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COMPUTER SIMULATIONS
L'PERCONDUCT ORS

28

) '
It is well kno ' \\\ theory provides us with an important

and useful tool for st phen N0 € perconductivity. Since the
discovery of high-t ' , 'iv.w ISy sinzburg-Landau theory has
played an especially 1 ’ rgle for understanding and analysis. Some physical
properties of those supe " are: ’ gwell \' erstood, because there is at the

present time no clear understanding of nicroscopic mechanism of high-T;

There appea’rE have : attﬁ:pts to solve the Ginzburg-

Landau equations. Thoge ommonly refer ed are by Abrikosov (1957), Kleiner

a6t Bmﬂlwmwm W) BT wa armec 1550
Q Wqﬁﬁ'ﬂ’ ?@ﬁ%ﬁnﬂ}%ﬁ% fEJ energy of the

sample. At that minimum energy state, the behavior of the order parameter ¥ and

supervelocity Q in the superconducting materials is revealed.
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Lattice Equation

We start with the Gibbs free energy density (eq. 4.5) as follows:

g = -+ 059" + (Vo + Q¥® + x{vxQ - Hf (6.1)
The basic idea of this thesis S very straightfoswa e need not minimize the Gibbs
free energy analytically i SCt 1 or to=Q,.which leads to the Ginzburg-

tly by numerical methods.

For one dime e thé constant) external magnetic field H is
in the z direction, as gk ifl fig. 6. nternal magnetic field h is in the same

direction as H.
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Fig. 6.1 Diagram of a superconductor of width L. The applied magnetic

field H is lies along the z direction.



If we choose Q = Q(x) §, and use

(6.2)

g = -¥ + 04 ' 7 - A H) (6.3)

The total Gibbs fre 3

-

G =4 ;J\P+05w4+q(y‘¥)2+ Q‘I‘+K2(V><Q HY|

? HINBNINYINT ot
5 mmﬂmmumwmaﬂ

Gk f dx[-‘l’2+ 0.5%* + (%xqi)z*- QX)W + Kz(fl%’f)_ i H)z] ‘

(6.5)
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where V is the volume and L is the length of the superconducting material in the x
direction.

Discretizing €q(6.5) , we get

+ Q¥4 Qis1- Qi1 H)ZJ
2 2Ax

i=1
(6.6)
where the superconductingSamfiple was divic 8 nic \' strips along the X direction,
and Ax is an infinitesima i andpoint i+1, asshown in fig 6.2:

h

e - |\Hf‘
]

ple in one dimension.
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Since the general form of eq.(6.6) can be written as

G = G¥; .. %n:1, Q1 .QNs1) (6.7)
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we have 2(N+1) variables . The boundary condition was chosen as

Il
(o)

Y0 = Y(L) (6.8)

The principle of this programis that we ﬁrst set all the values of the order parameter ¥

a normal metal is at each end)es he sup CrvCior Y. we start with 0.0 at every point.
After that the free energ ‘ hen the Values of ¥ and Q were changed
randomly using the subsot e of this program is listed in
appendix A). After tha 'done again and again, and the
free energy became'lo nal changes leading to a lower
free energy were accepigd. ches a minimum, the program
will stop. As a result We of the order parameter and
supervelocity at each pdi ic field was calculated from the

following relation :

(6.9)

ﬂ‘iJEl’J“ﬂEJ'ﬂiWEﬂﬂ‘ﬁ
Rﬁ‘ﬂ“ﬁﬂﬁgﬁrﬁ‘ﬂﬂ‘mﬂmq’mmﬂﬂ

The simulation requires the specification of N, L, x, and H. N is the
number of strips. L is the length of superconducting sample in units of the coherence

length (§). In addition, x is the Ginzburg-Landau parameter, and H is the external

magnetic field. Recall that He = 1/k+2 is the critical magnetic field in our units.
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The first problem is how to choosg the appropriate number of strips for our
simulation. ﬂ u%’ :}m,g %a %Ig aﬂ ;51 varied the number of
strips from 5,ql 25, 50, 100, 2Q0, 400, 80Qs, The result of each simulation is

showrt 463 6 6 514 4 9k Yok ik G were e

the free energy was quite the same , so only 100 strips are sufficient for our

simulation.
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No Magnetic Field

For the case of no external magnetic field, we chose H=0, L = 20.0 &,

and x = 0.5. The result is shown in fig. 6.4.
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Fig.6.4 I'solution for the order

parameter vs. x for the gase of no external magnetic field ,
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¥ = gl

(compare chapter II with one boundary), we can derive an approximate analytical
solution as following. In the thick sample limit (L. >> &), the first Ginzburg-Landau

equation is satisfied by eq.(6.10), as follows:
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Lo S TR L (6.11)
dx2 '
dd%l;— + ¥ = ‘{’[1 -sechz( 7/7) - sechz(L x)] sechz( 5 sechz( )

(6.13)

so that q.(6.10) is an e en egs.(6.12) and (6.13) will

be equal, since sech2?{x/+2]sgc Thi approximate analytic solution

is also shown in fig. 6.4.

When the condi e sample is thin, we can no

W —2] ,
longer solve eq.(6.1€ a netical method can easily be

i

applied in this reglme g 6.5). Thus we ﬂcan use the numerical approach in a situation

mesegugmen inens
ﬂnwufm ﬂw ﬂ W‘T‘? ﬂ ,E,J mrﬂ |ﬁful for actual

supercoriductors. The reason is that the Ginzburg-Landau equations have a defect :

they do not give the correct boundary condition for the order parameter . Physically,
d¥/dx should be zero at a boundary (Lifshitz and Pitaevskii, 1980). However, the
Ginzburg-Landau equations yield solutions where d¥/dx # O at the boundaries (see

figs. 6.4 and 6.5). This defect is not important for thick samples. However, for thin



samples it can be important, and in that case the Ginzburg-Landau theory is not

appropriate.

Applied Magnetic Field Case

schematic indication is*
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The order parameter (¥) vs. x for a thin sample,where

H=00,L=4E,x= 0.5
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Normal Superconducting

Magnetic \\\\\\1

flux density

W

Fig. 6.6 tic field of a superconductor

ind Rhodenck 1978).
Our simulation can produc s shown in fig 6.7. We chose an
applied magnetic field H = dau parameter k =0.5, and L= 20%.
Recall that th upe DE térprcted as the velocity of
superelectrons, characteglzcs the supercurr&ry, which is proportional to Q¥2, where

oo iy U DB o3 vstow g

the internal maglletlc field for many-values of x whcn the exte magnetic field H

s VAR BB AR BBt

rnagneue field depends on the penetration depth A (remember that x = A/, and § =

1 in these units).

For the next simulation we vary the external magnetic field, keeping the

Ginzburg-Landau parameter k = 0.5,and L = 20§ fixed. Since the critical magnetic
field He = 1/x 42 in our units, from figs. 6.9, 6.10 and 6.11 we can see that when the
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external magnetic field H is less than the critical value H, , the magnetic field can

penetrate through the Samplc only over a range approximately equal to the value of x,

after which the Meissner effect is complete. When the external magnetic field is equal

to or greater than H; the external magnetic field can penetrate completely through the

superconductor, with an amount equal to the external value, and the superconductivity

is destroyed completely. The sam normal state. In figs. 6.12 and 6.13

we show the precision predicting the breakdown of

superconductivity at the
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Fig. 6.7 Numerical results for the order parameter (‘¥'), internal
magnetic field (h), and supervelocity(Q), where H= 1.0,
® =05, L= 208



1.00
0.98
0.92
0.88
0.84
~.0.80
o
-t
o 0.68
i 0.64
0.60
5 0.58
® 0.52
zp 048
% 0.44
0.40
S 0.38
2 o0.32
Yozs
.5 0.24
0.20
0.18
0.12
0.08
0.04
0.00

F«d :

l‘;': 13 14 15 16' 17:..18: .19 20

ﬂuﬂawﬁwswaﬁni
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Fig. 6. 13' The order pamameter (‘) vse,x for various Hyvalues.
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supervelocity (Q)vs. x for H = 1.42.
(H; = 1.414 in these units)



	Chapter VI Computer Simulations for Type I Supercondutors
	Introduction
	Lattice Equation
	Numerical Techniques
	Results and Conclusion
	No Magnetic Field
	Applied Magnetic Field Case


