CHAPTER 2

X-RAY FLUORESCENCE TECHNIQUE

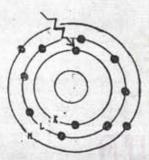
2.1 Introduction

X-ray fluorescence (XRF) technique has been widely used for elemental analysis not only in the laboratory but also in the field. This technique can be done rapidly and nondestructively over a wide range of elemental concentration.

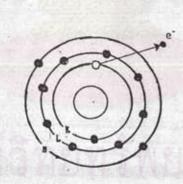
In XRF analysis, the sample is exposed to photons (γ -or X-rays) or charged particles (usually protons and electrons) which cause the sample atoms to fluoresce. The energies of these fluorescent X-rays are characteristic of the atomic number (Z) of the atoms excited; hence the concentrations of specific elements can be determined from measurements of the intensities of their respective fluorescent X-rays.

2.2 Basic Principles1, 2, 3, 4, 5

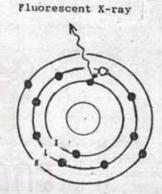
When a charged particle or a photon interacts with an atom, several phenomena may take place. If the particle or photon had sufficient energy, an electron in the inner shell


(K or L) may be ejected from the atom resulting in the creation of an electron hole. The hole will be filled by an electron from the outer shell which has higher energy and the extra energy is emitted as a fluorescent X-ray or so called a characteristic X-ray.

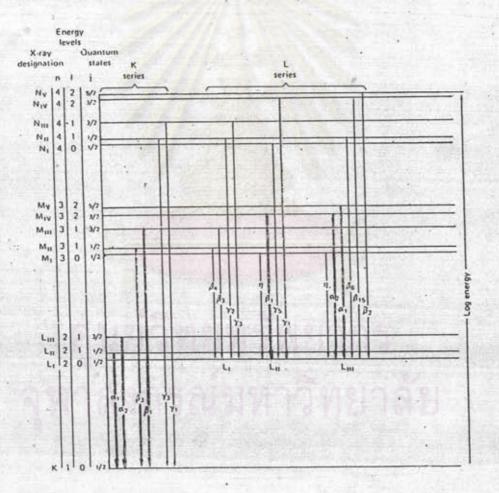
- Let Eo = energy level of the electron from the outer shell,
 - Ei = energy of the inner shell where the electron hole is created,

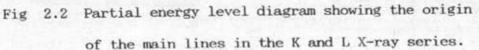

and E_x = energy of the fluorescent X-ray.

Thus $E_x = E_0 - E_i$.


Charged particle or photon

(i) Interaction of charged (ii) Ejection of an particle or photon with an atomic electron


atomic electron



(iii) Electronic transition and emission of fluorescent X-ray

Fig 2.1 Emission of fluorescent X-ray.

The life time of the K and L hole varies between 10^{-9} and 10^{-16} second. The different X-ray groups are labelled by capital letters corresponding to the shell with electron vacancies and suffixed for the electrons which drop into the vacancies (K_{α} , K_{β} , L_{α} , L_{β} , L_{γ} , etc.). The number of X-ray groups with different energies is very large, corresponding to the various combinations of atomic electron shells and subshells. Figure 2.2 shows the electronic energy level diagram with the origin of the main lines in the K and L X-ray series.

The energy of an X-ray line is characteristic for each of the elements, and increases with increasing atomic number as can be seen in Table 2.1. The energies of K and L X-ray are in the ranges of about 50 eV - 140 keV and 350 eV - 20 keV respectively. In practice, the energies from 1 keV up to 100 keV are usually involved in XRF analysis.

To eject a K or an L electron from an atom, the incident photon or charged particle must overcome the binding energy between the electron and the nucleus i.e. Kab or Lab as tabulated in Table 2.1. Therefore, the incident photon must have an energy equal to or greater than Kab or Lab in order to knock a K or L electron out of its atom. The Linb, Linb and Linbb are the binding energies of L electrons in subshell I, II and III respectively.

Atomic		6 - S - H		K series		-			1	L se	ries	-		1997 I.C.
Num- ber	Element	Kab	<i>Kβ</i> 1	<i>Kβ</i> 1	Kai	Kaı	11.0	L11.5	Lillas	Lyı	L\$.	Lβı	Lai	Loi
2 3 4 5	Hydrogen Helium Lithium Beryllium Boron	0.0136 0.0246 0.055 0.116§ 0.192†		a financia	0.0 0.1 0.1 0.2	10 85	in the second se	ų,						
6 7 8 9	Carbon Nitrogen Oxygen Fluorine Neon	0.283 0.399 0.531 0.687† 0.874*		5	0.3	92 23	0.0481	0.022†	0.0221					
11 12 13 14	Bodium Magnesium Aluminum Bilicon Phosphorus	1.08* 1.303 1.559 1.838 2.142		1.067 1.297 1.553 1.832 2.136	1.0 1.2 1.487 1.740 2.015		0.087 0.118*	0.034§ 0.050 0.073** 0.099** 0.129§						
16 17 18 19 20	Sulphur Chlorine Argon Potassium Calcium	2.470 2.819 3.203 3.007 4.038	L L	2.464 2.815 3.1925 3.589 4.012	2.308 2.622 2.957 3.313 3.691	2.306 2.621 2.955 3.310 3.688	0.238* 0.287*	0.164** 0.2035 0.247** 0.297** 0.352	0.2025			0.344		0.341
21 22 23 24 25	Scandium Titanium Vanadium Chromium Manganese	4.496 4.964 5.463 5.988 6.537		4.460 -4.931 -5.427 -5.946 6.490	4.090 4.510 4.952 5.414 5.898	4.085 4.504 4.944 5.405 5.887	0.530*		0.454**			0.399 0.458 0.519 0.581 0.647		0.305 0.452 0.510 0.571 0.636
26 27 28 29 30	Iron Cobalt Nickel Copper Zinc	7.111 7.709 8.331 8.080 9.000	8.328 8.970 9.657	7.057 7.649 8.204 8.904 9.571	6.403 6.930 7.477 8.047 8.638	6.300 0.015 7.460 8.027 8.615	0.849* 0.029* 1.015* 1.100* 1.200*	0.794** 0.871** 0.953	0.779*	•		0.717 0.700 0.800 0.048 1.032	.e	0.704 0.775 0.849 0.928 1.009

Table 2.1: X-Ray Critical Absorption and Emission Energies in keV.

Atomi		K series					L series							
Num- ber	Element	K	Κβ1	<i>Kβ</i> 1	Kan	Kaı	Link	Lilab	LIIIsh	Lyı	L\$:	LB1	La	Lai
31 32 33 34 35	Gallium Germanium Arsenic Selenium Bromine	10.368 11.103 11.863 12.652 13.475	10.365 11.100 11.863 12.651 13.465	10.263 10.981 11.725 12.495 13.290	9.251 9.885 10.543 11.221 11.923	9.234 9.854 10.507 11.181 11.877	1.30* 1.42* 1.529 1.652 1.7945	1.134** 1.248** 1.359 1.473 1.599**	1.217** 1.323 1.434			1.122 1.216 1.317 1.419 1.526	1. 1. 1.	096 186 282 379 480
36 37 38 39 40	Krypton Rubidium Strontium Yttrjum Zirconium	14.323 15.201 16.106 17.037 17.998	14.313 15.184 16.083 17.011 17.969	14.112 14.960 15.834 16.736 17.666	12.648 13.394 14.164 14.957 15.774	12.597 13.335 14.097 14.882 15.690		1.727** 1.860 2.008 2.154 2.305			2.219	1.638 1.752 1.872 1.996 2.124		587** 1.692 1.805 1.920
41 42 43 44 45	Niobium Molybdenum Technetium Ruthenium Rhodium	18.987 20.002	18.951 19.904	18.621 19.607 -20.5851 21.655 22.721	16.614_	16.520 17.373	2.700 2.884	2.467** 2.627 2.795§	2.374 2.523	2.462 2.623	2.367 2.518 2.674§ 2.836 3.001	2.257 2.395	2.106 2.293	2.040 2.163 2.290 2.420 2.554 2.692
46 47 48 49 50	Palladium Silver Cadmium Indium Tin '	24.347 25.517 26.712 27.928 29.190	24.297 25.454 26.641 27.859 29.106	23.816 24.942 26.093 27.274 28.483	21.175 22.162 23.172 24.207 25.270	21.018 21.988 22.982 24.000 25.042	3.617 3.810 4.019 4.237 4.464	3.329 3.528 3.727 3.939 4.157	3.172 3.352 3.538 3.729 3.928	3.328 3.519 3.716 3.920 4.131	3.172 3.348 3.528 3.713 3.904	2.990 3.151 3.316 3.487 3.662	2.838 2.984 3.133 3.287 3.444	2.833 2.978 3.127 3.279 3.435
51 52 53 54 55	Antimony Tellurium Iodine Xenon Cesium	30.486 31.809 33.164 34.579 35.959	30.387 31.698 33.016 34.446¶ 35.819	29.723 30.993 32.292 33.644 34.984	26.357 27.471 28.610 29.802 30.970	26,109 27,200 28,315 29,485¶ 30,623	4.697 4.938 5.190 5.452 5.720	4.381 4.613 4.856 5.104 5.358	4.132 4.341 4.559 4.782 5.011	4.347 4.570 4.800 5.036§ 5.280	4.100 4.301 4.507 4.720§ 4.936		3.605 3.769 3.937	3.595 3.758 3.926 4.098 4.272
56 57 58 59 60	Barium Lanthanum Cerium Praseodymium Neodymium	37.410 38.931 40.449 41.998 43.571	37.255 38.728 40.231 41.772 43.298¶	36.376 37.799 39.255 40.746 42.269	32.191 33.440 34.717 36.023 37.359	31.815 33.033 34.276 35.548 36.845	5.995 6.283 6.561 6.846 7.144	5.623 5.894 6.165† 6.443 6.727	5.247 5.489 5.729 5.968 6.215	5.531 5.789 6.052 6.322 6.602	5.156 5.384 5.613 5.850 6.090	4.828 5.043 5.262 5.489 5.722	4.467 4.651 4.840 5.034 5.230	4.451 4.635 4.823 5.014 5.208
61 62 63 64 65	Promethium Samarium Europium Gadolinium Terbium	45.207§ 46.846 48.515 50.229 51.998	44.955§ 46.553¶ 48.241 49.961 51.737	-43.9459 45.400' 47.027 48.718 50.391	38.0491 40.124 41.529 42.983 44.470	38.160¶ 39.523 40.877 42.280 43.737		7.0185 7.2811 7.624 7.940 8.258	6.721 6.983 7.252	6.891 7.180 7.478 7.788 8.104	6.336§ 6.587 6.842 7.102 7.368	5.956 6.200 6.456 6.714 6.979	5.431 5.636 5.846 6.059 6.275	5.408 5.609 5.816 6.027 6.241
66 67 68 69 70	Dysprosium Holmium Erbium Thulium Ytterbium	53.789 55.615 57.483 59.335 61.303	53.491 55.292** 57.088 58.969** 60.959	55.690	49.099	45.193 40.686 48.205 49.762 51.326		8.621¶ 8.920 9.263 9.628 9.977	8.364 8.652	8.418 8.748 9.089 9.424 9.779	7.638 7.912 8.188 8.472 8.758	7.249 7.528 7.810 8.103 8.401	6.495 6.720 6.948 7.181 7.414	6.457 6.680 6.904 7.135 7.367
71 72 73 74 75	Lutecium Hafnium Tantalum Tungsten Rhenium	63.304 65.313 67.400 .69.508 71.662	62.946 64.936 66.999 69.090 71.220	61.282 63.209 65.210 67.233 69.298	54.063 55.757 57.524 59.310 61.131	54.579 56.270	11.676	10.734 11.130 11.535	9.556 1	10.142 10.514 10.892 11.283 11.684	9.048 9.346 9.649 9.959 10.273	8.708 9.021 9.341 9.670 10.008	7.654 7.898 8.145 8.396 8.651	7.604 7.843 8.087 8.333 8.584
76 77 78 79 80	Osmium Iridium Platinum Gold Mercury	73.860 76.007 78.379 80.713 83.106	73.393 75.605 77.866 80.165 82.526	71.404 73.549 75.736 77.968 80.258	62.991 64.886 66.820 68.794 70.821	61.477 63.278 65.111 66.980 68.894	13.413 13.873 14.353	12.819 13.268 13.733	10.869 1 11.211 1 11.559 1 11.919 1 12.285 1	12.509 12.939 13.379	10.918	10.706 11.069 11.439	8.010 9.173 9.441 9.711 9.987	8.840 9.098 9.360 9.625 9.896
81 82 83 84 85	Thallium Lead Bismuth Polonium Astatine	85.517 88.001 90.521 93.112 95.740	84.904 87.343 89.833 92.386 94.976	82.558 84.922 87.335 89.809 92.319	72.860 74.957 77.097 79.296 81.525	70.820 72.794 74.805 76.868 78.956	15.870 16.393 16.935	14.697 15.207 15.716 16.244	12.657 13.044 13.424 13.817 14.215	4.288 4.762 5.244 5.740	12.208 12.620 12.977 13.338	12.210 12.611 13.021 13.441	10.266 10.549 10.836 11.128	10.170 10.448 10.729 11.014
86 87 88 89 90	Radon Francium Radium Actinium Thorium	98.418 101.147 103.927 106.759 109.630	100.305 103.048 105.838	94.877 97.483 100.136 102.846 105.592	83.800 86.119 88.485 90.894 93.334	81.080	18.058 18.638 19.233 19.842	17.337 17.904 18.481 19.078	14.018 1 15.028 1 15.442 1 15.865 1 16.296 1	6.768 7.301 7.845 8.405	14.077. 14.459 14.839 15.227	14.316 14.770 15.233 15.712	11.724 12.029 12.338 12.650	11.597 11.894 12.194 12.499
91 92 93 94 95	Protactinium Uranium Neptunium Plutonium Americium	112.581 115.591 118.619 121.720 124.876	111.575 114.549 117.533 120.592	108.408 111.289 114.181	95.851 98.428 101.005 103.653	92.271 94.648 97.023 99.457	21.102 21.753 22.417 23.097	20.311 20.943 21.596 22.262	16.731 17.163 17.614 18.066 18.525	19.559 20.163 20.774 21.401	16.022 16.425 16.837 17.254	16.700 17.218 17.740 18.278	13.291 13.613 13.945 14.279	13.120 13.438 13.758 14.082
96 97 98 99 100	Curium Berkelium Californium	128.088 131.357 134.683 138.067 141.510	130.101 133.383 136.724	126.362 129.544 132.781	111.896 114.745 117.646	104.448 107.023 109.603 112.244 114.926	25.230 25.971 26.729	23.640 24.352 25.080 25.824	18.990 19.461 19.938 20.422 20.912	22.699 23.370 24.056 24.758	18.106 18.540 18.980 19.426	19.393 19.971 20.562 21.166	14.961 15.309 15.661 16.018	14.743 15.079 15.420 15.764

For $Z \leq 60$, values without symbols are derived from (1). Values profixed with $n - sign are K\beta_{1,n}$. For $Z \geq 70$, absorption-edge values are from (1) in the case of Z = 70-83, 85, 90, and 92; remaining absorption edges to Z = 100 are obtained from these by least-squares quadratic fitting. All emission values for $Z \geq 70$ are derived from the preceding absorption edges, and others based on (4), using the transition relations $K\alpha_1 = K_{ab} - L_{11}$, $K\alpha_1 = K_{ab} - L_{11}$, $K\beta_1 = K_{ab} - M_{11}$, etc. • Obtained from R. D. Hill, K_1 . Church, J. W. Millelich (3). Therived from Compton and Allison (2). I Derived from C. E. Moore (3). Y values derived from Cauchois and Huisbein (1) which deviate from the Meseley law. Hetter-fitting values are: Z = 17, $K_{ab} = 2.920$; Z = 43, 48, -18.30, $K\alpha_1 = 18.320$, $K\alpha_1 = 20.012$; Z = 54, $K\alpha_1 = 20.779$, $K\alpha_1 = 29.403$, $K\beta_1 = 43.349$; Z = 61, $K\alpha_1 = 38.720$, $K\alpha_2 = 43.340$; Z = 61, $K\alpha_1 = 7.312$; Z = 66, $L_{11} = 7.790$; Z = 69, $Ka_2 = 50.382$, $K\beta_1 = 57.487$. • Calculated by method of heast squares.

2.2.1 Selection Rules

According to the quantum mechanics theory, the transition of an electron from an outer shell to an electron hole in the inner shell obeys the following "selection rules":

$$\Delta n \ge 1,$$

$$\Delta 1 = \pm 1,$$

$$\Delta j = \pm 1 \text{ or } 0,$$

where n is the principal quantum number,

l is the angular quantum number,

j is the total angular moment (angular

plus, spin),

hence $j = 1 \pm \frac{1}{2}$.

The possible electronic transitions can also be seen in Fig. 2.2 corresponding to the selection rules. The transition between K shell and L_I is an example of a forbidden transition because $\Delta 1 \neq \pm 1$

In practice, when a beam of photons or charged particles strikes the sample, a number of electron holes will be created in the sample atoms. The emission of each X-ray line depends upon:

(i) the probability that the incident photonswill ionize an atom in that subshell;

(ii) the probability that the electron hole created in that subshell will be filled by an electron from a particular subshell;
(iii) the probability that the emitted fluorescent X-ray will leave the atom without being absorbed within the atom itself.

For example, the most probable (most intense) K X-ray line, i.e. $K\alpha_1$ is emitted by the transition of electron from LIII to K. The probability of emission $K\alpha_2$ X-ray line (LII to K) is only about 50 % of the $K\alpha_1$ line. The thick lines in Fig. 2.2 indicate these two most intense lines.

The fluorescent X-ray may be absorbed by an outer electron of the atom resulting in its ejection from the atom. This phenomenon is known as "Auger effect" and the ejected electron is called the "Auger electron."

Let ω_{0} = fluorescence yield,

 n_f = the number of fluorescent X-rays that

effectively leave the atom in a period of time, and n = the number of electron holes formed in a period of time.

Thus, the fluorescence yield is defined by

 $v = \frac{n_f}{n}$

For example, the K fluorescence $yield(\omega_K)$ equals the number of K X-rays emitted devided by the number of electron holes formed in K shell (n_K) . Hence

$$\omega_{\mathrm{K}} = \frac{n_{\mathrm{f}}(\mathrm{K}\alpha_{\mathrm{l}}) + n_{\mathrm{f}}(\mathrm{K}\alpha_{\mathrm{2}}) + n_{\mathrm{f}}(\mathrm{K}\beta_{\mathrm{l}}) + \dots}{n_{\mathrm{K}}}$$

where $n_f(K\alpha_1)$, $n_f(K\alpha_2)$, $n_f(K\beta_1)$,...are the number of $K\alpha_1$, $K\alpha_2$, $K\beta_1$, ...X-ray lines emitted.

As there are only two competitive phenomena, the Auger effect yield can be defined by $1 - \omega$.

The fluorescence yield increases with increasing atomic number and ω_K is much larger than ω_L , and ω_L is much larger than ω_M as can be seen in Fig. 2.3

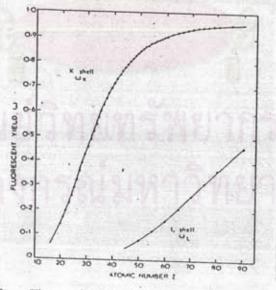


Fig 2.3 The relation between the fluorescence yield and the atomic number

2.3 <u>Elemental Analysis with Radioisotope Excited XRF</u> Spectrometer.

2.3.1 Intensity of Fluorescent X-rays

The basic principles of X-ray fluorescence (XRF) analysis are given below.

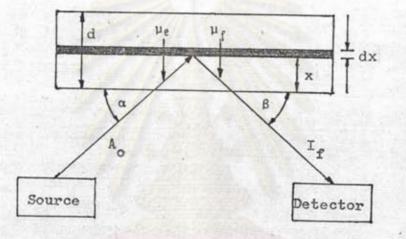


Fig. 2.4 Scheme for derivation of the X-ray fluorescence equation.

Fig. 2.4 shows X-rays incident on a sample interacting in a layer dx at a distance x from the sample surface, and the intensity dIr (counts/sec) of characteristic X-rays which are detected with overall efficiency k (including the geometrical efficiency G and the detector efficiency η , i.e., $k = G \cdot \eta$) is given by:

 $dI_{f} = k \Lambda_{o} \omega \tau C_{A} \rho \exp \left[-\mu_{e} \rho x \over \sin \alpha} \right] \exp \left[-\mu_{f} \rho x \over \sin \beta} \right] dx$

where Ao = source output, photon/sec,

ω

- = fluorescence yield of the element for K and L X-rays, respectively,
- r = photoelectric mass absorption coefficient of the element, cm²/g, at the incident energy,
- wt = X-ray excitation cross-section,
- C_{Λ} = weight concentration of the element A to be analyzed in the sample,
- ρ = density of the sample material, g/cm³,
- μ_e, μ_f = mass absorption coefficient of the sample material for the primary (incident) radiation, and for the excited (fluorescent) radiation cm²/g, respectively,
 - α,β = angles between the sample surface and the incident radiation and the fluorescent radiation, respectively.

By integrating for a specimen of thickness d (i.e., between x=0 and x=d) the general expression follows:

$$I_{f} = \frac{k A_{o} \omega \tau C}{\mu_{e} + \frac{\sin \alpha}{\sin \beta} \mu_{f}} \left[1 - \exp \left(\frac{\mu_{e}}{\sin \alpha} + \frac{\mu_{f}}{\sin \beta} \right) \rho d \right]$$

Inspite of a wide range of incident and emitted angles for central and annular source geometries it can be safely assumed that the radiation enters and leaves the sample normally. Therefore, If can be approximated by

$$I_{f} = \frac{kA_{o}\omega\tau C_{A}}{\mu_{e}+\mu_{f}} \left[1-\exp((\mu_{e}+\mu_{f}))\rho d\right]$$

The exponential term will rapidly decrease with increasing thickness d of the sample layer. As a consequence the saturation depth d_s is given by

$$d_{s} = \frac{3}{\rho(\mu_{e} + \mu_{f})}$$

which corresponds to 95% of the counts of an infinite sample layer often reached in practice. In these cases, the simplified expression of If holds:

$$I_{f} = \kappa \frac{C_{A}}{\mu_{e} + \mu_{f}}$$

with $K = kA_0 \omega \tau$

From the above equation, it follows that the fluorescent intensity of an element to be analyzed depends not only on the concentration C_A but also on the absorption characteristics of the sample, i.e. on the mass absorption coefficients of the specimen for both the incident and fluorescent radiation. Therefore, because other elements of a

sample affect these coefficients, the relationship between fluorescent intensity and weight concentration is generally linear in samples.

It is also necessary to consider the two types of scattered radiation, namely: "Coherent scattered radiation" and "Incoherent scattered radiation." Only the mass absorption coefficient for the incident radiation must be considered because of the equal energies of the incident and coherent scattered radiations. The intensity is thus given by

$$c = \frac{k_s A_o \sigma_c [1 - exp - (2\mu_e pd)]}{2\mu_e}$$

where σ_c - coherent scatter cross-section of the sample material at the incident energy, k_s - overall efficiency for the scattered radiation,

For the incoherent scattered radiation or the compton radiation, its intensity is

$$I_{ic} = \frac{k_s \lambda_o \sigma_{ic}[1 - exp - (\mu_e + \mu_{ic}) \rho d]}{\mu_e + \mu_{ic}}$$

where σ_{ic} - compton (incoherent) scatter cross-section at the incident energy, µ_{ic} - mass absorption coefficient of the sample material for the incoherent scattered radiation with an energy, being lost as a result of an inelastic scattering process.

From the relationship between the fluorescent radiation and the scattered radiation, an estimation of the signal-to-background ratio is possible. For instance, for infinitely thick samples, it follows approximately that

$$\begin{bmatrix} I_{f} \\ I_{c} + I_{ic} \end{bmatrix}^{\text{thick}} \approx \frac{K \omega \tau C_{A} \circ 2\mu}{K_{s} (\sigma_{c} + \sigma_{ic}) (\mu_{e} + \mu_{f})}$$

It may be helpful to note that

 $\mu_f \simeq \mu_{ic} > \mu_e$

However, τ , σ_c and σ_{ic} depend strongly upon the energy of the incident photons and the atomic number of the elements. In the range of 0-80 keV, $\tau > \sigma$ (where $\sigma = \sigma_c + \sigma_{ic}$) for heavier elements whereas σ is in order of τ for lighter elements. By using Si(Li) or Ge(Li) detector, $k_s >> k$ may be possible.

The intensity and the energy of the incoherent scattered photon depend on their scattering angles. As the scattering angle increases, the energy of scattered photon decreases. At a scattering angle of 180°, the energy of scattered photons is reduced to a minimum whereas the minimum intensity occurs at 90°. In practice, the intensity of the incoherent scattered peak can be minimized by positioning the detector at 90° with respect to the direction of primary X-ray beam.

Apart from the fluorescent X-ray peaks, the following peaks can also be seen in the spectrum:

- coherent scattered peak with energy equal to that of the primary photon.
- incoherent scattered peak with its energy peak equal to

$$E' = \frac{E}{1 + \frac{E}{511}(1 - \cos\theta)}$$

where E is the energy of the primary photon in keV,

E is the energy of the incident scattered peak in keV, and

 θ is the scattering angle.

It should be noted that the incident scattered peak is broader comparing other peaks. This is because of the energy distribution of incoherent scattering of primary photons through different angles.

- escape peaks resulting from escaping of characteristic X-ray of the detector materials i.e. Si X-ray for Si(Li) detector, Ge X-ray for Ge detector, Xe X-ray for Xe-filled detector and so forth. As a result, there also are escape peaks at the lower end of the spectrum which are separated from the parent lines and appear at the energies of Eparent less the energy of Si K, Ge K, Xe L, etc., accordingly. This only happens when energy of the photon is greater than the absorption edge of the detector material. Take the case at Eparent = 20 keV, the escape peak energies will appear at for

- Si(Li) detector E = Eparent-Si K = 20 - 1.740 = 18.260 keV, - Ge detector E = Eparent-Ge K = 20 - 9.885 = 10.115 keV, and - Xe-filled detector E = Eparent-Xe L = 20 - 4.111 = 15.889 keV.

These escape peaks may interfere or overlap lower energy peaks resulting in difficulties and errors in qualitative and quantitative analysis. Fig. 2.5 shows a spectrum of Nb K X-rays with their escape peaks including escape peaks of coherent and incoherent peaks (detected with HPGe detector).

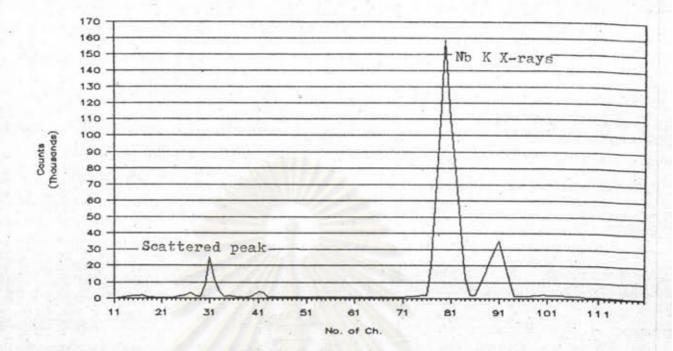
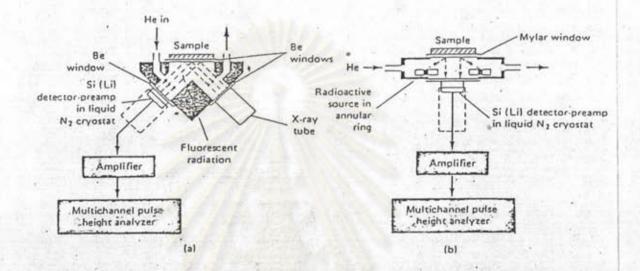
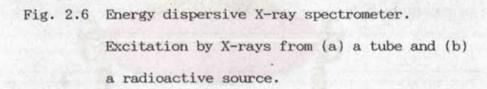




Fig. 2.5 Spectrum of Nb K X-rays showing the scattered peaks of primary photons from Cd-109 source detected with HPGe detector.

2.3.2 Radioisotope X-Ray Sources.

In wavelength dispersive spectrometer, the fluorescent X-rays of the specimen are stimulated by high intensity X-ray tube and detected with the help of a diffracting crystal-goniometer-collimator system. For energy dispersive spectrometer, the specimen can be stimulated by a radioisotope source or an X-ray tube hence its secondary fluorescent X-rays will be detected directly with a suitable detector, without a diffracting crystal as illustrated in Fig. 2.6

In this research, only a radioisotope excited energy dispersive X-ray (EDX) spectrometer, is designed, constructed and tested for analysis of sulfur and lead in fuel oils. There are a lot of reasons for that choice. Firstly, its speed is over the wavelength dispersive spectrometer, secondly it can measure all expected and unexpected elements, thirdly it can display the data and ease the interpretation, fourthly there are only a fewer geometric constraints and finally it is lower cost; moreover, its composing instruments can be sought easily for the measurement.

The following components are decisive for radioisotope X-ray spectrometer;

- the radioisotope source for the excitation of characteristic X-rays,
- (2) the detection system for isolating secondary X-rays and for measuring the intensity of the isolated X-rays of an element,
- (3) the sample-source-detector geometrical arrangement which has to secure an efficient use of the radiation.

In table 2.2, the X-ray and gamma-emitting

sources used in the EDX analysis are given. For an efficient excitation of the characteristic X-rays of elements sought in a sample and for their identification, the following rules may be useful:

Firstly, for a multielement analysis, the energy of the exciting X-ray or gamma-ray must be above the energy of the K or L absorption edge of the interesting elements which are characterized by energies from 1.0 keV to 98 keV (corresponding to the K absorption of Na with atomic number Z = 13 to U with Z = 92) and 2 keV to 20 keV (corresponding to the L absorption of Zr with Z = 40 to U, also seeing in Table 1), respectively. In order to avoid an overlap of K X-lines by L X-lines of heavy elements, the exciting source should be adapted to the K absorption edge of the element with the highest atomic number of the sample if for this element Z<40. Moreover, because the efficiency of excitation of an element decreases with an increasing energy gap between the absorption edge and the photon energy of the source for multielement analysis, the selection of several sources may be advantageous and should be taken into consideration.

Secondly, in selecting excitation sources, a careful test on the purity of the X-ray or gamma-spectrum emitted from radioisotopes which are encapsulated above all in annular or point source is necessary.

Finally, isotope-excited X-ray fluorescence spectra are characterized by a high background, i.e. lines at energies other than the characteristic lines, resulting above

all from radiation scattered from the sample and from components of the measurement assembly. The scattered photons of the exciting primary photons may constitute a large part (up to 99%) of the observed counts. The scattering background also includes the coherent and incoherent scattering.

In summary, for the practical use of commercial and, above all, specially developed radioisotope X-ray fluorescence system, a careful selection of exciting sources or source target arrangement, is important. Moreover, above all the influence of the backscattered photons of the exciting source photons must be carefully determined and efforts made for a reduction of backscatter interference as much as possible.

Source	mCi	Geo- metry*	Decay mode**	Half-life	Emission, keV	Yield, % per disintegra- tion	Element coverage, atomic number	
**Fe	50	A	EC	2.7 a	5.9[MnK]	26	9 - 24	
**Fe	25	D	10.00				1	
""Cd	5	A	EC	453 d	22.1[AgK]	107	20 - 43	
""Cd	3	D	1111		87.7171	. 4	20 - 4.	
**'Am	60	A	a	458 a	59.6171	36		
**'Am	10	A	100	1.	14-22[NpL]	37	28 - 69	
			La ma		26.4[7]	40		
***Pu	30	D	.α.	86.4 a	12-17(UL)	10	23 - 3 56 - 8	
	153	- Arra	Constant of		144 [7]	9.7		
	in the	1000	1		136[7]	11.1	70 - 9	
"Co	10	A	EC	270 d	122[7]	85.2	10-9	
	1 2	1	1 3 -		6.4 [FeK]	51.0		

Table 2.2 : Exciting Sources.

"A - annular source;

D - disc source.

**EC - electron capture.

Techniques for XRF analysis are based on the use of solid-state, scintillation and proportional detectors. The techniques are different for each type of detectors because of their large differences in resolving power for X-rays (Fig. 2.7 and 2.8).

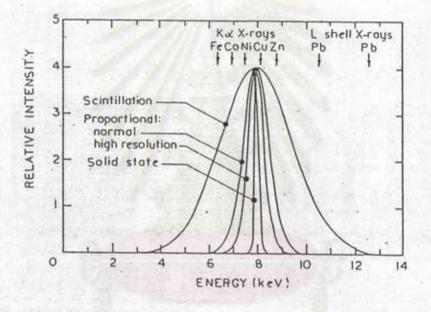


Fig. 2.7 Resolution of X-ray detectors for Cu K_α X-rays illustrated in relation to energies of fluorescent X-rays of some elements commonly determined in on-stream analysis.

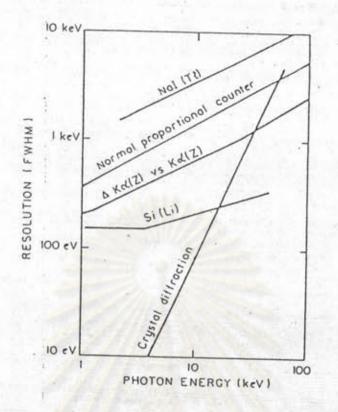


Fig. 2.8 Energy resolution of detectors and adjacent element K X-ray peak separation.

Solid-state detectors resolve K X-rays from elements of adjacent atomic number (Z), hence element concentration is obtained by simple signal processing. Proportional counters (high resolution) have worse resolving power which results in some spectral processing is required. Scintillation detectors cannot resolve adjacent Z elements so analysis combines coarse spectral analysis to separate fluorescent from backscattered X-rays with the use of X-ray filters to isolate the K X-rays.

(1) XRF Analysis Using Solid State Detectors

Solid-state detectors are mainly used to analyse mineral sample in laboratory, but they are in limited use for on-stream analysis. The main advantage is that their high resolution enable simultaneous multielement analysis with excellent sensitivity. Minimum detectable levels are, for Z>24, about 20-50 parts per million (ppm). Analysis for low Z elements, e.g. silicon and aluminium, is also possible but considerable sample preparation is essential to ensure homogeneous samples.

(2) XRF analysis using scintillation detectors

Scintillation detectors have found many applications in the field, in industrial plants and in the laboratory for routine quantitative and semi-quantitative determination of minor and major elements in a wide range of solids and liquids such as ores, metals and solutions. The advantages of XRF analysis using scintillation detectors are that the sensitivity is adequate for many practical applications, minimum detectable levels for very favourable cases can be as low as 50 ppm, but usually they are in the range 100 to 300 ppm. Multielement analysis is probably unpractical because it would require a mechanically complex filter changer with two filters for each element to be determined.

(3) XRF analysis using proportional detectors

Recent developments is proportional detectors have led to a moderate improvement in X-ray resolution. Energy resolution is now sufficient to enable adjacent elements to be measured simultaneously if their concentrations are similar. In practice, counts between the FWHM (Full width at half maximum) of the fluorescent X-ray spectral peaks are measured and corrections made for the overlap X-ray peaks from adjacent elements. Correction for sample matrix absorption are made using the measured intensity of back scattered X-rays,

The above system can be used for the simultaneous determination of up to about four close Z elements. Sensitivity and accuracy are about the same as for scintillation detectors for elements of Z>25, and considerably better for lower Z elements.

2.3.4 Quantitative Analysis with XRF Technique

According to

$$I_{f} = K \frac{C_{A}}{\mu_{e} + \mu_{f}}$$

The relationship between the fluorescent intensity of an X-ray peak and concentration of an element (C_A) is usually not linear in thick layers due to matrix absorption (μ) or enhancement effects. However, in the range of low concentrations a linear calibration function can generally be obtained which is suitable for the determination of the detection limit.

There are various techniques for quantitative analysis such as the calibration method, the dilution method, the standard addition method and the internal standard method in order to overcome the matrix effects. In this research, it will only refer to the calibration method.

Calibration Against Standards.

Here, the relationship between the

analytical line intensity and the concentration is determined empirically with a set of standards that closely approximate the samples overall composition. This technique is applicable only when the absorption and enhancement effects are identical for both samples and standards.