

Chapter 3

Results

1. Pharmacokinetic study

The standard curves of tetracycline in serum and in 0.1 M phosphate buffer, pH 4.5

The corrected standard values were plotted on two cycle semilogarithmic paper, using the tetracycline concentration as the ordinate (logarithmic scale) and the diameter (in mm) of the inhibition zone as the abscissa. And then the linear regression line equations were established. (46) The detail was shown in Figure 2.

Figure 2 The standard curves of tetracycline in serum and in 0.1 M phosphate buffer, pH 4.5

A = the standard curve of tetracycline in serum

B = the standard curve of tetracycline in 0.1 M phosphate buffer, pH 4.5

y = log(tetracycline concentration)

x = diameter of the inhibition zone

 r^2 = the coefficient of determination

Determination of the % recoveries of tetracycline in muscle and liver.

The recoveries of tetracycline after adding various amounts of tetracycline to muscle and liver were shown in Table 5. It was found that the average recoveries in muscle and liver were 72.77 \pm 3.34 and 78.30 \pm 3.48% respectively. These values were used for determining the theoretical drug levels in muscle and liver as the following equation.

A theoretical drug levels in muscle or liver

= a determined drug level in muscle or liver x 100 recovery of the drug in muscle or liver

Table 5 % recoveries of tetracycline in muscle and liver

muscle T liver	Tetracycline HCl added (mcg)											
10 gm (musclė)	3.0	5.1	6.4	8.0 10.0		12.5	12.5 . 15.6		50.0			
% recoveries (muscle)	67.38 ± 2.83 (n = 3)	68.21 ± 1.59 (n = 3)	73.54 ± 2.49 (n = 3)	74.21 ± 0.84 (n = 3)	75.68 ± 4.11 (n = 3)	77.24 ± 3.14 (n = 3)	73.85 ± 4.74 (n = 3)	74.26 ± 5.11 (n = 3)	70.54 ± 1.30 (n = 3)			
average % recovery (muscle)		72.77 ± 3.34										
1.0 0.1 gm (liver)	0.5		1.0	1.5		3.0	6.0		12.0			
% recoveries		81.26 ± 0.64 75 (n = 2)		80.70 ± 8 (n = 3		22 ± 3.54 (n = 2)	78.42 ± 5 (n = 3		12 ± 4.11 (n = 2)			
average % recovery		78.30 ± 3.48										

Intraperitoneal administration

At the initial time of observation, 0.5 h, tetracycline was detected in serum, muscle and liver being $1.04 \pm 0.44 \text{ mcg/ml} \cdot 0.47 \pm 0.19 \text{ mcg/gm}$ and $8.72 \pm 1.50 \text{ mcg/gm}$ respectively. The highest levels of tetracycline in serum, muscle and liver were detected at 9 h, 9 h and 0.5 h being $4.21 \pm 1.15 \text{ mcg/ml}$, $2.52 \pm 0.31 \text{ mcg/gm}$ and $8.72 \pm 1.50 \text{ mcg/gm}$, respectively. And at the terminal time of observation, 144 h, tetracycline was also detected in serum, muscle and liver, being 0.16 \pm 0.11 mcg/ml, 0.20 \pm 0.08 mcg/gm and 0.32 \pm 0.10 mcg/gm. The detail was shown in Table 6 and Figure 3-6.

The biological half-lives of tetracycline in serum and muscle were 37.87 h and 43.58 h, repectively. The AUCS in serum and muscle were 146.11 mcg.h/ml and 130.25 mcg.h/gm, respectively. The detail was shown in Table 9.

Table 6 Drug levels of tetracycline in scrum, muscle and liver in cat-fish after the intraperitoneal administration.

time	organ	tetracycline (mcg/ml or gm)								
(h)		sample 1	sample 2	sample 3	sample 4	sample S	means	standard deviation		
- 5	serum	1.52		8.51 ^Ř	0.66	0.94	1,04	± 0.744		
0.5	muscle	0,57	0.56	0,14	0.58	0.52	0.47	± 0.19		
	liver	8.75	8.31 -	10.62	6.55	9.41	8.72	± 1.50		
	serun	2.04	6.07	0.92	5.84	4.79	3.93	± 2.32		
1	muscle	0.68	0.78	0.32	0.47	0.29	0.51	± .0.22		
٠.	liver	6.12	8.23	4.89	5.64	5.57	6.09	± 1.27		
	serun	3.20	1.07		2.46	1.20	1.98	± 1.02		
ž	muscle	0.85	0.51	1.40	1.41	1.43	1.12	± 0.42		
	liver	6.31	1.34	5.69	6,70	5.29	5.07	± 2.15		
	serum	2.04	2.90	4.11	3.18	3.42	3.13	± 0.76		
4	muscle	1.88	2.08	2.33	2.60	2.66	2.31	. t 0'32		
	liver	3,92	2.15	4.13	3.18	3.63	3.40	± 0.78		
	serun	6.25	3.93	2.56	3.32	3,32	3.88	± 1.41		
6 1	muscle	2,70	2.47	1.45	2.63	2.68	2.39	± 0.53		
	liver	3.35	3.75	3,25	1.71	3.31	3.07	1 0.79		
	serum	3.50	3.17	5.84	3.55	- 4.97	4.21	£ 1.15		
9	muscle	2.65	2.39	2.06	2.62	2.88	2.52	# 0.31		
	liver	3.94	2.50	3.69	3.70	3.54	3.47	± 0.56		
	serum	2.92	3.50	4.11	2.50	2.22	3.05	± 0.76		
12	muscle	2.40	2,60	2.22	1.90	1.73	2.17	± 0.36		
	liver	2.46	3.33	3.47	3.61	3.03	3.18	2 0.46		
	serum	1.74	1.75	1.38	1.07	1.15	1.42	± 0.32		
24	muscle	1.12	1.62	1.20	1.30	1.50	1.35	± 0.21		
	liver	0.60	0.80	0.62	1.10	0.84	0.79	± 0.20		
	serum	1.10	-0.80	0.94	0.94	0.69	0.89	± 0.16		
48	muscle	0.78	0.83	1.12	0.78	0.72	0.85	± 0.16		
	liver	0.84	0.84	0.82	1.02	0.76	0.86	± 0.10		
10	serun	0.33	0.75	0.94	0.84	0.72	0.72	± 0.23		
72	muscle	0.46	0.71	0.79	0.70	0.67	0.67	± 0.12		
	liver	0.43	0.58	0.68	0.90	0.61	0.64	± 0.17		
iö	serum	0.42	0.32	0.33	0.34	0.56	0.39	± 0.10		
96	muscle	0.41	0.44	0.62	0.38	0.49	0.47	± 0.09		
	liver	0.37	0.84	0.40	0.38	0.34	0.47	2 0.22		
	serum	0.32	0.22	0.14	0.23	0.33	0.25	± 0.08		
120	muscle	0.36	0.29	0.14	0.26	0.32	0.27	± 0.08		
	liver	0.18	0.30	0.13	0.29	0.30	0.24	± 0.08		
	serum	0.18	0.31	0.16	0.16	-ve	0.16	± 0.11		
144	muscle	0.24	0.29	0.18	0.20	0.08	0.20	± 0.08		
	liver	0.43	0.29	0.31	0.38	0.17	0.32	1 0.10		

R = rejected value

Figure 3 The tetracycline levels (mean \pm S.D) in serum after the intraperitoneal administration (Each value was estimated from five fish except at h 0.5 (n = 3) and h 2 (n = 4))

Figure 4 The tetracycline levels (mean ± S.D) in muscle after the intraperitoneal administration (Each value was estimated from five fish)

Figure 5 The tetracycline levels (mean ± S.D) in liver after the intraperitoneal administration (Each value was estimated from five fish)

The tetracycline levels (mean ± S.D.) in serum, muscle Figure 6 and liver after the intraperitoneal administration

Intramuscular administration

At the initial time of observation, 0.5 h, tetracycline was detected in serum, muscle and liver being 1.72 ± 0.30 mcg/ml, 0.51 ± 0.13 mcg/gm and 1.40 ± 0.26 mcg/gm, repectively. The highest levels of tetracycline in serum, muscle and liver were detected at 6 h, 6 h and 9 h being 2.34 ± 0.58 mcg/ml, 1.78 ± 0.23 mcg/gm and 2.46 ± 0.78 mcg/gm, respectively. And at the terminal time of observation, 120 h, tetracycline was also detected in serum, muscle and liver being 0.16 ± 0.06 mcg/ml, 0.18 ± 0.07 mcg/gm and 0.18 ± 0.08 mcg/gm, respectively. The detail was shown in Table 7 and Figure 7-10.

The biological half-lives of tetracycline in serum and muscle were 33.16 and 32.69 h respectively. The $AUC_0^{\alpha}s$ in serum and muscle were 97.52 mcg.h/ml and 90.13 mcg.h/gm, respectively. The detail was shown in Table 9.

ime	organ	Tetracycline (mcg/ml or gm)								
(h)		sample 1	sample 2	sample 3	sample 4	sample 5	means	standard deviation		
	serum	1.23	1.74	1.75	2.02	1.86	1.72	± 0.30		
0.5	nuscle.	0.62	0.49	0.35	0.65	0.43	0.51	± 0.13		
	liver	1.03	1.58	1.41	1.60		1.40	± 0.26		
	serum	1.62	3.12	2.66	2.18	1.32	2.18	± 0.74		
1	muscle	0.83	0.74	0.67	0.99	0.63	0.77	± 0.14		
	liver	1.29 .	1.41	1.55	1.01	0.96	1.24	± 0.25		
	serum	1.56	2.13	1.94	2.52	3.25	2.28	± 0.64		
2	muscle	0.79	1.17	0.91	1.13	2.90	1.38	± 0.86		
	liver	1.23	0.97	0.94	1.13	1.93	1.24	± 0.40		
	serum	2.34	2.19	1.62	1.81	2.58	2.11	± 0.39		
4	muscle	1.57	1.41	1.35	1.34	1.74	1.48	± 0.17		
	liver	1.26	1.63	1.20	1.14	2.10	1.47	± 0.40		
	serum	2.57	2.04	1.49	2.69	2.92	2.34	± 0.58		
6	muscle	1.88	1.76	1.42	1.82	2.04	1.78	± 0,23		
	liver	2.41	1.25	1.23	1.92	3.70	2.10	± 1.02		
	serum	1.69	1.91	1.58	2.30	3.13	2.12	± 0.63		
9	muscle	1.73	2.01	1.58	1.71	1.99	1.80	± 0.19		
	liver	2.33	3.25	1.28	3.08	2.36	2.46	± 0.78		
	serum	2.44	1.80	2.87	2.55	1.97	2.33	± 0.44		
12	muscle	1.17	1.55	1.83	2.03	11.75	1.67	± 0.33		
	liver	2.43	1.84	1.27	2.60	2.47	2.12	± 0.50		
	serun	1.26	0.94	0.94	1.00	0.95	1.02	± 0.1		
24	muscle	1.28	10-613	1.30	1.17	1.12	1.22	± 0.0		
	liver	0.98	0.90	0.62	1.14	0.56	0.84	± 0.2		
	semm	0.71	0.80	0.54	0.76	0.89	.0.74	11-12-12		
48	_ muscle	0.80	0.60	0.53	. 0.67	0.93	0.71			
	liver	-	1.53	1.00	1.41	1.55	1.37	± 0.2		
	serum	0.16	0.40	0.42	0.20	1 -	0.30	》		
72	muscle	0.20	0.36	0.41	0.26	-	0.31	1 2 2 2		
	liver	0.14	0.63	0.34	0.23	-	0.34	± 0.2		
	serum	0.46	0.11	0.14	0.10	-	0.20			
96	muscle	0.41	0.15	0.13	0.13	-	0.20	300000		
	liver	0.49	0.12	0.13	0.10	-	0.21	± 0.1		
	serum	0.11	0.20	-	-	-	0.16			
120	muscle		0.23	-	-	-	0.18			
	liver		0.23	-	-	-	0.18	± 0.0		

Figure 7 The tetracycline levels (mean \pm S.D) in serum after the intramuscular administration (Each value was estimated from five fish except at h 72 (n = 4), h 96 (n = 4) and h 120 (n = 2))

The tetracycline levels (mean \pm S.D) in muscle after the Figure 8 intramuscular administration (Each value was estimated from five fish except at h 72 (n = 4), h 96 (n = 4) and h 120 (n = 2)

Figure 9 The tetracycline levels (mean \pm S.D) in liver after the intramuscular administration (Each value was estimated from five fish except at h 0.5 (n = 4), h 72 (n = 4), h 96 (n = 4) and h 120 (n = 2))

Figure 10 The tetracycline levels (mean ± S.D.) in serum, muscle and liver after the intramuscular administration.

Oral administration

At the initial time of observation, 0.5 h, tetracycline was detected in serum, muscle and liver being $0.26 \pm 0.06\,\mathrm{mcg/ml}$, $0.34 \pm 0.16\,\mathrm{mcg/gm}$ and $2.08 \pm 1.57\,\mathrm{mcg/gm}$, respectively. The highest levels of tetracycline in serum, muscle and liver were detected at 2h, 6h and 2h being $1.28 \pm 0.63\,\mathrm{mcg/ml}$, $1.77 \pm 0.90\,\mathrm{mcg/gm}$ and $2.93 \pm 1.29\,\mathrm{mcg/gm}$, respectively. And at the terminal time of observation, 96h, tetracycline were also detected in serum, muscle and liver being $0.19 \pm 0.04\,\mathrm{mcg/ml}$, $0.17 \pm 0.03\,\mathrm{mcg/gm}$ and $0.15 \pm 0.02\,\mathrm{mcg/gm}$, respectively. The detail was shown in Table 8 and Figure 11-14.

The biological half-lives of tetracycline in serum and muscle were 28.28 and 24.57 h respectively. The AUC_0^{α} s in serum and muscle were 67.14 mcg.h/ml and 72.32 mcg.h/gm, respectively. The detail was shown in Table 9.

Table 8 Drug levels of tetracycline in serum, muscle and liver in cat-fish after the oral administration.

time	organ	Tetracycline (mcg/ml or gm)							
(h)	0.28	sample 1	sample 2	sample 3	sample 4	sample 5	means	standard deviation	
	serum	0.26	0.21	0.36	0.22	0.23	0.26	± 0.06	
0.5	muscle	0.18	0.20	0.58	0.32	0.41	0.34	± 0.16	
	liver	0.29	4.38	1.63	1.26	2.82	2.08	± 1.57	
	serum	0.62	0.44	0.65	0.65	0.79 .	0.63	± 0.13	
1	muscle	0.30	1.35	0.39	0.86	0.68	0.72	± 0.42	
	liver	0,64	0.87	3.53	0.59	7.92	2.71	± 3.16	
	serum		1.01	0.67	2.15	1.29	1.28	± 0.63	
2	muscle	0.70	0.76	0.44	0.74	1.23	0.77	± 0.28	
	liver	4.68	2.78	1.09	3.30	2.80	2.93	± 1.29	
	serum	1.21	0.81	0.70	1.07		0.95	± 0.23	
4	muscle	1.07	0.59	0.68	0.77	-	0.78	± 0.21	
	liver	1.40	0.67	1.41	1.17		1.16	± 0.35	
	serum	1.39	1.49	1.49	1.24	0.32	1.19	± 0.49	
6	muscle	1.74	2.62	2.27	1.92	0.28	1.77	± 0.90	
	liver	1.95	4.39	1.77	1.46	0.43	2.00	± 1.46	
	serum	0.78	0.44	0.34	0.57	2.18	0.86	± 0.75	
9	muscle	0.72	0.58	0.37	0.75	3.38	1.16	± 1.25	
	liver	5.29	0.75	0.97	0.68	4.00	2.34	± 2.16	
	serum	2.04	0.89	0.62	1.26	0.50	1.06	± 0.62	
12	mus1ce	3.58	1.53	0.83	1.17	0.50	1.52	± 1.21	
	liver	3.65	0.72	0.65	1.76	0.62	1.48	± 1.30	
"qi	serum	1.26	1.05	0.60	0.82	1.74	1.09	± 0.4	
24	muscle	1.10	1.10	0.95	1.87	1.60	1.32	± 0.39	
	liver	0.90	1.13	0.75	0.68	2.80	1.25	± 0.88	
	serum	0.46	0.72	0.56	0.46	10.90 R		± 0.1	
48	muscle	0.49	0.49	0.51	0.41	9.24 ^R	0.48	± 0.0	
	liver	0.95	1.60	0.91	1.07	1.36 ^R	1.13	± 0.3	
	serum	0.23	0.35	0.34	0.24	-	0.29	± 0.0	
72	muscle	0.19	0.41	0.28	0.15	-	0.26		
	liver	0.20	1.20	0.66	0.20		0.56	± 0.4	
	serum	0.17	0.25	0.15	0,20	-	0.19		
96	muscle	0.16	0.21	0.16	0.15	-	0.17	TA ACU	
	liver	0.17	0.14	0.13	0.17		0.15	± 0.0	

R = rejected value

Figure 11 The tetracycline levels (mean \pm S.D) in serum after the oral administration (Each value was estimated from five fish except at h 2 (n = 4), h 4 (n = 4), h 48 (n = 4), h 72 (n = 4) and h 96 (n = 4)).

Figure 12 The tetracycline levels (mean \pm S.D) in muscle after the oral administration (Each value was estimated from five fish except at h 4 (n = 4), h 48 (n = 4), h 72 (n = 4) and h 96 (n = 4))

Figure 13 The tetracycline levels (mean \pm S.D) in liver after the oral administration (Each value was estimated from five fish except at h 4 (n =4), h 48 (n = 4), h 72 (n = 4) and h 96 (n = 4))

Figure 14 The tetracycline levels (mean ± S.D) in serum, muscle and liver after the oral administration .

Table 9 The biological half-lives ($t^{1/2}$) and AUCS mcg.h/ml or gm after the IP,IM and oral administration. (AUC = area under concentration-time curve)

Route of	Dose	t ¹ s((h)	AUComcg.h/ml or		
Administration		in serum	in muscle	in serum	in muscle	
Intraperitoneal	5 mg/kg catfish body weight	37.87	43.58	146.11	130.25	
Intramuscular	5 mg/kg catfish body weight	33.16	32.69	97.52	90.13	
Oral	50 mg/kg catfish body weight	28.28	24.57	67.14	72.32	
	average	33.10 ± 4.80	33.61 ± 9.54			

Result Conclusion of the Pharmacokinetic Study

In general, it could be observed that after the 3 routes of administration, tetracycline was absorbed in to blood circulation and the tissues rapidly. The drug was detected within 0,5 h, sustained at high levels (more than about 1 mcg/ml or gm) until 24 h in serum, muscle and liver and then, after 24 h, the drug levels in serum and muscle were decreased. Within 96, 120 h and 144 h the drug levels in serum, muscle and liver of the oral, intramuscular and intraperitoneal administration were also detected, respectively. It was noticable that from 24 h to 48 h the drug levels in liver after the intraperitoneal and intramuscular administration were increased, by contraries, after the oral administration the drug levels were decreased, however the rate of decreasing was very slowly. In addition, from 120 h to 144 h, the drug levels in liver after the intraperitoneal administration were increased.

After the oral administration and intraperitoneal administration (about 0.5-2 h), the drug levels in liver were higher than in serum and muscle, by contraries, after the intramuscular administration, the drug levels in serum were the highest.

The biological half-lives of tetracycline averaged from the three routes of administration were 33.1 ± 4.80 h in serum and 33.61 ± 9.54 h in muscle (Table 9).

The AUC $_0^{\alpha}$ (mcg.h/mlor gm) in serum and muscle after the 3 routes of administration were calculated (Table 9). The AUC $_0^{\alpha}$ in serum and muscle of each administration were somewhat different, but the AUC $_0^{\alpha}$ s from the three routes of administration were distinctly different. The AUC $_0^{\alpha}$ s

from intramuscular administration were smaller than from intraperitoneal administration despite their equivalent doses. The $AUC_0^\alpha s$ from oral administration were the smallest in spite of the largest dose. The larger AUC_0^α implies the better absorption.

2. Determination of the minimal inhibitory concentrations (MICs) of tetracycline to 57 strains of A. hydrophila

It was found that the MICs of tetracycline to strains of A, hydrophila isolated from catfish were 0.5, 4.0, 32.0 and 128.0 IU/ml being 3.51%, 3.51%, 5.26% and 1.75% respectively. The MICs for the strains from shake-head fish were 0.5, 1.0, 4.0, 64.0 and 128.0 IU/ml being 17.54%, 5.26%, 3.51%, 5.26% and 17.54%, respectively. The MICs for the strains from environmental sources (water and soil in fish culturing ponds) were 0.5, 4.0, 128.0 IU/ml being 5.26, 3.51 and 5.26%, respectively. All strains from humans and JCM having the MIC, 0.5 IU/ml being 17.54 and 5.26%, respectively. In addition, the tetracycline resistant strains were found in catfish (50%), snake-head fish (46.42%), environmental sources (37.5%), humans (0%) and JCM (0%). The detail was shown in Table 10-11.

Table 10 The Minimal Inhibitory Concentration (MIC) of tetracycline HCl to 57 strains of Aeromonas hydrophila.

<u>A.</u> <u>1</u>	nydrophila strains	Sources	Donors	MIC (IU/m1)
	F 181	catfish	Div.of Microbiol, Vet.Sc, Chula. Univers.	0.5
	F 325	"	"	0.5
	F 162	11	311	4.0
	F 189	11	U	4.0
	F 207	11	"	32.0
	F 295	n	11	32.0
	F 400	" "	".	32.0
	FK 297	tt.	"	128.0
	F 510	snake-head fish	H -	0.5
	F 542	11//	11	0.5
	F 551	n Car	"	0.5
	F 3004	"	"	0.5
	F 3012	11	11	0.5
	F 3246	11		0.5
	F 3296	" -	"	0.5
	F 3298		SHOWER THE PARTY OF	0.5
	F 3313		10100000000000000000000000000000000000	0.5
	FK 432	16/24/15/6	SAIN TAYIN IN CITY	0.5
	F 532	"		1.0
	FK 287	"	"	1.0
	FK 514	"		1.0
	F 3038	ü	"	4.0
	F 3076	"	"	4.0
	FK 278	"	"	64.0

A hydrophila strains	Sources	Donors	
FK 293	snake head fish	Div. of Microbiol., Vet. Sc, Chula Univers	= 4.0
FK 559	"	n n	-54.0
FK 588	"	n .	1==28.0
F 3051	"	"	1==28.0
FK 12		THE STATE OF THE S	1==28.0
FK 14	"	п п	1==28.0
FK 18	"	"	1==28.0
FK 31	. "	n	1=28.0
FK 276		" . // > 42000	1=28.0
FK 304	"	n-	1==28.0
FK 337		"	1 = 28.0
FK 351			1 == 28.0
FK 89	water		0.5
FK 105	"	"	0.5
FK 368	11	" 601616 meter	0.5
FK 51	"		4.0
FK 361			AMERIA 4.0
		W. W. J. D. Milligary of S.	1 28.0
FK 65			1 28.0
FK 152			1 28.0
FK 363.1	soil		0.5
1	humans	Dr. Somanee, Mahidol University	£
2	.11	"	0.5
25	Stt	" "	0.5

Table 10 The Minimal Inhibitory Concentration (MIC) of tetracycline HCl to 57 strains of Aeromonas hydrophila. (continued)

A hydrophila strains	Sources	Donors	MIC (IU/m1)
29	humans	Dr. Sommanee, Mahidol University	0.5
32	"	"	0.5
33	"	n n	0.5
36	. "	п	0.5
44	"	n n	0.5
52	" "	n -	0.5
55	n /	n	0.5
ATCC 7966	- t-4	JCM	0.5
JCM 1027	- //	Marie Carlotte	0.5
JCM 2359	-	· m	0.5

Table 11 The resistant A hydrophila strains derived from the interpretation of disc susceptibility test (A resistant strain has > 12 mcg/ml tetracycline MIC) (47)

Isolated	sistant strains (as calculated total strains of each group)
Catfish	50
Snake-head fish	46.42
Environment	37.5
Humans	0
JCM	0

3. Prophylaxis testing of tetracycline against A. hydrophila infection in catfish

After a single dose (5 mg tetracycline HCl/kg catfish body weight) of intraperitoneal administration, each catfish was challenged with 10⁹ viable cells of <u>A. hydrophila</u> F181. It was found that tetracycline could prevent the infection 100% within 3 days. At the d4, d6 and d7, the percentage of protection was decreased to 80, 0 and 0 respectively. The detail of the experiment was shown in Table 12.

The correlation of drug levels in serum and muscle with the percentage of protection was shown in Figure 15.

Table 12 The prophylaxis testing of tetracycline against Aeromonas hydrophila infection in catfish (clarias batrachus).

Time after		catfish	Catfish weight (mean ± S.D.)		Ulc	Percentage			
IP administ-	A. hydrophila F 181	in			Control group		Treated group		of
ration	viable cells/ml	each group	Control group	Treated group	Ulcer(+ ve)	No ulcer (- ve)	Ulcer(+ ve)	No ulcer (- ve)	protection
6 h	0.98 x 10 ⁹	10	200.2 ± 28.8	181.5 ± 38.7	9	1 ^(a)	3 - 2	10	100
1 d	1.32 x 10 ⁹	10	174.2 ± 46.2	156.6 ± 39.6	10	-	10.00	10	100
2 d	3.32 x 10 ⁹	5	120.0 ± 26.2	125.2 ± 12.8	5		-	5	100
3 d	2.97 x 10 ⁹	5	149.2 ± 25.4	145.2 ± 19.8	. 2	-	-	5	100
4 d	0.57 x 10 ⁹	5	137.0 ± 27.0	123.0 ± 30.6	5	-	1	4	80
5 d		1.10		Agrada	-	-	-	-	
6 d	4.10 x 10 ⁹	5 .	115.4 ± 11.4	150.4 ± 18.4	5	-	5		0
7 d	1.18 x 10 ⁹	5 -	161.5 ± 62.8	155.6 ± 14.8	5	-	5	-	0

⁽a) Even though the catfish was repeatedly challenged with about 10 9 viable cells of the bacterial suspension after 24 h of the first challenge, there was no ulcerative development.

Figure 15 The tetracycline levels (mean ± S.D) in serum and muscle after the intraperitoneal administration, and the percentage of protection of the catfish to A hydrophila F181 infection.