-78, CO_2 and CH_4 are shown in Figure 3.2 and Table 3.1.

Figure 3.2 Atomic partial charges of (a) ZIF-78 (b) CO_2 and (c) CH_4

Atom	Atom-atom	Atom-atom	Atom-atom
Atom	$\boldsymbol{\sigma}(\mathrm{\AA})^{\mathrm{a}}$	ε/k_B (K) ^a	E (kcal/mol)
ZIF_C	3.43	52.84	0.1050
ZIF_O	3.12	30.19	0.0600
ZIF_N	3.26	34.72	0.0690
ZIF_H	2.57	22.14	0.0440
ZIF_Zn	2.46	62.4	0.1240
CO ₂ _C	3.43	52.84	0.1050
CO ₂ _O	3.12	30.19	0.0600

Table 3.1 Lennard-Jones potential parameters for adsorbate-adsorbate and adsorbate-ZIF interactions.

^a Taken from Liu *et al.*[9].

The intermolecular interactions are described by the pairwise-additive Lennard-Jones potentials as Eq. (2.7) as mentioned in chapter 2.

The σ and ε parameters for each atomic pair are obtained using the Lorentz-Berthelot mixing rules as Eq. (2.8) and Eq. (2.9) as mentioned in chapter 2.

A)		ZIF_C	ZIF_O	ZIF_N	ZIF_H	ZIF_Zn	CO ₂ _C	CO ₂ _O
	ε	0.1050	0.0600	0.0690	0.0440	0.1240	0.1050	0.0600
ZIF_C	0.1050	0.1050	-	-	-	-	-	-
ZIF_O	0.0600	0.0794	0.0600	-	-	-	-	-
ZIF_N	0.0690	0.0851	0.0643	0.0690	-	-	-	-
ZIF_H	0.0440	0.0680	0.0514	0.0551	0.0440	-	-	-
ZIF_Zn	0.1240	0.1141	0.0863	0.0925	0.0739	0.1240	-	-
CO ₂ _C	0.1050	0.1050	0.0794	0.0851	0.0680	0.1141	0.1050	-
CO ₂ O	0.0600	0.0794	0.0600	0.0643	0.0514	0.0863	0.0794	0.0600
B)		ZIF_C	ZIF_O	ZIF_N	ZIF_H	ZIF_Zn	CO ₂ _C	CO ₂ _O
	σ	3.430	3.120	3.260	2.570	2.460	3.430	3.120
ZIF_C	3.430	3.430	-	-	-	-	-	-
ZIF_O	3.120	3.275	3.120	-	-	-	-	-
ZIF_N	3.260	3.345	3.190	3.260	-	-	-	-
ZIF_H	2.570	3.000	2.845	2.915	2.570	-	-	-
ZIF_Zn	2.460	2.945	2.790	2.860	2.515	2.460	-	-
CO ₂ _C	3.430	3.430	3.275	3.345	3.000	2.945	3.430	-

Table 3.2 The intermolecular interactions obtained from the Lorentz-Berthelot mixing rules.

ī

The cutoff radius was set to 12.5 Å for all Lennard-Jones interactions. The long-range electrostatic interactions were handled using the Ewald-summation technique. The simulations were equilibrated for 1.5×10^7 steps, then, the production run were carried out for 1.5×10^7 steps.

Note that the unit of adsorption isotherm used in this study is the number of molecules, whereas that of the experiment is the volume of gas at STP per volume of ZIF-78 lattice, see Figure 3.3.

Figure 3.3 Adsorption isotherm from the experiment [4].

The units of experimental values were converted to be number of molecules, in order to compare to the simulation results.

Figure 3.3 shows the experimental adsorption isotherms. It is found that the volume of gas at STP per volume of ZIF-78 lattice at 298 K 1 atm is 60 and the volume of the ZIF-78 (V_{ZIF-78}) lattice of 11540 Å³, see Table 1.2.

Thus,
$$\frac{V_{CO_2}(STP)}{V_{ZIF-78}} = 60$$
 (3.1)

$$\frac{V_{CO_2}(STP)}{11,514} = 60 \tag{3.2}$$

$$V_{CO_2}(STP) = 690,840 \text{ Å}^3 = 6.91 \times 10^{-25} \text{ m}^3 = 6.91 \times 10^{-22} \text{ L}$$
 (3.3)

In which the $V_{CO_2}(STP)$ of 6.91×10⁻²² L contains 18.57 moles CO₂.

3.3 Molecular dynamics simulations

~

MD simulations were performed to investigate the structural and dynamical properties. Here, the DREIDING force field parameters [30] were additionally used to describe the intramolecular interactions for the framework flexibility. The simulation box of ZIF-78 is 52.2348×52.2348×38.9820 Å³ (2×2×2 unit cells). The simulations were carried out at 298 K with the Berendsen thermostat.

The structure obtained from the XRD data was first optimized, then, the guest molecules, CO_2 and CH_4 , were inserted randomly. The cutoff radius of 12.5 Å, and a time step of 1 fs were used. The simulation times are 0.5 ns for equilibration period and 1.5 ns for the production run. The trajectories were stored every 100 steps, and the radial distribution functions (RDFs) and dynamical diffusion coefficients (D_s) were examined. The concentrations of guest molecules are varied on the same scale as experiment [4]. The CO_2 and CH_4 loadings per simulation box are 10, 65, 80, 150, 220 molecules and 5, 25, 45, 65 molecules, respectively. Our MD simulations were carried out for both single gas and binary gas systems. The concentration dependence of the self diffusion of guest molecules was investigated. For the binary mixture system, the concentration ratio of 1:1 (65 CO_2 molecules: 65 CH_4 molecules) was used. The diffusion selectivities obtained from single gas and binary gas have been compared.

3.4 Evaluations

3.4.1 Radial distribution functions

RDFs were investigated to study the probability to find a particle of type j in a sphere of radius, r, around a particle of i. The atoms in ZIF-78 that can refer from Figure 3.4

Figure 3.4 Part of ZIF-78 structure and the atomic label.

The radial distribution functions can be calculated according to Eq. (2.10).

3.4.2 Probability density in z direction

To see the adsorption site of the guest molecules, therefore the probability densities were analyzed. The ZIF-78 in each axis is shown in Figure 3.5

Figure 3.5 The ZIF-78 in each axis.

The probability density is a dimensionless quantity, *e.g.* a value of 2 means that there are twice the number of atoms in the slab that if all atoms were distributed homogeneously across the system. The total number of atoms across all slabs is equal to the number of atoms in the entire system. So the sum of the probability densities of all slabs is equal to the number of slabs[40]. The probability densities can be calculated as follows Eq. (3.4).

Probability densities
$$[set]_{slab} = [set]_{slab}/[set]_{bulk}$$
 (3.4)

where

 $[set]_{slab} = N_{slap} / V_{slap}$ $[set]_{bulk} = N_{bulk} / V_{bulk}$

3.4.3 Self-diffusion coefficient

The self-diffusion coefficient (D_s) can be obtained from the linear fit to the mean square displacement (MSD) of guest molecules in ZIF-78. The MSDs were computed and averaged over the first 0.25 ps. The relation is explained by Einstein's equation (see Eq. (3.5))

$$MSD = 2\alpha D_s t + \beta \tag{3.5}$$

where, α is the dimension, *i.e.*, 1, 2 and 3, and, β is the fitting parameter.

An example of MSD used for D_s calculation is shown in Figure 3.6

Figure 3.6 An example of mean square displacement.

The MSD plot was fitted to the linear equation, see Figure 3.6. Here, the obtained slope was used to calculate the 3-dimensional D_s using Eq. (3.6).

$$D_s = \frac{m}{6} \tag{3.6}$$

This leads D_s to the 0.0787 Å²/ps.

3.4.4 Adsorption selectivity

The adsorption selectivity (S_{ads}) for equimolar of CO₂ and CH₄ is expressed as

$$S_{ads(CO_2/CH_4)} = \frac{\frac{x_{CO_2}}{x_{CH_4}}}{\frac{y_{CO_2}}{y_{CH_4}}}$$
(3.7)

where x is the mole fraction of the adsorbed phase obtained from the GCMC simulations of mixture, and y the mole fraction of the bulk phase specified in term of pressure. All mixtures are equimolar in the bulk phase in this simulation.

Because all mixtures are equimolar in the bulk phase, thus, in this simulation only the x_{CO_2} and x_{CH_4} obtained from GCMC were used to calculate adsorption selectivity.

3.4.5 Diffusion selectivity

According to ref. [41] and ref. [42], the diffusion selectivity (S_{diff}) of CO_2/CH_4 can be calculated as follows

$$S_{diff(CO_2/CH_4)} = \frac{D_{CO_2,self}}{D_{CH_4,self}}$$
(3.8)

3.4.6 Membrane permeability

According to ref. [41] and ref. [42], membrane permeability of CO_2/CH_4 mixture can be calculated from the adsorption and diffusion selectivities of CO_2/CH_4 as follows

$$S_{membrane (CO_2/CH_4)} = S_{diff (CO_2/CH_4)} \times S_{ads (CO_2/CH_4)}$$
(3.9)

3.4.7 Knudsen selectivity

Knudsen selectivity can be calculated using Knudsen diffusion, which is the selfdiffusion coefficient. Knudsen diffusion occurs when the mean free path is relatively long compared to the pore size, so the molecules collide frequently with the pore wall. Knudsen diffusion is dominant for pores that range in diameter between 2 and 50 nm.

Knudsen diffusion is described as

$$D_{i,Kn} = \frac{d_p}{3} \sqrt{\frac{8RT}{\pi M_i}}$$
(3.10)

where

 $D_{i,Kn}$ is the Knudsen diffusion d_p is the pore diameters R is the gas constant T is Temperature M_i is the mass of molecule i

Thus, the Knudsen selectivity of CO₂/CH₄ mixture is

$$S_{CO_2/CH_4} = \frac{D_{CO_2,K_n}}{D_{CH_4,K_n}} = \sqrt{\frac{M_{CH_4}}{M_{CO_2}}}$$
(3.11)

CHAPTER IV

RESULTS AND DISCUSSION

4.1 Validation of guest-host interaction parameter

The GCMC algorithm has been used to validate the force field parameters for guest molecules in the ZIF-78 system. The adsorption isotherms of CO_2 and CH_4 in ZIF-78 are shown in Figure 4.1. The adsorption isotherm of CH_4 obtained from our simulations is in agreement with that of experiment. For the adsorption isotherm of CO_2 , the best force field parameters that one can find from the literatures have been taken. However, the simulated adsorption isotherm of CO_2 is higher than that from the experiment [4]. It is known that the procedure to develop the force field parameter is quite complicated. We thus decided to use this set of force field parameters for MD of CO_2 in ZIF-78 in this work.

Figure 4.1 The calculated adsorption isotherm at 298 K for CO_2 and CH_4 in comparison to that obtained from the experiment [4].

4.2 Structure of CO₂ and CH₄ in ZIF-78 lattice

4.2.1 Radial distribution functions, RDFs

To obtain structural data of CO_2 and CH_4 absorbed in ZIF-78 from MD, the radial distribution function (RDF), $g_{ij}(r)$ which is the probability density to find a particle j at the distance *r*, around a particle i, were calculated. In this work, i represent the atom in ZIF-78 lattice (Figure 4.2) whereas j represents the C and O atoms of CO_2 , and, the C and H atoms of CH_4 . For better understanding, only important RDFs were shown.

The RDFs from the atom in ZIF-78 to C and O atoms of CO_2 are shown in Figure 4.3a-4.3b, respectively. The RDFs for various concentrations of guest molecule from C and O atoms of CO_2 to O (Figure 4.3c-4.3d) and Zn (Figure 4.3e-4.3f) atoms of ZIF-78 are shown.

Figure 4.2 Two types of linker, *i.e.*, nitroimidazolate (Type I) and nitrobenzimidazolate (Type II) coordinated to Zn ion are shown. The labels of atom type are also given.

Figure 4.3 RDFs from ZIF-78 to atoms of CO₂, i_ZIF $c - j_CO_2$ where i are the atoms of ZIF-78 (see Figure 4.2 for label) and j represents the atoms of CO₂.

The characteristics of CO_2 adsorption in ZIF-78 can be understood from Figure 4.3. For all atoms of lattice with all CO_2 loading, the first sharp peaks of O in ZIF-78 centered at 3.07 Å (Figure 4.3c) and 2.91 Å (Figure 4.3d) observed for C and O atoms of CO_2 , respectively. In case of Zn_ZIF-C_CO₂ and Zn_ZIF-O_CO₂ (Figure 4.3e and 4.3f) RDFs, the peaks are centered at 6.45 Å for C and 6.11 Å for O of CO_2 . It indicates that CO_2 adsorbs firmly to the O of $-NO_2$ group in which the most probable distances from O of $-NO_2$ group to C and O atoms of CO_2 are 3.07 Å and 2.91 Å, respectively.

Figure 4.4 RDFs from ZIF-78 to atoms of CH_4 , i_ZIF $c - j_CH_4$, where i are the atoms of ZIF-78 (see Figure 4.2 for label) and j represents the atoms of CH_4 .

With four different loading of CH_4 , the RDFs show the first sharp peak centered at 3.47 Å for H4_ZIF - C_CH₄ (Figure 4.4c) while the farthest distinct peak is 6.43 Å for Zn_ZIF -C_CH₄ (Figure 4.4e). From the results, it indicates that H atoms of nitroimidazole group (H4 in Figure 4.2) are the preferred adsorption sites for CH_4 . It is worth to note that, the broaden of all peaks from the atoms of ZIF-78 to H atoms of CH_4 (Figures. 4.4b, 4.4d and 4.4f) is due to free orientation of the four H atoms in CH_4 molecule.

In addition, the concentration dependence does not detect in case of CO_2 (Figures 4.3c-f) but it is clearly observed for CH_4 (Figures 4.4c-f). With increasing loading of CH_4 , the peak

intensities of RDFs decrease significantly. It implies the CH_4 molecule does not absorb firmly at H4 of nitroimidazolate linker – short resident time.

Figure 4.5 visualized the adsorption sites of guest molecules in ZIF-78.

Figure 4.5 Schematic of the adsorption sites of (a) CO_2 (yellow) and (b) CH_4 (green) in ZIF-78.

To understand in more details, we thus calculated the probability density of guest molecules in ZIF-78. This will be discussed in the next section.

4.2.2 Probability density

The probability densities to find the guest molecules in z direction of ZIF-78, were calculated and shown in Figure 4.6.

Figure 4.6 The snapshot of (a) 10 molecules of CO_2 and (b) 5 molecules of CH_4 in ZIF-78, as well as probabilities density in *z*-direction of (c) 10 molecules of C atom of CO_2 , (d) 5 molecules of C atom of CH_4 , (e) 10 molecules of O atom of CO_2 , (f) 5 molecules of H atom of $CH_{4^{\circ}}$. Here, the dash line show the edges of lattice channel.

The density plots of the guest molecules located in z-direction of ZIF-78 show clearly that the CO_2 molecules (Figures 4.6c and e) prefer to absorb at the middle of the channel. On the other hand, the CH_4 molecules (Figures 4.6d and f) are mostly observed near the edge of the channel. This can be explained by the polarity of the contributed atoms in lattice. The edge of

lattice channel comprises of many non-polar atoms, especially, C and H atoms of nitroimidazolate linker which is preferred by the non-polar CH_4 molecule, whereas, the polar CO_2 molecules prefer the polar site which are the nitro groups established at the middle of channel.

Figure 4.7 The probability density in *z*-direction for (a) C atom of CO_2 and (b) C atom of CH_4 for various concentrations.

With increasing guest loading, the CO_2 molecules remain at the same adsorption site, *i.e.*, nitro group whereas the CH_4 molecules are additionally detected at the middle of the channel.

4.3 Self diffusivity

The mean square displacements (MSD) of CO_2 and CH_4 molecules at concentrations of 10, 65, 80, 150 and 220 molecules per simulation box, have been computed.

The MSD of guest molecules are computed over 250 ps of time and averaged over the first 250 ps of a 500 ps trajectory.

Figure 4.8 The calculated MSD with loading dependence of (a) CO_2 and (b) CH_4 in ZIF-78.

Figure 4.9 The self diffusivity with loading dependence of (a) CO_2 and (b) CH_4 in ZIF-78.

The self diffusivity of CO_2 and CH_4 molecules in ZIF-78 can be described by the self diffusion coefficient, D_s . The D_s values were obtained from the linear fit to the mean-square displacement (see Figure 4.8, and Eq. (3.5)). The calculated D_s with guest loading are plotted in Figure. 4.9a and 4.9b for CO_2 and CH_4 , respectively. It is clearly seen that the D_s values of CH_4 significantly increase with increasing loading, whereas the D_s values of CO_2 do not depend very much on loading. This significant increasing of D_s can be resulted from the rapid decrease of RDFs for H4_ZIF - C_CH₄. The CH₄ molecule does not adsorb firmly at the adsorption site. They can easily move in the lattice-increase of D_s .

4.4 Adsorption selectivity

The adsorption selectivity (S_{ads}) of CO₂ from CO₂/CH₄ mixture can be calculated using Eq. (3.7), in which, the ratio of y_{CO_2} / y_{CH_4} is equal to 1.

Figure 4.10 (a) Adsorption isotherm of CO_2 and CH_4 calculated from GCMC simulation of equimolar mixture at 298 K, as well as, (b) the corresponding adsorption selectivity calculated from Eq. (3.7) at different pressure.

Adsorption isotherm of CO_2/CH_4 mixture with equimolar calculated from GCMC simulation and corresponding adsorption selectivity of CO_2/CH_4 at 298 K are shown in Figure 4.10a and 4.10b, respectively. From both adsorption isotherm, it clearly seen that ZIF-78 prefers to adsorb the CO_2 than CH_4 . At 1 atm (101.3 kPa), CO_2 can adsorb at about 18.6 molecules whereas it is about 2.3 molecules in case of CH_4 . Figure 4.10b shows the adsorption selectivity that calculated from the adsorption isotherm of CO_2/CH_4 mixture (see Figure4.10a) using Eq. (3.7). It found that all the values of adsorption selectivity are greater than 1 which indicate that ZIF-78 is selective for CO_2 than CH_4 – used as separator for CO_2 from CO_2/CH_4 mixture. It is worth to note that the maximum of S_{abs} at 25 kPa is cause by the rapid increase of adsorption isotherm of CO_2 whereas the CH_4 is adsorbed gradually.

4.5 Diffusion selectivity

The diffusion selectivity (S_{diff}) of CO₂ from CH₄ can be computed using Eq. (3.8) as mentioned in chapter 3

The calculated diffusion selectivities of CO_2 at different CO_2/CH_4 ratios are shown in Table 4.1a (see also Eq. (3.8)). The S_{diff} values for the single gas systems calculated from the single gas system have been compared with the value obtained from the binary gas simulation runs. Note that the simulation of the binary gas system was carried out at only the ratio of 1:1.

Table 4.1 The calculated diffusion selectivity of CO_2 in CO_2/CH_4 mixture at different ratios.

A)				
Sing	le gas			
S _{diff} (d	CO ₂ /CH ₄)			
@ 1 : 0.5 (1	(0:5) = 2.2765			
@ 1 : 1.0 (10:10) = 2.2774				
@ 1 : 2.5 (10:25) = 0.7434				
@ 1 : 4.5 (10:45) = 0.5329				
@ 1 : 6.5 (10:65) = 0.3963				
B)				
Single gas	Binary gas			
$S_{diff(CO_2/CH_4)}$	$S_{diff(CO_2/CH_4)}$			
@ 1 : 1 (65:65) = 0.2668	@ 1 : 1 (65:65) = 0.2925			

At 298 K, S_{diff} of CO₂ from 1:1 of CO₂/CH₄ mixture, which is obtained from the single gas simulation is 2.2774, see Table 4.1a. The S_{diff} decrease with increasing CH₄ loading. For the S_{diff} of CO₂ from 1:1 of CO₂/CH₄ mixture, which obtained from single gas and binary gas simulations are 0.2668, 0.2925, respectively. It indicates that the S_{diff} from both simulations are close to each other. Therefore, both methods can be comparable.

Moreover, the Knudsen selectivity has been also calculated using the Eq. (3.11) (see chapter 3) where M_{CH_4} and M_{CO_2} are the molecular mass of CH₄ and CO₂, respectively. The selectivity value predicted from the Knudsen formula for CO₂/CH₄ is found to be 0.014, which is

significantly different from the diffusion selectivity. This means that the size, shape or other properties are more important than the molecular mass, and can play a role in this system.

4.6 Membrane permeability

To calculate membrane permeability of CO_2 from CO_2/CH_4 mixture, both S_{ads} and S_{diff} are required and can be obtained using Eq. (3.9).

Membrane selectivity of CO_2 from CH_4 at vacuum, 298 K is equal 2.16. As mentioned that the values calculated from Eq. (3.9) are greater than 1, showing that this ZIF material is selective for component CO_2 in CO_2/CH_4 mixture. Hence, membrane base separation can also use to separate CO_2 from CH_4 .

In conclusion, adsorption selectivity, diffusion selectivity, and membrane permeability of ZIF-78 for CO_2/CH_4 were shown in Figure 4.11.

Figure 4.11 Adsorption selectivity, diffusion selectivity, and membrane permeability of ZIF-78 for CO_2/CH_4 .

The adsorption selectivity, diffusion selectivity, and corresponding membrane permeability of ZIF-78 for CO_2/CH_4 mixture are shown in Figure 4.11. It is found that the adsorption selectivity is high and the value of diffusion selectivity quite low, which indicates that the adsorption selectivity play the importance role in membrane based separation.

CHAPTER V

CONCLUSIONS

Two computer simulation techniques have been used to understand the molecular insight into adsorption and diffusion phenomena of CO_2 and CH_4 in ZIF-78. GCMC was conducted to obtain the adsorption isotherm of the guest molecules in ZIF-78 in order to validate the force field parameter used. The simulated adsorption isotherm of CH_4 in ZIF-78 agrees with the experiment, indicating the quality of the force field. The adsorption isotherm of CO_2 in ZIF-78 is found to be somehow different from the experiment, however, this is the best set of force field from the literatures.

The validated force field parameters were applied to MD simulations to obtain the structural and dynamic properties of guest molecules in ZIF-78 in terms of radial distribution functions (RDFs) and probability density as well as self-diffusivity (D_s), respectively. The CO₂ molecules prefer to absorb at the O atoms of $-NO_2$ group located at the middle of ZIF-78 channel whereas the CH₄ molecules were mostly observed at the edge of lattice channel located at the H4 of nIm linker. The D_s of CH₄ is concentration dependence while it does not in case of CO₂.

To understand the separation of CO_2 by ZIF-78 material, two kinds of CO_2 selectivity have been determined. First, the adsorption selectivity (S_{ads}) calculated from the adsorption isotherm of equimolar of CO_2/CH_4 binary mixtures is about 8.08 at 1 atm (101.3 kPa) which indicates the high efficiency of equilibrium-based separation of CO_2 by ZIF-78. Secondly, the diffusion selectivity (S_{diff}) computed from the ratio between the self diffusivity of each gas is found to be about 0.3. From both selectivity values, the membrane permeability was calculated. It is clearly seen that the adsorption selectivity dominants the membrane permeability. On the other word, it plays the important role in membrane-based separation.

For our further work, the force field parameters for CO_2 in ZIF-78 should be developed to have an agreement with experiment. Moreover, the diffusion selectivity of CO_2/CH_4 mixture which obtained from binary gas simulation should be calculated for various $CO_2:CH_4$ ratios, in order compare to the one obtained from single gas simulation.

REFERENCE

- Tagliabue M.; Farrusseng D.; Valencia S.; Aguado S.; Ravon U.; Rizzo C.; Corma A. and Mirodatos C. Natural gas treating by selective adsorption: material science and chemical engineering interplay. <u>Chem. Eng. J.</u> 155 (2009): 553–566.
- [2] Park K. S.; Ni Z.; Cote A. P.; Choi J. Y.; Hueang R.; Uribe-Romo F. J.; Chae H. K.; O'Keeffe M. and Yaghi O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. <u>PNAS</u> 103 (2006): 10186-10191.
- [3] Hayashi H.; Côté A. P.; Furukawa H.; O'Keeffe M. and Yaghi. O. M. Zeolite a imidazolate frameworks. <u>Nat. Mater.</u> 6(2007): 501-506.
- [4] Banerjee R.; Furukawa H.; Britt D.; Knobler C.; O'Keeffe M. and Yaghi O. M.; Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties <u>J. Am. Chem. Soc.</u> 131(2009): 3875-3877.
- [5] Phan A.; Doonan C. J.; Uribe-Romo F. J.; Knobler C. B.; O'Keeffe M. and Yaghi O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks <u>Acc. Chem. Res.</u> 43(2010): 58–67.
- [6] Kunchana Bunyakiat and Chawalit Ngamcharussrivichai. <u>Natural gas technology</u>. Chulalongkorn University Press, 2008
- [7] Chen Y.; Liu Q. L.; Zhu A. M.; Zhang Q. G. and Wu J. Y. Molecular simulation of CO₂/CH₄ permeabilities in polyamide–imide isomers <u>J. Mem. Sci.</u> 348(2010): 204–212.
- [8] Yaghi O. M. and Goddard III W. A. <u>A joint theory and experimental project in the high- throughput synthesis and testing of porous COF and ZIF Materials for on- board vehicular hydrogen storage</u> [slides]. Department of chemistry center for reticular chemistry UCLA and Department of chemistry, materials science and applied physics caltech, 2009

- [9] Tran U. P. N.; Le K. K. A.; and Phan N. T. S. Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. <u>ACS Catal.</u> 1(2011): 120–127.
- Benerjee R.; Pahn A.; Wang, B.; Knobler C.; Furukawa H.; O'Keeffe M.; Yaghi O. M.
 High-throughput synthesis of zeolitic imidazolate frameworks and application to CO₂
 capture. <u>Science</u> 319(2008): 939-943.
- [11] Wang B.; Côté A. P.; Furukawa H.; O'Keeffe M. and Yaghi, O. M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs <u>Nature</u> 453(2008): 207-212.
- [12] Zhou W.; Wu H.; Hartman M. R. and Yildirim T. Hydrogen and methane adsorption in metal-organic frameworks: a high-pressure volumetric study <u>J. Phys.Chem. C</u> 111(2007): 16131–16137.
- [13] Wu H.; Zhou W. and Yildirim T. Hydrogen storage in a prototypical zeolitic imidazolate framework-8. J. Am. Chem. Soc. 129(2007): 5314-5315.
- [14] CBC News article New materials can selectively capture CO₂, scientists say published February 15, 2008
- [15] Venna S. R. and Carreon M. A. Highly permeable zeolite imidazolate framework-8 membranes for CO₂/CH₄ separation J. Am. Chem. Soc. 132(2010): 76–78.
- [16] Hertäg L.; Bux H.; Caro J.; Chmelik C.; Remsungnen T.; Knauth M. and Fritzsche S. Diffusion of CH₄ and H₂ in ZIF-8. in press.
- [17] Ordoñez M. J. C.; Balkus Jr K. J.; Ferraris J. P. and Musselman I. H. Molecular sieving realized with ZIF-8/matrimid mixed-matrix membranes. <u>J. Mem. Sci.</u> 361(2010): 28–37.
- [18] Liu D.; Zheng C.; Yang Q. and Zhong C. Understanding the adsorption and diffusion of carbon dioxide in zeolitic imidazolate frameworks: a molecular simulation study <u>J. Phys. Chem. C</u> 113(2009): 5004–5009.

- [19] Sirjoosingh A.; Alavi S. and Woo T. K. Grand-canonical monte carlo and moleculardynamics simulations of carbon-dioxide and carbon-monoxide adsorption in zeolitic imidazolate framework materials J. Phys. Chem. C 114(2010): 2171–2178.
- [20] Rankin R. B.; Liu J.; Kulkarni A. D. and Johnson J. K. Adsorption and diffusion of light gases in ZIF-68 and ZIF-70: a simulation study. <u>J. Phys. Chem. C</u> 113(2009): 16906– 16914.
- [21] Hou X.-J. and Li H. Unraveling the high uptake and selectivity of CO₂ in the zeolitic imidazolate frameworks ZIF-68 and ZIF-69. <u>J. Phys. Chem. C</u> 114(2010): 13501– 13508.
- [22] Liu B. and Smit B. Molecular simulation studies of separation of CO₂/N₂, CO₂/CH₄, and CH₄/N₂ by ZIFs. J. Phys. Chem. C 114(2010): 8515–8522.
- [23] Keskin S. Atomistic simulations for adsorption, diffusion, and separation of gas mixtures in zeolite imidazolate frameworks J. Phys. Chem. C 115(2011): 800–807.
- [24] Ropero F. R., <u>Application of molecular simulation techniques to the design of nano</u> <u>systems</u>, Doctoral dissertation, Department D'enginyeria química, Universitat Politècnica de catalunya, 2009
- [25] Supot Hannongbua, <u>Computer Simulation: Monte Carlo Method</u> (slides). Chulalongkorn University, 2002
- [26] Liu B. Molecular simulation studies of adsorption and diffusion : phenomena of gases in Porous materials. Doctoral dissertation, Faculty of ScienceUniversity of Amsterdam, 2008
- [27] Alder B.J. and Wainwright T.E. Phase transition for a hard sphere system. J. Chem. Phys. 27(1957): 1208–1209.
- [28] Pornthep Sompornpisut, <u>Molecular dynamic (MD) simulation</u> (slides). Computational chemistry unit cell, Chulalongkorn University, 2010
- [29] Casewit C. J.; Colwell K. S. and Rappe' A. K. Application of a universal force field to organic molecules. J. Am. Chem. Soc. 114(1992): 10024–10035
- [30] Mayo S. L; Olafson B. D. and Goddard III W. A. DREIDING: A Generic Force Field for Molecular Simulations. J. Phys. Chem. 94(1990): 8897-8909
- [31] Supot Hannongbua, Molecular Dynamics Method (slides). Chulalongkorn University, 2002

- [32] Swope W. C.; Andersen H. C.; Berens P. H. and Wilson K. R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. <u>J. Chem. Phys.</u> 76(1982): 637-649
- [33] Hockney R. W. and Eastwood J. W. <u>Computer simulations using particles</u>. Adam Hilger, Bristol, 1988.
- [34] D. Beeman, Some multistepmethods for use in molecular dynamics calculations, J Comp. Phys. 20(1976): 130-139
- [35] Tanawut Ploymeerusmee, <u>Metal orgamic frameworks MOF-5 as carbon dioxide storage</u> <u>studied by computational chemistry methos.</u> Master's thesis, Field of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, 2008.
- [36] Martin M. G. and Siepmann J. I. Transferable Potentials for Phase Equilibria. 1. United-Atom Description of *n*-Alkanes, J. Phys. Chem. B 102(1998): 2569-2577
- [37] Allen M. P. Introduction to Molecular Dynamics Simulation John von Neumann Institute for Computing, J ulich, NIC Series, 2004
- [38] Sánchez C, <u>Computational studies on the structure and dynamic of bioactive peptides</u>.
 Doctoral dissertation, Chemical engineer Department, Barcelona, September 2003
- [39] Acceleys Software Inc., <u>Forcite Training Manual</u> (slides). Accelrys Software Inc., San Diego, CA, 2008
- [40] Acceleys Software Inc., Materials Studio, 5.0V, San Diego: Accelrys Software Inc., 2009.
- [41] Graaf J. M.; Kapteijn F. and Moulijn J. A., Modeling permeation of binary mixtures through zeolitic membranes. <u>AIChE J.</u> 45(1999): 497-511
- [42] Krishna R. and Baten J. M. Influence of adsorption on the diffusion selectivity for mixture permeation across mesoporous membranes <u>J. Mem. Sci.</u> 369(2011): 545-549.

APPENDICES

APPENDIX A

Module used in Material Studio Program for this thesis.

1. How to calculate charges.

The partial charges are obtain from the procedure as follow

1 1

- i. Open the lattice structure that was cut to be a repeating unit.
- ii. Click calculates on $Dmol^3$ module.
- iii. In Setup bar choose Task, Quality and Functional to be Energy, Customized and GGA and PW91
- iv. In the Electronic bar choose basis set to be DND and in the Properties bar click on Population analysis.
- v. In the Job control bar click on Run to calculate the charge.

▼ <mark>鶏</mark> ▼ 騷▼ ∦* △ * 蒜× G * ④ * 阪 * 麗 * 醫 * 圖 * ◆ * ∅ * ⊘ * 亾 * ⋮	≫ - ≢- ∰-
😹 <u>C</u> alculation	
Analysis	
<u>S</u> ave Settings	
DMol3 Analysis	
Fukui function Orbitals Population analysis Potentials Structure Thermodynamic properties	
Population analysis	
Results file: zif78_charge (2).outmol	
Assign K ESP charges to structure	
Assign spins to structure	
Assign Mayer Should orders to structure	
Help	

- vi. Open the result (.xsd)
- vii. Click analysis on $Dmol^3$ module.
- viii. Select the Population analysis and select the ESP from dropdown list and click on Assign to obtain charge.

2. How to obtain adsorption isotherm

Step of using the *Sorption* module to calculation the adsorption isotherm from the GCMC simulation follow

소 🖓 수 1월 수 1월 수 1월 수 🙆 수	- 🕅 - 🖉 - 🔍 - 🗮 - 🔀 - 🖻 - 🏨 - 🗄 🗐 🗐
· , 3″	
	Save Settings
Sorvition Calculation	<u> </u>
Setup Energy Constraints Pro	operties Job Control
Task: Adsorption isothern	m 💌 More
Method: 4 Configurational bias	as 🗸 More
Quality: Ultra-fine	-
Sorbates	
Molecule	Start (kPa) End (kPa)
CO2_PW91.xsd	0.001 110.0
	<u>5</u>
Hestart	Run 🥌 Help

- i. Open the structure $(1 \times 1 \times 1 \text{ unit})$
- ii. Click Calculation on the Sorption module
- iii. In the Setup bar choose Task, Method and Quality to be Adsorption isotherm, Configurational bias and Ultra-fine.
- iv. In the Energy bar choose Forcefield, Charges and Quality to be ref 1, use current and Ultra-fine and in the Summation method choose the Electrostatic and Van der Waals to be Ewald&Group and Atom based. Choose More to change the cutoff value to be 12.5 Å.
- v. In the Job control bar click on Run to calculate the adsorption isotherm.

3. How to run MD simulation by Material stuio.

The simulations were carried out at 298 K with the Berendsen thermostat. The cutoff radius of 12.5 Å, and a time step of 1 fs were used. The simulation times are 0.5 ns for equilibration period and 1.5 ns for the production run. The trajectories were stored very 100 steps.

The step of calculation MD simulation was follow

- i. Open the structure $(2 \times 2 \times 2 \text{ unit})$
- ii. Click Calculation on the Forcite module
- iii. In the Setup bar choose Task and Quality to be Dynamics and Fine. Choose More to input the parameter as see above.
- iv. In the Energy bar choose, Forcefield, Charges and Quality to be ref 1, use current and Fine and in the Summation method choose the Electrostatic and Van der Waals to be Ewald and Ewald.
- v. In the Job control bar click on Run to calculate the MD simulation.

4. Evaluation

First step to achieve the results is set atom to the structure as follows

- i. open the structure (.xtd) which get from MD simulation result.
- Edit set of atom by click on the edit select the "Atom selection" to choose the set of each atom *e.g.* CO₂_C.
- iii. Select on the "Edit set" to add new set of atom.

4.1 Radial distribution functions

A part of ZIF-78 structure which were set atom to calculate the RDF was shown in figure 3.4.

Figure 1. A part of ZIF-78 structure which were set atom.

To calculate the radial distribution functions which express as $g_{ij}(r)$ is the probability to find a particle of *j* (the C and O atoms in CO₂ as well as the C and H atoms in CH₄) in a sphere of radius, *r*, around a particle of *i* (the atoms in ZIF-78 lattice (Figure 1)).

The step of calculation RDF was follow

छि- ["] •- ⊢ • <u>३३</u> - G- ⊙- छ- छ - छ-	- 📑 - 🏓 -	Ø - 2- ⊗ - ₩	- 🐋 - 🕸 -	∳∙∰	1 1
💥 <u>C</u> alculation					
B Analysis		Analuria		x)
Eorcefield Manager	Forcite /	Analysis	`		
	Analusis	/	Cotogory		
Save Settings	Hamiltonia	~n	Statistics	_	
	Length dis	tribution	Structural		
	Mean squ	are displacement 🛛 🤉	Dynamic	=	
	Potential e	nergy components	Statistics		
	Pressure	alles alless from a block	Statistics		
	Radial dist Radius of	ribution function	Structural	-	
	D - Jiel Jiew				
	hadiai distri	button runction			
	Trajectory:	zif78_2unit right			
	Sets:	C_CO2 -	Zn_ZIF	•	
	Cutoff:	12.5 a			
	Interval:	0.02 a			
	🔲 Include	intra-/intermolecular comp	onents		
	🔽 Include	periodic self-interactions			
	🔲 Structur	e factor			· 2
¥ 1	Cutoff:	20.0 a			L & A
	lutan ali	0.1571 1.		5	Martin 1997 - 19
	intervai:	U. 1571 1/a		-	
		Ana	lyze H	elp	

- i. Open the structure (.xtd) which has already edit atom set.
- ii. Click Analysis on the Forcite module.
- iii. In the Analysis bar choose Radial distribution functions.
- iv. In the set topic choose pair of the set atom that interest and change the Cutoff to be
 12.5 Å
- v. Click on Analyze to calculate RDF.

4.2 Probability density of molecule in z direction

· \$\$\$+ G+ @+ \$\$ + \$\$	• 🛐 • 🔷 • 🖉 • 🖉 • 💩 • 💹 •	• ≶ • ≢• ⊛•	• • • •
Calculation			
毅 <u>A</u> nalysis	- Forsita Analysis	×	
🕐 <u>F</u> orcefield Manager	Forcite Analysis		
Save Settings	Analysis 🗠 🗧	Category	· .
	Angle distribution	Structural	
	🚺 Cell parameters 🛛 🗡	Statistics	
	Concentration profile	Structural	
	Density	Statistics	
	Dipole autocorrelation function	Dynamic	
	Fluctuation properties	Dynamic ,	-
	Hamiltonian	Statistics	
	Concentration profile		
	Trajectory: zif78_2unit right		
	Sets: C_CO2 💌		
	Specified direction (hkl)	0	
	Number of bins 50	* *	1. T
	🔽 Raw profile		
	Smoothed profile Width: 3.0	÷ bins	
			· 2
VK I			L 🦉 L
		5	M. "\
	Anal	una I Hala	
	Anaj	Help	

The step of analyzing probability density of guest molecule in z direction.

- i. Open the structure (.xtd) which has already edit atom set.
- ii. Click Analysis on the Forcite module.
- iii. In the Analysis bar choose Concentration profile.
- iv. In the set topic choose the set atom that interest.
- v. Click on Analyze to calculate probability to find number of guess molecule in z direction.

4.3 Self-diffusion coefficient

· 🚳 • 🔊 • 🛆 • 💥 • G • 🞯 • 🕅 • 🧱 • 🕅 •	<u>∎</u> • • ∅ • ⊘ • ₩ •	· ≫ ≢ * 骖 *	1
💥 <u>C</u> alculation			
B Analysis		X	
Eorcefield Manager	Forcite Analysis		
	[2	
Save Settings	Analysis 🛆	Category ^	
NY 🦉 💦 N	Hamiltonian	Statistics	
	Length distribution 🥂	Structural =	
N. M. M. Panton	Mean square displacement	Dynamic	
	Potential energy components	Statistics	
	Pressure	Statistics	
	Radial distribution function	Structural	
	Badius of duration	Smicharal	
	Mean square displacement		
	Trajectory: zif78_2unit right		
	Sets: C_CO2 💌		
	Origin step: 1 frames	0.1 PS	
V 🕺			
	Length: 5000 Trames	20 I I I I I I I I I I I I I I I I I I I	
	Include anisotropic components		\mathbb{N}
the second secon			
		_	
		5	*
\mathbf{h}		/	
	Analj	/ze Help	

The step of analyzing self-diffusion coefficient.

- i. Open the structure (.xtd) which has already edit atom set.
- ii. Click Analysis on the Forcite module.
- iii. In the Analysis bar choose Mean square displacement (MSD).
- iv. In the set topic choose the set atom that interest.
- v. Click on Analyze to calculate MSD.

- vi. Plot graph between mean square displacement and time to get the slope.
- vii. Calculate the self diffusion coefficient (D_s) by $D_s = m/6$.

CURRICULUM VITAE

Name : Suntharee Phuangjumpee

Date of Brith: November 5, 1986

E-mail address : sun_jan_na@hotmail.com

Secondary School:

1999-2002 Takhliprachasan School, Nakhonsawan

High School :

2002-2005 Takhliprachasan School, Nakhonsawan

University Education :

2005-2009 B. Eng. In Petrochemicals and Polymeric Materials, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhonpathom
 2009-2011 M. Sc. In Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok

Representative publication :

 Adsorption and selectivity of CO₂ on zeolitic imidazolate framework-78 using grand canonical monte carlo and molecular dynamic simulations. The 4th SUT Graduate Conference 2011