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THE GINZBURG-LANDAU THEORY

In 1950, that i (BCS) theory was developed,

Ginzburg and Land wn as the Ginzburg-Landau

theory (Ginzburg scribes the properties of

superconductors ne Ginzburg-Landau theory is that

the behavior of the su escribed by an effective wave

function ,'¥ (Rose-Inne : hicH has the significance that
|‘I‘| 2is equal to the densit '1s then assumed that the free energy
of the superconducting state-¢ iffers | al state by an amount which can be

written as a power $et “" ‘e-shail-deal- here-w: ‘ the simple derivation given
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is commonly called the order parameter. The order parqpuetcr is a complex

v, Ui o G W bbbl '1'3 e ctfical @hnpefucre the order

parameter Y(r) is small and the free energy density f may be expanded as

in the fundamental wﬁ( of G

a series in ¥. In the absence of an external field in a bulk superconductor ¥ is
independent of the coordinates. Since W is a complex quantity and f is real,

A A . 2
the expansion is carried out in powers of |‘I"| . Thus, we have

_ 2. b 4
fr = et g 9 +2|‘P| * (2.1)



A

where f, is the corresponding free energy density for the norfnal state. The total free

energy is

(2.2)

. J-n ormal state) (2.3)
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second luuon is acceptable only if a/b is negative; it represents the superconducting

state with a corresponding free-energy density
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It must be the case that a<0 and b >0, sothat f; < f, (we must hach‘I’|2> 0 ).
Following Ginzburg and Landau, we assume that b is independent of temperature,

while

a(l) = (T-T;)a

Suppose no pplied to the superconductor.

In this case, both th depend on the coordinates

rate the sample. The energy of
the field per unit volume rite the internal magnetic field A(r) in

terms of an electromagneti

(2.6)

== 7}

In general, fora pamckc of charge ¢ ina magnetlc field the Hamiltonian operator
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We will assume that the variation of ¥ in space occurs slowly. This permits one to
; ; . 2 ; . :
consider only the fluctuation correction |V‘I’| to the free energy, ignoring higher-
order derivatives. However, the order parameter, ‘¥, can be interpreted as the wave

function of the Cooper pairs (Cooper, 1956), so we set q = 2e in €q.(2.7), where -e is



14

the negative electronic charge (Zimmerman and Mercerau, 1965). This is also known
as the effective charge, e*. A is the vector potential. We recall that the theory must be
invariant under a gauge transformation of ’the vector potential of the form
A — A + cV¢, where c is a constant and ¢ is a function of position. In the

expression (- iV + ZEQA)‘P, achangein A can be compensated for by a change

ation above can be identified as

in the phase of the function ‘¥;s0.6 ransformati
that phase. We have taken yaccount t a&as acharge e¥=2e

—

In order to i GIm in the free energy, we write it as the kinetic

(2.8)

(2.9)

In an expenﬂ\y ﬂ ’% tU EIJ\YIA ﬂrg'j 1n?ﬁeld H which can be
contm&ﬂﬁ ta ;ml?ﬁ ; ﬁ ju!; 131@0 nient to make a
Legendre transformation(Duzer an 1981) to a new (Gib e energy density

given by

h -H H 2
o, N 2.10
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So eq.(2.9) will be changed to a new form as



s = futal®®+ QM4 —-K inv + *A)‘P|2 (1 -HP

8
(2-11)

This free energy density is a function of the external magnetic field. We must now

find the order parameter ¥(r) and the internal magnetic field & (r) by the variational

method.
The First Ginzburg-LandawPBdlacon : | variatio espect 10 ¥

Eq.(2.11) of rated over the volume of the

der the term

\\ vt ve 4+ o etA €A vyt

2;*I&va+’*,;; ‘(&

sample to give the tot

V¥ + gL’;zl‘I‘P]
C
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and we can obtain that
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J—;Idrl(—ifiv v+ 2A)y|? - J—fdrT*(-iﬁV v 2A)y

S T *
- zm*f‘P(-1ﬁV+e—cA-)‘P-dS
. ,

; | : (2.14)
We choose the surface ca  ( t @kﬁ, 1980),
7NN
VNN (2.15)
for all points on t . A ) ﬁ k \,\\\"‘ .._‘L , where 1 is the normal
vector. The free ener, 7
G ¢ [
fdr[/+al‘{l|ll : 2m*- ' )Z‘I‘-l-(———h';)z]
ﬂ‘lJEl’J‘VIEWI?W enq
Therefore, vaHation with respect jo g g1ves
ARIRNNIEL URIINYIAY
—1—( iV + €AY + aw + b = 0 (2.16)

which is the first of the Ginzburg-Landau equations.
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The Second Ginzburg-Landau Equation :  variation with respect to A

Again we start with the equation (2.11), that is

8

+ 4 + Ei—*K-iﬁV + #)\}12 + U——)—Z-

8s
— | (2.11)
and vary Gs=fgs W
i =0 0
Since the free energy densuy s2] and its spatial derivatives (remember
that B = V x A
17 =
1) s -
9, S e
% 2 a0 (2.18)

ﬂuaqﬂﬂﬂswawnﬁ
““ﬁ‘ﬁ"ié%ﬁ?ﬁiﬂﬁ"?‘ﬂmaﬂ

a_gi - ( a‘*’ Syt ety )
s o ﬁcw?a?,-’* o2 2a:|w|? (2.19)
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Secondly,
% y F
0 d d
h = VXA = -a—; 'a—y -a—z-
&R ek
so that
B3 bH . aAz)2 v [0Ay an)z]
87 4 lax dy
0Ay 94, ]
Lade AR
(2.20)
We will now consider the teffn & Sl when'i,j=1,2,3 (orx,y, 2).

i
Then for i=1 (or x) we get EI'

S 'Y
o(0A E

Wﬂﬂ'ﬁ%ﬁﬁ]’]’f‘j - Ak - H]
QRN RN YA B

(2.21)




Now
i[ 0gs :|+i[ ogs ]+i[ 9gs ]
0x [0(0A/0x)] 9y |0(0A/dy)] = 0z |)(dA/0z)
) )
- _h, - Hy] * alhy <]
4V | (2.22)
The other two compo d sidnilh &
N (2.23)
Writing this in vector form, ed:{2]
* g y : o
1| et O WAL , T i
2m:(lﬁcqjari 1! C Ty : .n[Vx(h H)]l
(2.24)

AUYINININYING
We will consia!,r the external magnetic field todbe uniform. Insparticular we have

VxHQq: ﬂ?ﬁﬁﬂeﬁwuﬁéﬂcﬁ Mﬂaﬁm&lls given by

J = Z%Vxh : (2.25)

provided there is no time-varying electric field. In our case we identify this as the

supercurrent and write
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ﬁe*
2m*i

p = B vy . ey . :2 Alyl? (2.26)
C

This is the second of the Ginzburg - Landau equations.

length and penetration de cnbed in the next section). The

relationship between .

material . Firstly, we wll

Since the orderfpal

where ¢ is the phase of the ord —_-f_r-::"f
s )

and the supercurre - .
ﬂuquﬂ ;ﬂﬂ]oﬁ =

amaﬂnimum'mmaa

When the Meissner effect occurs we have B =0 (zero internal field) and I‘I’l = 0

(superconducting phase). We must therefore have

A =-Ey (2.29)
e
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Note that VxA = 0 since VxV¢ = 0. The first Ginzburg-Landau equation
eq.(2.16), is

——%(-iﬁV+ CAPY +aw + bl =

2m

‘ _substitute €q.(2.29) to get
(2.30)

But

£2:31)

So

oo um DENINYAINT e
: ""W’Wﬁ%‘ﬂi‘wnﬂmaa

a ld___Tc_

/la]
In general, we can write | = 5 /., where f is atrial function. Then

ol ol



22

or
ﬁ2 2 3
S ot Il S P (2.33)
2m* al
Considering the supe to have a flat surface in the y-z plane
perpendicular to the x-axi dson x then eq.(2.33) is

(2.34)

(2.35)

AUEABENTHEINT o
L MR NHER LT E——

1971) is f(x) = tanh [x /(1/7 ¢ )] This solution is appropriate for a normal metal-
superconductor interface. The spatial variation in  f{x) is basically confined to lie
within a distance & of the surface. For x >> &,f(x) = 1 as shown in fig. 2.1.
Close to the boundary f(x) does not show the behavior expected from the surface
condition (2.15). This is a defect of the Ginzburg-Landau theory. Figure 2.1 is drawn

according to physical expectations.
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Fig. 2.1  length £ ( Tinkham, 1975)

Penetration Depth

Consider eq. iiform order parameter. The
&

supercurrent is then

= - LY (2.37)

The first szburg-LanQau equation, (2. 16 ives

ﬂ‘IJEJ'JVIEWI?WEJ”Iﬂ‘i

R TRy

We can always choose a gauge so that V-A =
h =

0 without changing the value of
VXA . Also, if we keep only the terms linear in 4,
then

2 |a
lw|? = o (2.39)
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Now

—%Vxh = = ﬁ——l—alA (2.40)
and

(2.41)

endicular to the x-axis. Let

there be an external mag

| to the surface. The internal

magnetic field will be of'the

so that

Vxh =-dL__’y\

ﬂUEJ’JVIEWIﬁWEJ”Iﬂi
Qiﬂﬁﬁﬁﬂ‘imﬂﬁﬁ’mmﬁﬂ

VxVxh = - (x) z

Now,

d2h (x) *2 |4
G5 = pGiE vt
i 2 e b h(x) (2.42)




so that the penetration depth is defined by

o g /fn;izz & c,l—’.i" (2.43)

(2.44)

(2.45)

o+ 2
and find that it satisfies the abo 1‘—‘}%} penetration of the magnetic field is

confined to a surface-dayer of thickness A, which is sho: ¥nbelow in fig. 2.2
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Fig. 2.2 The penetration depth of a superconducting material (Rose-Innes
and Rhoderick, 1978)
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