CHAPTER V

RESULTS AND DISCUSSION

The results obtained are analysed and correlated as follows:

5.1 Influence of Reynolds Number, Re = d T21Np 1/601

Under isothermal condition for any particular solid liquid system, μ , p and D_v are constant. In each solid - liquid system density difference (Δp) is constant. The value of Reynolds number depends on the rotation speeds of the agitator, N.

Tables 5.1 to 5.5 show the values of Re_{p} and Sh of benzoic acid coated on various materials and water, 13 wt %, 20 wt % and 40 wt % sucrose solution respectively at the temperature 30 °C or 35 °C and data are plottted on logarithmic scales. (see Figures 5.1-5.6).

Figures 5.1- 5.5 show that the data obtained for benzoic acid coated on various materials at various temperatures lie approximately in a straight line having the same slope. Figure 5.6 combines Figures 5.1-5.5. It can be seen that benzoic acid coated on any types of materials could be used as a representative of the group. Thus benzoic acid coated on glass beads is chosen for further studies.

Table 5.1 Re vs Sh of Benzoic Acid Coated on Various Materials - Water at 35 °C (Sc = 677), T = 20 cm

Materials	Rotation speed	Re x10	Mv.		_		S	h _P	
* e	(rpm)	P	-	L	2	3	.4	5	Average
Glass	400	5.1058	0.4104	244	230	250	23	5 241	240
beads	450	5.7440		257	258	268	270	257	262
	500	6.3822		340	310	330	320	300	320
	550	7.0204		405	402	414	410	379	402
Polystyrene	275	3.5102	0.2441	137	140	140	158	150	145
shperes	300	3.8292		190	180	175	193	192	186
45	350	4.4675	S.A.	210	208	229	215	238	220
	400	5.1058	6.00 A	240	230	220	215	220	225
1000	450	5-7440	28/14	280	290	295	275	295	287
	500	6-3822		293	282	302	280	293	290
Plastic	275	3.5102	Ø-1937	133	130	132	140	150	137
particles	300	3.8293		160	180	170	171	159	168
type 1	350	4-4675	9	220	210	212	225	228	219
-	400	5 - 1058	an 2	260	270	272	261	262	265
	450	5.7440	1.19	250	280	260	278	282	270
10.0.18	500	6.3822	9198	291	303	295	305	306	300
Plastic	270	3.5088	0.1306	158	174	175	178	155	168
particles	300	3.8278		180	190	201	201	173	189
type 2	350	4.4657	als: 1	210	200				208
Sim Friday	400	5.1037		1	250			231	242
200	450	5.7417		273	288	268	281	290	280
1000	500	6.3796		300	320	325	301	304	310

Table 5.2 Re vs Shpof Benzoic Acid Coated on Various Materials - 13 wt % Sucrose in Water at 35 °C (Sc = 1,210),

	Rotation						Sh	,	
Materials	speed (rpm)	Re _p x10 ⁺	Mv	1	2	з	4	5	Average
Glass	350	3.4525	0.3520	290	310	300	288	307	299
beads	400	3.9458		380	381	370	365	368	373
	450	4.4390		425	440	430	415	450	432
	500	4.9322		477	480	499	508	526	498
Plastic	300	2.9593	0.1358	230	200	210	195	195	206
particles	350	3.4525	O.A.	319	350	330	361	350	342
type 1	400	3.9458		385	390	420	395	410	400
	450	4-4390		477	470	480	490	458	475
	500	4.9322		510	520	507	495	533	513
Plastic	300	2-9593	0-0758	270	290	300	268	292	284
particles	350	3.4525	1 7 7	299	308	340	310	343	320
type 2	-400	3-9458	- Ac	399	392	370	378	386	385
	450	4.4390	No.	408	367	390	360	380	381
	500	4-9332	1.01	410	445	440	428	452	435

T = 20 cm

Table 5.3 Re vs Shp of Benzoic Acid Coated on Various Materials - 20 wt % Sucrose in Water at 30 °C (Sc = 2,355), T = 20 cm

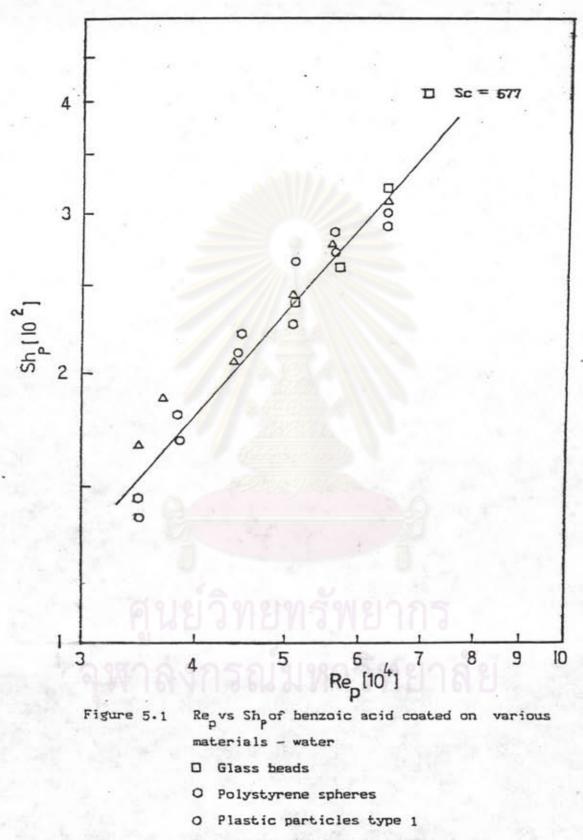
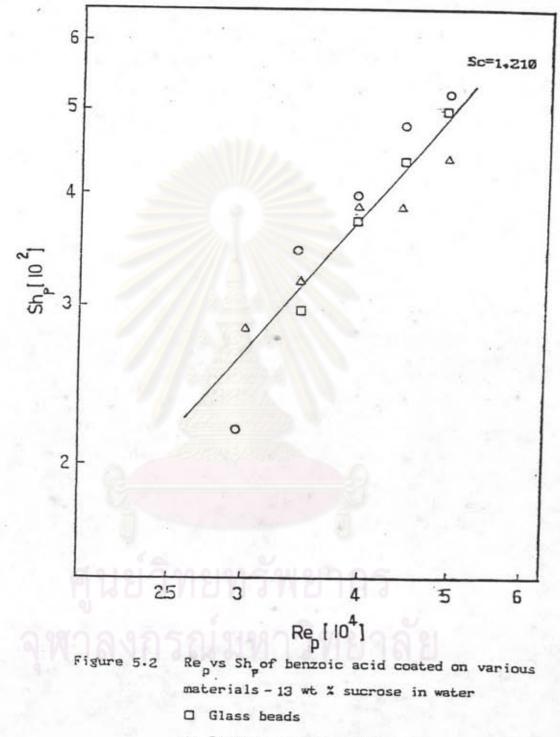
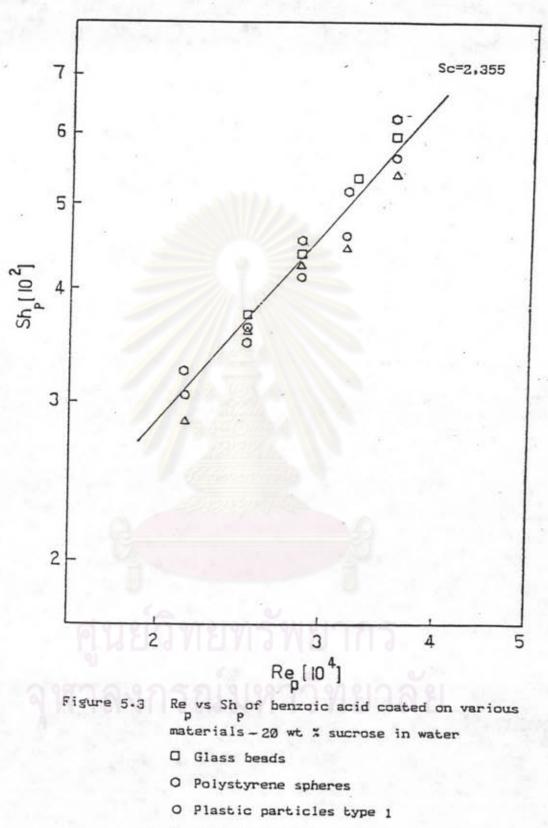

Materials	Rotation speed	Re_x10	Mv				Sh	P	
	(rpm)	P		1	2	3	4	5	Average
Glass	350	2.5194	0.3009	358	380	385	350	392	373
beads	400	2.8794		399	445	450	431	465	438
	450	3.2395		520	510	500	550	590	534
	500	3.5992		599	591	605	573	587	591
Polystyrene	300	2.1595	0.1475	322	329	300	340	334	325
spheres	350	2.5194	es al	371	360	330	320	344	345
	400	2.8794		430	435	440	470	480	451
10 C	450	3.2393	241	511	491	497	531	570	520
the second	500	3.5992		608	678	655	609	600	630
Plastic	300	2.1595	0.1010	300	315	320	309	296	308
particles	350	2.5194	12	380	360	340	365	370	363
type 1	400	2.8794		400	420	405	398	432	411
	450	3.2393	in all	471	473	435	446	475	460
	500	3.5992	119	590	550	560	545	560	561
Plastic	300	2.1595	0.0492	270	290	280	279	301	284
particles	350	2.5194	-	357	337	381	367	363	361
type 2	400	2.8794	1	447	426	450	420	412	431
	450	3.2393		440	478	430	422	435	441
	500	3.5992		566	520	532	550	560	542

Table 5.4 Re vs Sh of Benzoic Acid Coated on Various Materials - 35.5 wt % Sucrose in Water at 30 °C (Sc = 10,764), T = 20 cm

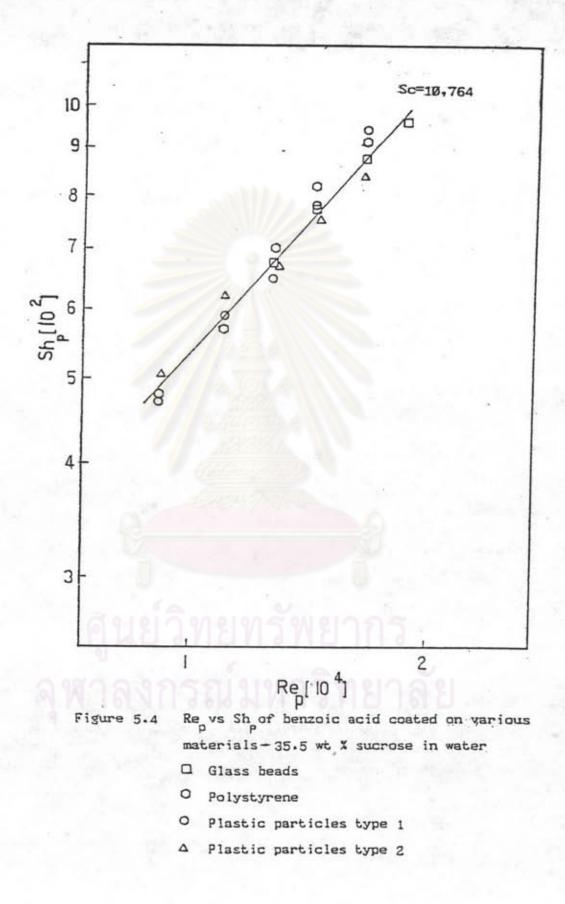
Materials	Rotation speed	Re_x10 ⁺	Mv	-141	_		Sh	P	
	(rpm)	P		1	2	з	4	5	Average
Glass	400	1.3671	0.2181	640	656	6Ø1	610	673	636
beads	450	1.5380		740	790	756	785	825	780
	500	1.7089	12	875	890	866	897	872	880
	550	1.8778		958	940	997	990	950	967
Polystyrene	300	1.0253	0.0745	460	480	470	476	504	478
spheres .	350	1.1962		600	580	590	545	545	572
	400	1.3671	5.775 A-	701	711	681	695	712	700
14 1	450	1.5380	212/17 -	793	820	821	780	836	810
	500	1.7089		940	950	900	911	899	920
Plastic	300	1.0253	0.0309	433	459	475	465	464	460
particles	350	1.1962		593	573	603	600	581	590
type 1	400	1.3671		697	660	633	655	600	649
	450	1.5380	ne de	806	793	789	759	753	780
	500	1.7089	1.9.1	951	930	961	980	903	945
Plastic	300	1.0253	-0.0235	494	511	500	520	510	507
particles	350	1.1962		602	627	631	640	600	620
type 2	400	1.3671	100	690	680	666	650	679	673
	450	1.5380	22 -	750	733	761	771	730	749
	500	1.7089	1	862	800	811	831	801	821

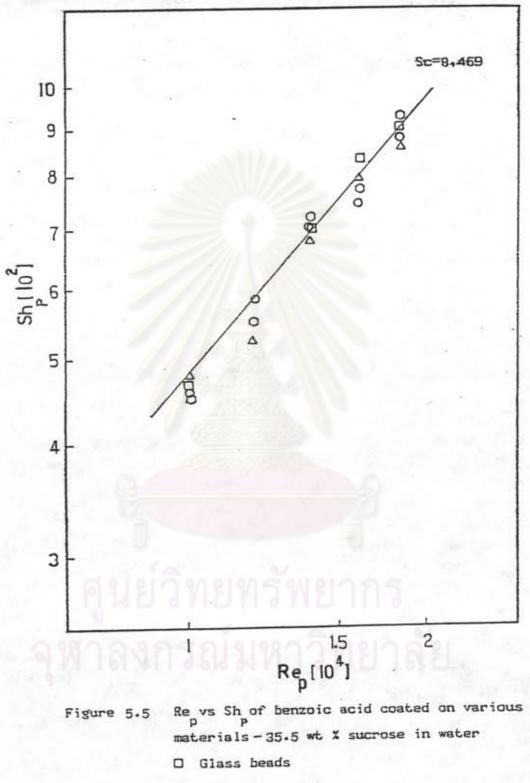

Table 5.5 Re vs Sh of Benzoic Acid Coated on Various Materials - 35.5 wt % Sucrose in Water at 35 °C (Sc = 8,469), T = 20 cm

Materials	Rotation speed	Re _p x10 ⁻¹	Mv				Sh	P	
	(rpm)	parto		1	2	з	4	5	Average
Glass	400	1.5050	0.2201	650	670	681	712	739	690
beads	450	1.6931		800	812	832	830	866	929
	500	1.8812		896	901	899	859	879	894
	550	2.0693		950	998	988	989	975	980
Polystyrene	300	1.1287	0.0762	448	459	473	411	459	450
spheres	350	1.3168	100	547	505	577	568	553	550
	400	1.5050	and a	735	705	730	719	711	720
	450	1.6931	1	769	784	764	745	788	770
	500	1.8812	2	901	915	900	898	936	910
Plastic	300	1.1287	0.0326	468	471	453	447	471	462
particles	350	1.3168		599	578	588	571	614	590
type 1	400	1.5050		713	693	700	711	708	705
6	450	1.6931	0594	725	760	743	749	743	744
	500	1.8812		818	895	890	909	888	880
Plastic	300	1.1287	-0.0219	458	489	465	470	488	474
particles	350	1.3168	Ales I	508	521	541	500	535	519
type 2	400	1.5050	-	671	689	659	705	726	690
	450	1.6931	1	795	800	800	807	813	800
1.1.19	500	1.8812		845	874	861	859	861	860

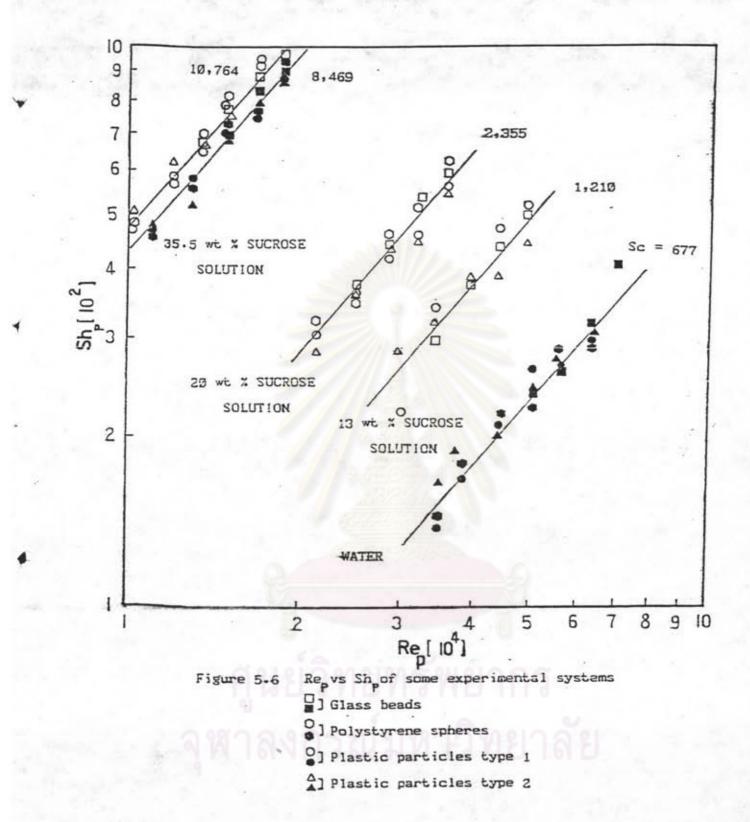


A Plastic particles type 2


40



- O Plastic particles type 1
- △ Plastic particles type 2



△ Plastic particles type 2

- O Polystyrene spheres
- O Plastic particles type 1
- △ Plastic particles type 2

Benzoic acid coated on glass beads are used to check the influence of Reynolds number again at different temperatures with various liquids. Density difference between benzoic acid coated on glass beads and various liquids is constant for each pair. Data are shown in Tables 5.6-5.9 and are plotted in Figures 5.7-5.11. Each line represents constant temperature. Figure 5.11 combines Figures 5.7-5.10.

From Figures 5.1-5.11 the lines are parallel having a slope of 1.21, which is the exponent of the Reynolds number in the correlation.

5.2 Influence of Schmidt Number, Sc = $\mu/p_{D_{e}}$

To determine the influence of the Schmidt number on mass transfer the temperatures are varied while Reynolds number and density group are kept constant. From Figure 5.11 Reynolds number are read at 5.5×10^4 , 3.8×10^4 , 3.0×10^4 , 1.5×10^4 respectively at various temperatures to determine Sherwood numbers for each solution. Data are shown in Tables 5.10-5.13 and are plotted in Figures 5.12-5.15. Figure 5.16 combines Figures 5.12-5.15. From Figure 5.16, it is found that the lines are parallel, having a slope of 0.50 which is the exponent of Schmidt number in the correlation.

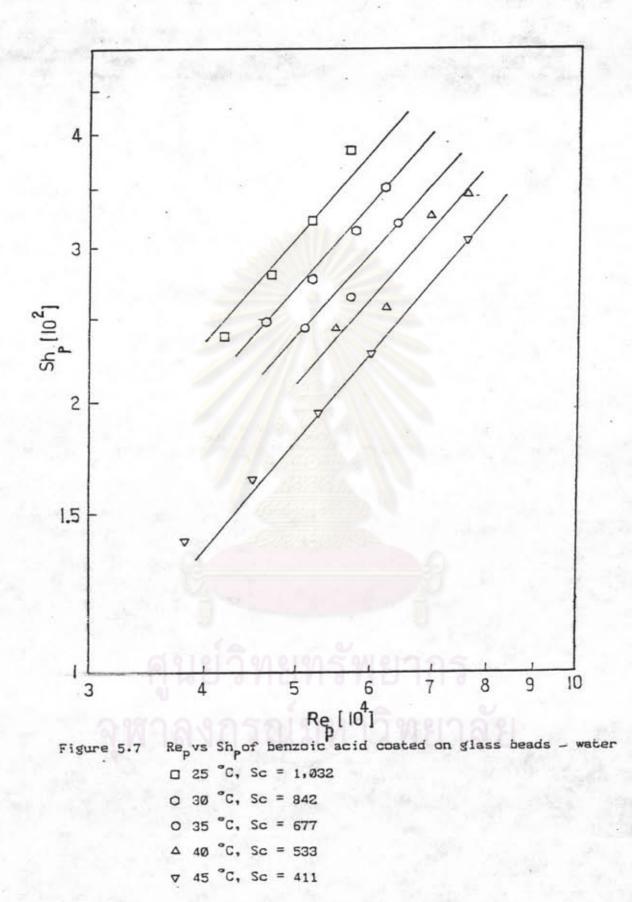
5.3 Influence of Density Group, $Mv = (p_s - p_1)/p_1$

To determine the influence of density group on mass transfer the temperatures and Reynolds numbers are kept constant. The Reynolds numbers are 5.1×10^4 , 3.95×10^4 , 2.87×10^4 , 1.53×10^4 and

Table 5.6 Re vs Sh of Benzoic Acid Coated on Glass Beads - Water, T = 20 cm

_	5.	Rotation	D					Sh	P	
T (°C)	Sc	(rpm)	Re _p x10 ⁺	Mv	1	2	з	4	5	Average
25	1,033	400	4.2143	0.4061	226	238	242	240	239	237
		450	4.7411		280	259	290	280	286	279
		500	5.2679		321	330	311	325	328	323
		550	5.7947		367	389	391	391	397	387
30	842	400	4.6559	0.4081	254	260	229	235	247	245
		450	5.2379		270	281	295	270	274	278
		500	5.8199		300	319	320	305	316	312
		550	6.4019		328	344	369	355	344	349
35	677	400	5.1058	0.4104	235	229	244	258	234	240
		450	5-7440		244	270	255	269	272	262
	-	500	6-3822		311	318	320	321	330	32Ø
2		550	7-0204		414	400	395	390	411	402
40	533	400	5.5656	0.4130	241	238	259	235	262	247
	-1911	450	6-2613		249	241	278	268	249	257
		500	6-9570		333	311	345	337	319	329
	MAG	550	7.6527	103	351	331	377	333	323	343
45	411	225	3.8545	0.4159	129	151	147	142	131	140
		300	4.5347	1.00	174	171	151	158	171	165
		350	5.2905		185	188	199	200	203	195
		400	6-0462		218	225	239	212	236	226
		500	7.5578		301	321	300	307	296	305

		Rotation					S	P	
T (°C)	Sc	(rpm)	Re x10	Mv	1	2	з	4	Average
30	1,516	350	3.0883	0.3395	353	322	366	351	348
		400	3.5295		371	395	377	381	386
		450	3.9707		502	485	478	491	489
		500	4.4118		524	565	538	493	530
35	1,210	350	3.4525	0.3420	291	298	309	298	299
		400	3.9458		383	364	359	386	373
		450	4.4390		420	418	440	450	432
		500	4.9322		501	521	500	470	498


Table 5.7 Re vs Sh of Benzoic Acid Coated on Glass Beads - 13 wt % Sucrose in Water, T = 20 cm

ศูนย์วิทยทรัพยากร วหาลงกรณ์มหาวิทยาลัเ Table 5.8 Re vs Sh of Benzoic Acid Coated on Glass Beads - 20 wt % Sucrose in Water, T = 20 cm

т	Sc	Rotation speed	Re_x10	Mv			Sh	•
ເຈັດ		(rpm)	r		1	2	з	Average
25	3,043	350	2.2192	0.3004	340	369	374	361
		400	2.5362		415	400	403	406
	1	450	2.8533		517	544	538	533
		500	3.1703		519	510	516	515
30	2,355	350	2.5194	0.3009	387	365	367	373
		400	2.8794		436	424	445	438
	1	450	3.2393		526	524	516	534
		500	3.5992		605	612	556	591
35	1,868	350	2.8319	0.3016	361	389	390	380
	1.	400	3.2365		429	444	480	451
	e. Q	450	3.6411		475	438	500	471
		500	4.0457		543	580	605	576
40	1,539	350	3.1604	0.3055	387	366	414	389
	1912	400	3.6119	AR.	444	471	438	451
		450	4.0634		525	547	503	525
	Caa	500	4.5149		578	565	591	578

т	Sc	Rotation speed	Re_x10	Mv		-	Sh	P
(°C)		(rpm)	P		1	2	з	Average
25	14,318	350	1.0488	0.2166	555	539	525	541
		400	1.1987	2-	739	648	671	686
	1.0	450	1.3485	-	722	712	741	725
		500	1 • 4983		874	895	871	880
30	10,764	400	1.3671	0.2181	638	623	647	636
		450	1.5380		814		729	780
		500	1.7089		871	891	878	880
	100	550	1.8798		944	987	970	967
35	8,469	400	1.5050	0.2201	694	705	671	690
	7-51	450	1.6931	a per	833	830	1	828
	· · · · · · · · · · · · · · · · · · ·	500	1.8812		914	896	876	894
- 1-1	1	550	2.0693	1	964	978	998	980
40	7,072	400	1.5750	0.2227	715	727	700	714
		450	1.7718	NO	783	800	787	790
		500	1.9687		840	826	815	827
	1-1613	550	2.1650	124	960	991	965	972

Table 5.9 Re vs Sh of Benzoic Acid Coated on Glass Beads - 35.5 wt % Sucrose in Water, T = 20 cm

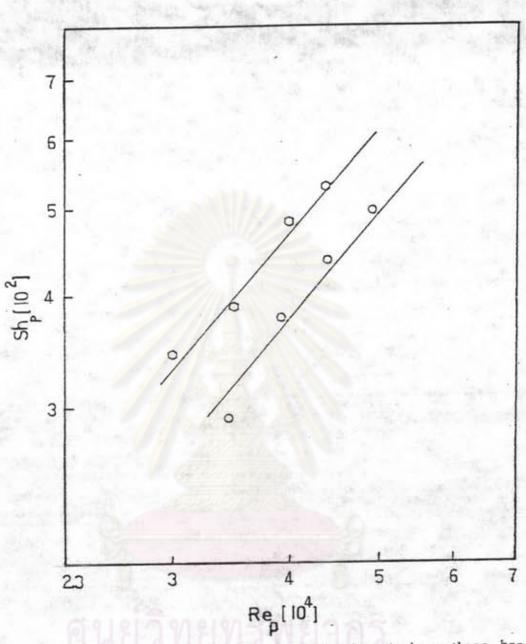


Figure 5.8 Re, vs Sh, of benzoic acid coated on glass beeds-13 wt % sucrose in water O 30 °C, Sc = 1,516

O 35 °C, Sc = 1,210

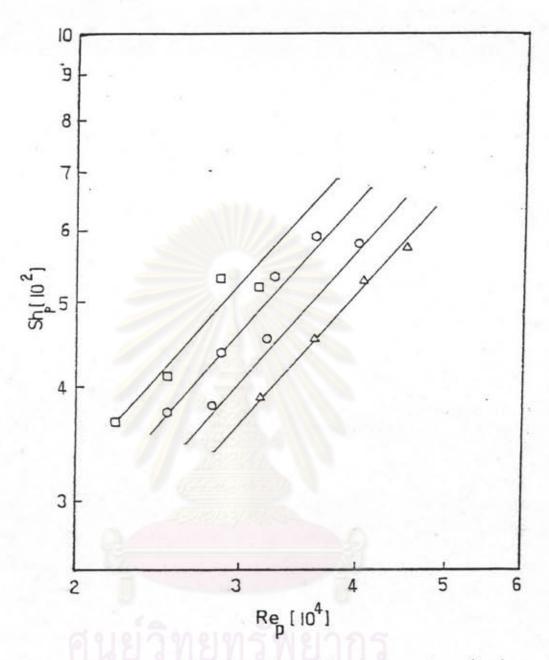


Figure 5.9 Repvs Shof benzoic acid coated on glass beads-20 wt % sucrose in water □ 25 °C, Sc = 3,043 0 30 °C, Sc = 2,355 0 35 °C, Sc = 1,868 △ 40 °C, Sc = 1,539

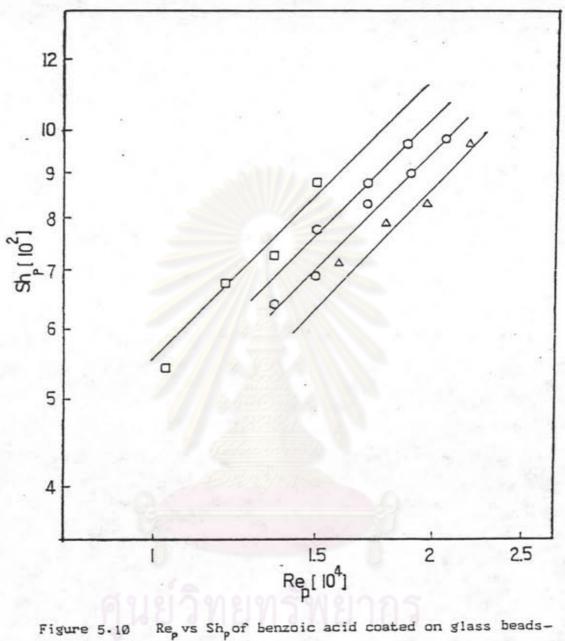
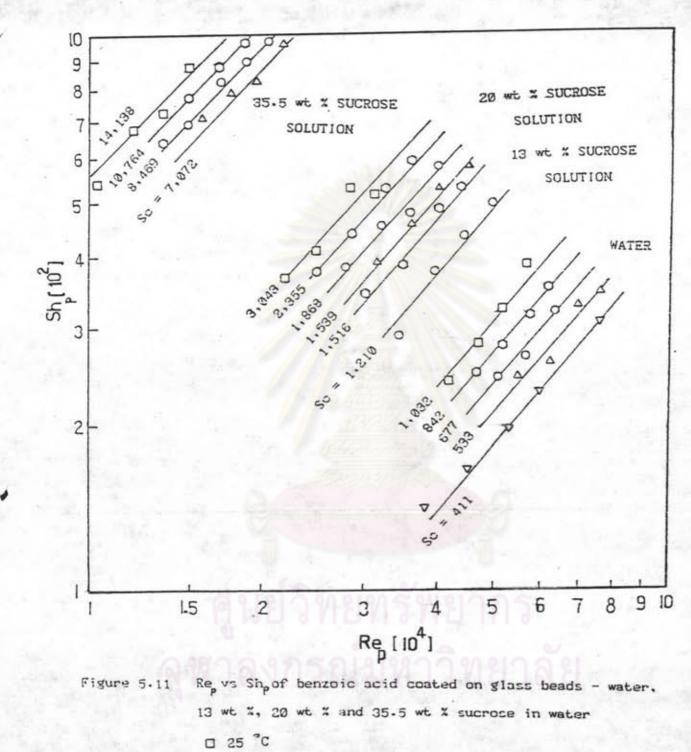



Figure 5.10

35.5 wt % sucrose in water □ 25 °C, Sc = 14,138 O 30 °C, Sc = 10,764 35 °C, Sc = 8,469 0

△ 40 °C, Sc = 7,072

- O 30 °C O 35 °C ∆ 40 °C
- ▼ 45 °C

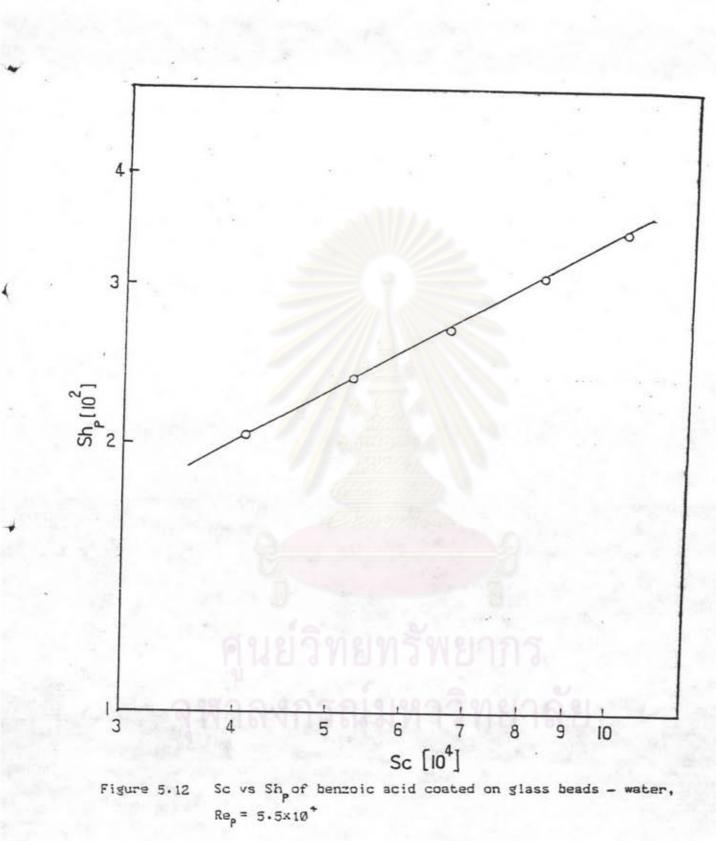
(ב") ד	Sc	Shp
25	1,032	345
30	842	302
35	677	270
40	533	235
45	411	205

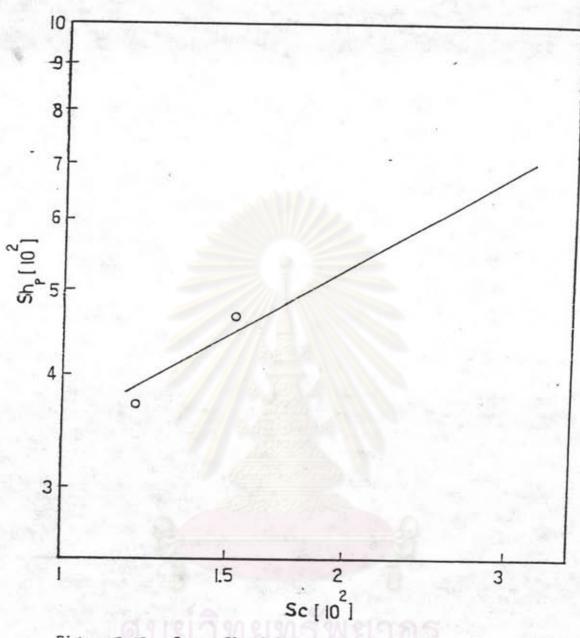
Table 5.10 Sc vs Sh_p of Benzoic Acid Coated on Glass Beads - Water, Re_p = 55,000, T = 20 cm

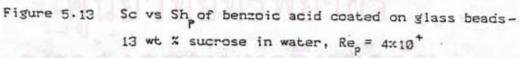
Table 5.11 Sc vs Sh_p of Benzoic Acid Coated on Glass Beads - 13 wt % Sucrose in Water, Re_p = 38,000, T = 20 cm

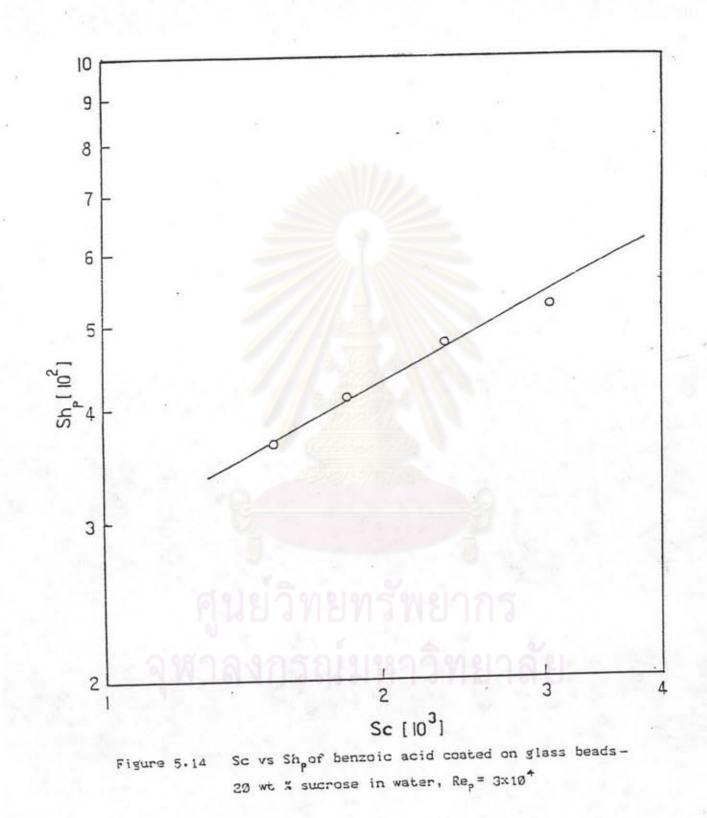
T (°C)	Sc	Shp
30	1,516	440
35	1,210	350

กรณ์มหาวิทยาล


Table 5.12 Sc vs Sh_pof Benzoic Acid Coated on Glass Beads - 20 wt % Sucrose in Water, Re = 30,000, T = 20 cm


T (°C)	Sc	Shp
25	3,043	525
30	2,355	465
35	1,868	408
40	1,539	365


Table 5.13 Sc vs Sh_p of Benzoic Acid Coated on Glass Beads - 35.5 wt % Sucrose in Water, Re = 15,000, T = 20 cm


т (°с)	Sc	Shp
25	14,318	850
30	10,764	780
35	8,469	700
40	7,072	635

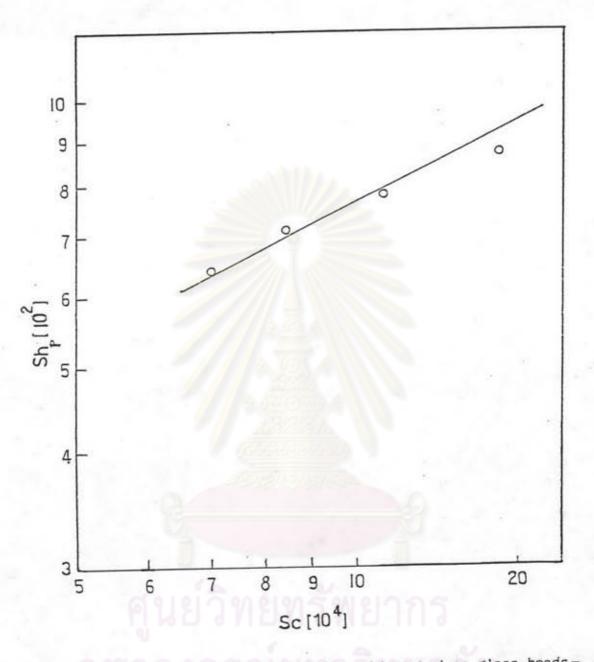


Figure 5.15 Sc vs Sh of benzoic acid coated on glass beads-35.5 wt % sucrose in water, Rep = 1.5%10⁺

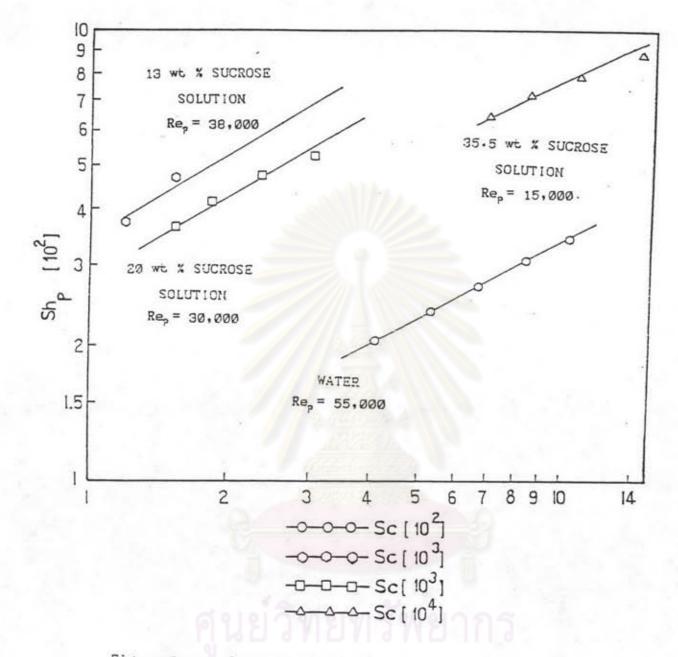


Figure 5.16 Sc vs Sh for systems of benzoic acid coated on glass beads and water, 13 wt %, 20 wt % and 35.5 wt % sucrose in water

1.5x10⁺ and the temperatures are kept constant at 35 °C, 35 °C, 30 °C, 30 °C and 35 °C respectively. Data are shown in Tables 5.14-5.18 and are plotted in Figure 5.17.

Figure 5.17 shows that the influence of the density group is not significant on mass transfer. The lines are parallel and horizontal.

For systems of benzoic acid coated on various materials and water, the values of Sherwood number are the average values of at least five identical experimental runs. For systems of benzoic acid coated on various materials and 13 wt %, 20 wt % and 35.5 wt %, the values of Sherwood number are the average values of at least three identical experimental runs.

This work is to find mass transfer correlation of solid - liquid systems in standard agitated vessel. The solubilities of benzoic acid into water and sucrose solution are low resulting in low flux mass transfer.

There are some important parameters on solid - liquid mass transfer in agitated vessel such as rotation speed, temperature, density difference between solid and liquid system, impeller type, level of agitation, particle size, shape of particles, ratio of turbine diameter to tank diameter, diffusivity, viscosity etc. In this work the important parameters that is the rotation speed, temperature and density difference between solid and liquid are varied. In order to obtain solid with different densities, benzoic acid is coated on various materials. To obtain different Table 5.14 Mv vs Sh_p of Benzoic Acid Coated on Various Materials - Water at 35 °C, Re = 5.1×10^4 , Sc = 677, T = 20 cm, Liquid Density = 0.9940 g/cm³

Benzoic acid coated on	Density difference (g/cm ³)	$Mv = sp/p_1$	Shp
Glass beads Polystyrene	0.4079	0.4104	24Ø
spheres Plastic particles	0.2426	0.2441	225
type 1 Plastic particles	0.1925	0.1937	265
type 2	0.1298	0.1306	242

Table 5.15 Mv vs Sh_p of Benzoic Acid Coated on Various Materials - 13 wt % Sucrose in Water at 35 °C, Re_p = 3.95x10⁴, Sc = 2,355, T = 20 cm, Liquid Density = 1.0777 g/cm³

Benzoic acid coated on	Density difference (g/cm ³)	$Mv = \Delta p/p_1$	Shp
Glass beads Plastic particles	0.3573	0.3420	373
type 1 Plastic particles	0.1419	Ø·1358	400
type 2	0.0792	0.0758	385

Table 5.16 Mv vs Sh of Benzoic Acid Coated on Various Materials - 20 wt % Sucrose in Water at 30 °C, Re = 2.87x10⁴, Sc = 1,210, T = 20 cm, Liquid Density = 1.0472 g/cm³

Benzoic acid coated on	Density difference (g/cm ³)	$Mv = \Delta p/p_1$	Shp
Glass beads Polystyrene	0.3243	0.3009	438
spheres Plastic particles	Ø.1589	0.1475	451
type 1 Plastic particles	0.1088	0.1010	411
type 2	0.0462	0.0429	431

Table 5.17 Mv vs Sh of Benzoic Acid Coated on Various Materials - 35.5 wt % Sucrose in Water at 30 °C, Re = 1.53x10⁴, Sc = 10,764, T = 20 cm, Liquid Density = 1.1510 g/cm³

Benzoic acid coated on	Density difference (g/cm ³)	$Mv = \Delta \rho / \rho_1$	Shp
Glass beads	0.2510	0.2181	780
Polystyrene spheres Plastic particles	0.0857	0.0745	810
type 1 Plastic particles	0.0356	0.0309	780
type 2	-0.0253	-0.0235	749

Table 5.18 Mv vs Sh_p of Benzoic Acid Coated on Various Materials - 35.5 wt % Sucrose in Water at 35 °C, Re_p = 1.5x10⁴, Sc = 8,469, T = 20 cm, Liquid Density = 1.1491 g/cm³

Benzoic acid coated on	Density difference (g/cm ³)	Mv = Ap/p1	Sh _p
Glass beads Polystyrene	0.2529	0.2201	690
spheres Plastic particles	0.0876	0.0762	720
type 1 Plastic particles	0.0375	0.0326	705
type 2	-0.0252	-0.0219	690

์ ศูนย์วิทยทรัพยากร เหาลงกรณ์มหาวิทยาลัย

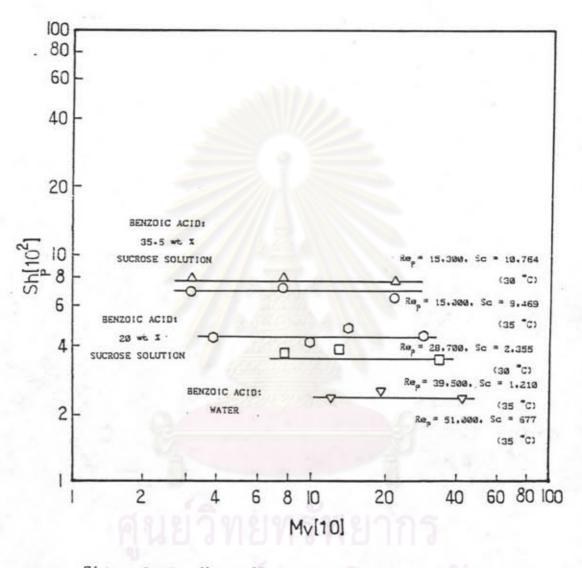
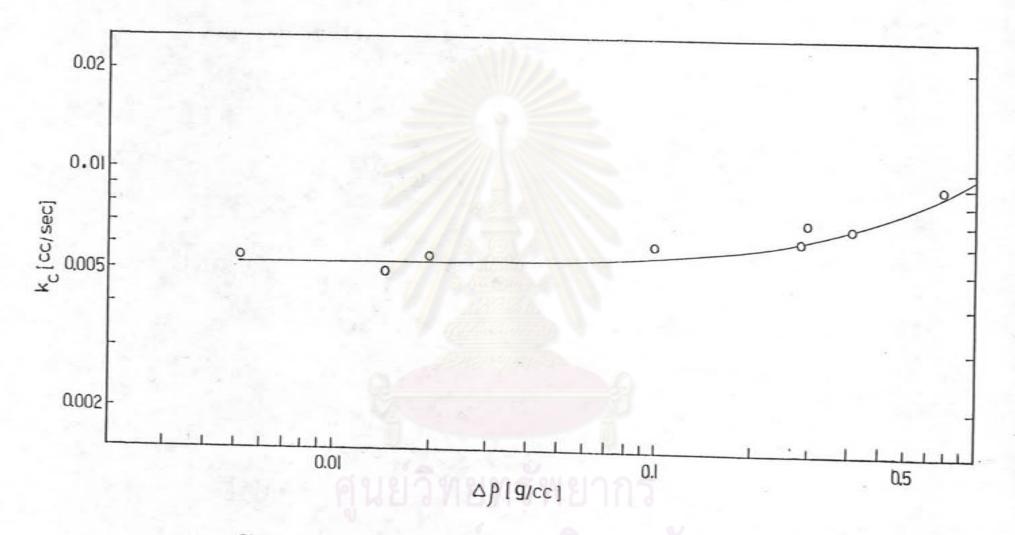


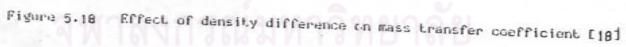
Figure 5.17 Mv vs Sh for the systems of benzoic acid coated on various materials and water: 13 wt %, 20 wt % and 35.5 wt % sucrose in water at the temperatures 30 °C or 35 °C

densities between solid and liquid, water, 13 wt %, 20 wt % and 35.5 wt % sucrose in water are used.

Figure 5.17 shows that the density group, Mv, is not a significant parameter of the systems used, that is benzoic acid coated on glass beads, polystyrene spheres, plastic particles type 1 and type 2 and water, 13 wt %, 20 wt % and 35.5 wt % sucrose in water. This result agrees with those of most investigators [6,18]. Harriott [18] shows that for density difference less than 0.4 g/cm^3 has insignificant influence, Figure 5.18.


In this work the limits of variation of various demensionless groups are

 1.04×10^{4} < Re < 7.7 × 10^{4} 411 < Sc < 14.318 -0.0219 < Mv < 0.4104


Thus a general solid - liquid mass tranfer correlation in standard agitated vessel for above systems are conveniently expressed by the equation

 $Sh_{p} = rRe_{p}^{P}Sc^{\Psi}$

By analytical calculation technique r for each system is obtained, see Table 5.19

×

Experimental systems	r	Range of Re	Range of Sc
System I	1.90×10 ⁻⁸	4x10 ⁴ - 7.7x10 ⁴	411 - 1,032
System II	3.00×10 ⁻⁵	3×10 ⁺ - 5×10 ⁺	1,210 - 1,516
System III	3.57×10-5	2.2×10 ⁴ - 4.5×10 ⁴	1,539 - 3,043
System IV	6.48x10-5	1.04×10 - 2.2×10	7,072 - 14,318

Table 5.19 Values of r for this Experimental Systems

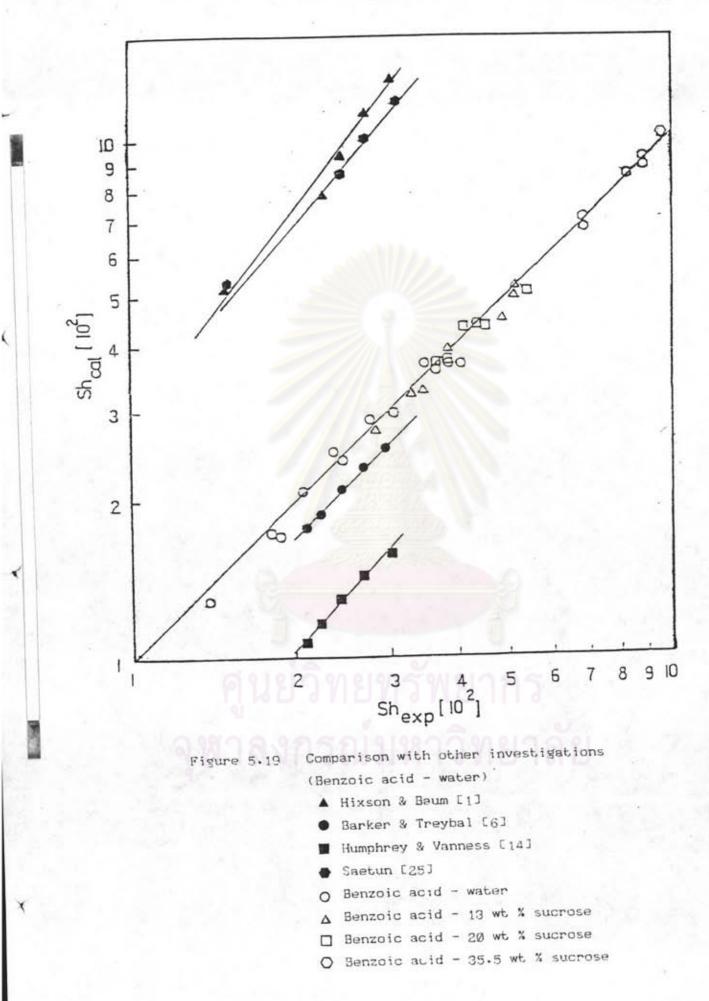
where

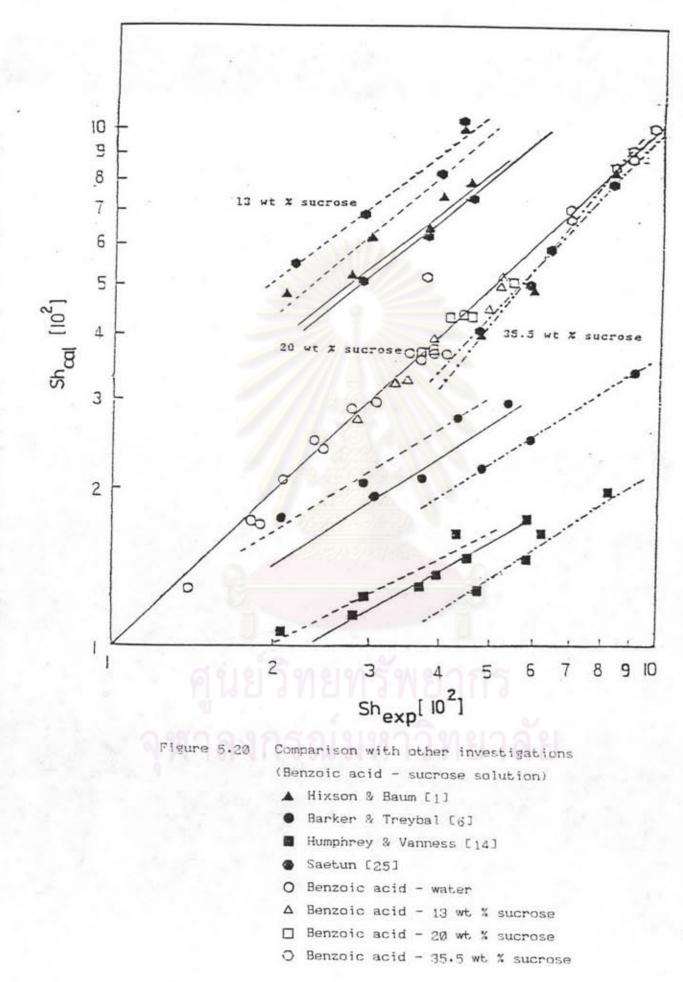
System	I	is benzoic acid coated on various materials
		- water
System	11	is benzoic acid coated on various materials
		- 13 wt % sucrose in water
System	111	is benzoic acid coated on various materials
		- 20 wt % sucrose in water
System	IV	is benzoic acid coated on various materials
		- 35.5 wt % sucrose in water

In this work the correlations obtained are as follows, see Table 5.20.

Table 5.20 General Solid - Liquid Mass Transfer Correlation in this Work

Experimental systems	Correlation		
System I	1.90×10 ⁻⁵ Re ^{1.21} Sc ^{0.50}		
	4×10^{4} < Re < 7.7 × 10 ⁴		
	411 < Sc < 1,032		
System II	3.00×10 -6 Rep 1.21 Sc		
	3x10 ⁺ < Re _p < 5x10 ⁺		
	1,210 < Sc < 1,516		
System III	3.57×10 Rept. 21 Sco.50		
	2.2x10 ⁺ < Re _p < 4.5x10 ⁺		
	1,539 < Sc < 3,043		
System IV	6.48×10 Rep ^{1.21} Sc ^{0.30}		
	1.04x10 ⁴ < Re _p < 2.2x10 ⁴		
	7,072 < Sc < 14,318		


5.4 Comparison of the Experimental Results with Others


In this present work, experimental mass transfer coefficients of benzoic acid coated on various materials in water, 13 wt %, 20 wt % and 35.5 wt % sucrose in water are obtained at serveral speeds of the agitator and temperatures. The exponents of Reynolds number and Schmidt number of this experiment are compared with other investigators, see Table 5.21.

Authors	Ref.	Exponent of Re	Exponent of Sc	System of agitator utilize
Hixson and Baum	t11	0.62, 1.40	0.5	Turbine in curve with 45°,
Barker and Treybal	[6]	0.83	0.5	Marine propeller Standard 6-bløded turbine
Askew and Beckmann	[7]	0.55	0.30	6-bladed turbine
Humphrey and Van Ness	C141	0.87	0.58	Standard 6-bladed turbine
Penkha Saetun	Fred			
	[25]	1+269	0.465	Standard 6-bladed turbine
Boon-Long	[28]	0.28	0.46	Standard 6-bladed turbine
Keey and Glen	[8]	0.8	0.5	Paddle
This work	ROS	1.21	0.5	Standard 6-bladed turbine

Table 5.21 Comparison of the Exponents of Re and Sc of this Work with Other Investigators

A

The results obtained in this work are compared with other correlations in term of experimental Sherwood number versus calculated Sherwood number, see Figure 5.19 and Figure 5.20.

The results of this work are shown in Table 5.21. Figures 5.19 and 5.20. The results have some differences with other investigators because the agitating system. the system of solid liquid used and the experimental conditions are not the same. As seen from Figure 5.19, for the system of benzoic acid coated on various materials - water, the results of this work are 111 agreement with those of Barker and Treybal [6] and Humphrey and Van Ness [14]. For Figure 5.20, for the systems of benzoic acid coated on various materials - sucrose solutions, the results of this work are in agreement with these of Hixson and Baum [1], Saetun [25] and Barker and Treybal [6]. These investigators also studied low flux mass transfer systems as this work studied. For the agitation systems they used standard six bladed turbine and used the vessels with baffles as in this work. Especially Barker and Treybal used benzoic acid and other substances as solids and water and 45 wt % sucrose solution as liquids.

It shows that the correlation in this work is rather general because this work used four different types of solid liquid systems. It can be seen that for each solid - liquid system, the exponent of Reynolds number and of Schmidt number is the same as the other workers.