

กรอบการทํางานสุม่เพิมกลุม่ข้อมลูด้อยด้วยความหนาแน่นสําหรับปัญหากลุม่ข้อมลูอสมดลุ

นายชมุพล บญุคุ้มพรภทัร

วิทยานิพนธ์นีเป็นสว่นหนงึของการศกึษาตามหลกัสตูรปริญญาวิทยาศาสตรดษุฎีบณัฑิต

สาขาวิชาวทิยาการคอมพิวเตอร์

ภาควิชาคณิตศาสตร์และวิทยาการคอมพวิเตอร์

คณะวิทยาศาสตร์ จฬุาลงกรณ์มหาวิทยาลยั

ปีการศกึษา 2554

ลขิสทิธิของจฬุาลงกรณ์มหาวทิยาลยั

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR)

เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

THE DENSITY-BASED MINORITY OVER-SAMPLING FRAMEWORK

FOR CLASS IMBALANCED PROBLEMS

 Mr. Chumphol Bunkhumpornpat

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Program in Computer Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University
Academic year 2011

Copyright of Chulalongkorn University

Thesis Title THE DENSITY-BASED MINORITY OVER-SAMPLING
FRAMEWORK FOR CLASS IMBALANCED PROBLEMS

By Mr. Chumphol Bunkhumpornpat
Field of Study Computer Science
Thesis Advisor Assistant Professor Krung Sinapiromsaran, Ph.D.
Thesis Co-advisor Professor Chidchanok Lursinsap, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Doctoral Degree

 ……………………………………………….. Dean of the Faculty of Science
 (Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

 ……………………………………………….. Chairman
 (Assistant Professor Jaruloj Chongstitvatana, Ph.D.)

 ………………………………………….……. Thesis Advisor
 (Assistant Professor Krung Sinapiromsaran, Ph.D.)

 ……………………………………………….. Thesis Co-advisor
 (Professor Chidchanok Lursinsap, Ph.D.)

 ……………………………………………….. Examiner
 (Assistant Professor Saranya Maneeroj, Ph.D.)

 ……………………………………………….. Examiner
 (Siripun Sanguansintukul, Ph.D.)

 ……………………………………………….. External Examiner
 (Kamol Keatruangkamala, Ph.D.)

iv

ชมุพล บญุคุ้มพรภทัร : กรอบการทํางานสุม่เพิมกลุม่ข้อมลูด้อยด้วยความหนาแน่น

สําหรับปัญหากลุม่ข้อมลูอสมดลุ. (THE DENSITY-BASED MINORITY OVER-

SAMPLING FRAMEWORK FOR CLASS IMBALANCED PROBLEMS) อ. ที

ปรึกษาวทิยานิพนธ์หลกั : ผศ.ดร. กรุง สนิอภิรมย์สราญ, อ. ทีปรึกษาวทิยานิพนธ์ร่วม

: ศ.ดร. ชิดชนก เหลือสนิทรัพย์, 70 หน้า.

 เซตข้อมลูจดัอยูใ่นปัญหากลุม่ข้อมลูอสมดลุเมือกลุม่ข้อมลูเป้าหมายมีจํานวนข้อมลู

น้อยมากเปรียบเทียบกบักลุม่ข้อมลูอืน ตวัจําแนกกลุม่ข้อมลูโดยทวัไปมีความผิดพลาดในการ

ทํานายกลุม่ข้อมลูด้อยนีเพราะจํานวนข้อมลูในกลุม่มีขนาดเลก็ วิทยานิพนธ์ฉบบันีได้นําเสนอ

กรอบการทํางานสุม่เพิมกลุม่ข้อมลูด้อยด้วยความหนาแน่น กรอบการทํางานนีถกูออกแบบให้

สุม่เพิมข้อมลูในกลุม่ข้อมลูรูปร่างทวัไป โดยใช้หลกัความหนาแนน่ของกลุม่ข้อมลู กลา่วโดย

ละเอียด กรอบการทํางานนีสร้างข้อมลูสงัเคราะห์ตามแนววิถีสนัสดุระหวา่งข้อมลูแตล่ะตวั

และจดุเซนทรอยด์เทียมในกลุม่ข้อมลูของกลุม่ข้อมลูด้อย ดงันนั เซตของข้อมลูสงัเคราะห์มี

ความหนาแนน่ใกล้จดุเซนทรอยด์เทียมและมีความเบาบางไกลจดุเซนทรอยด์เทียม จากการ

กระจายของเซตข้อมลูดงักลา่ว ตวัจําแนกกลุม่ข้อมลูเน้นการเรียนรู้บริเวณแกนมากกวา่

บริเวณขอบของกลุม่ข้อมลู ผลการทดลองแสดงให้เห็นวา่กรอบการทํางานนีพฒันา ความ

แมน่ยํา คา่เอฟ (เทอมรวมของพรีซชินัและรีคอล) และ เอยซูี มากกวา่ขนัตอนวธีิสโมทและเซฟ

เลเวลสโมท

ภาควิชาคณิตศาสตร์และ .

 วิทยาการคอมพวิเตอร์ .

ลายมือชือนิสติ..

สาขาวิชาวทิยาการคอมพิวเตอร์ . ลายมือชือ อ.ทีปรึกษาวทิยานิพนธ์หลกั...........

ปีการศกึษา 2554 . ลายมือชือ อ.ทีปรึกษาวทิยานิพนธ์ร่วม……….

v

5073820723 : MAJOR COMPUTER SCIENCE

KEYWORDS : CLASS IMBALANCED / OVER-SAMPLING / DENSITY-BASED

CHUMPHOL BUNKHUMPORNPAT : THE DENSITY-BASED MINORITY OVER-

SAMPLING FRAMEWORK FOR CLASS IMBALANCED PROBLEMS.

ADVISOR : ASST. PROF. KRUNG SINAPIROMSARAN, Ph.D.

CO-ADVISOR : PROF. CHIDCHANOK LURSINSAP, Ph.D., 70 pp.

 A dataset embodies the class imbalanced problem when the target class has

a very small number of instances relative to the other classes. A trivial classifier

typically fails to predict the positive instances due to its tiny size. In this thesis, the

density-based minority over-sampling framework is proposed. It relies on a density-

based notion of clusters and is designed to over-sample an arbitrarily shaped cluster

discovered by the density-based clustering algorithm. In detail, my framework

generates a synthetic instance along the shortest path from each instance in a

cluster of a minority class to the pseudo-centroid of this cluster. Consequently, a set

of the synthetic instances is dense near the pseudo-centroid and is sparse far from

this centroid. Due to the distribution of the set, a classifier faces more emphatically

around the core region than it does around the border region. The experimental

results show that my framework improves accuracy, F-value (combination term of

Precision and Recall), and AUC of a classifier more than SMOTE and Safe-Level-

SMOTE.

Department : Mathematics and .

 Computer Science .

Student’s Signature

Field of Study : Computer Science .

Advisor’s Signature

Academic Year : 2011 . Co-advisor’s Signature

vi

Acknowledgements

 I am heartily thankful to my advisor, Asst. Prof. Dr. Krung Sinapiromsaran, and

my co-advisor, Prof. Dr. Chidchanok Lursinsap, whose encouragement, guidance and

support from the initial to the final step enabled me to develop an understanding of the

subject. I would like to thank my examiners, Asst. Prof. Dr. Jaruloj Chongstitvatana, Asst.

Prof. Dr. Saranya Maneeroj, Dr. Siripun Sanguansintukul, and Dr. Kamol

Keatruangkamala, whose gave me useful comments on my research work.

 This research is supported by grant funds from the program Strategic

Scholarships for Frontier Research Network for the Ph.D. Program Thai Doctoral degree

from the Commission on Higher Education, Thailand.

Contents

Page

Abstract in Thai ... iv

Abstract in English ... v

Acknowledgments ... vi

Contents ... vii

List of Tables ... ix

List of Figures ... x

Chapter ..

1. Introduction .. 1

 1.1 Objective ... 1

 1.2 Scope of Work ... 2

 1.3 Expected Outcome.. 2

 1.4 Research Methodology ... 2

2. Background .. 4

 2.1 Data Mining ... 5

 2.2 Class Imbalanced Problem ... 8

 2.3 Re-sampling Technique .. 10

 2.4 Performance Measure ... 13

 2.5 Experimental Classifier .. 16

 2.6 K Nearest Neighbours ... 18

3. Related Work .. 20

 3.1 SMOTE .. 20

 3.2 DBSCAN .. 22

4. Problem Methodology .. 28

 4.1 Safe-Level-SMOTE .. 28

 4.2 MUTE ... 33

 4.3 DBSMOTE ... 35

Chapter Page

viii

5. Experiment ... 50

 5.1 Dataset .. 50

 5.2 Experimental Result ... 51

6. Discussion and Conclusion .. 59

 6.1 Discussion ... 60

 6.2 Conclusion ... 64

 6.3 Future Work ... 65

References ... 66

Biography ... 70

ix

List of Tables

Table .. Page

2.1 A confusion matrix for the two-class imbalance problem .. 13

5.1 The descriptions of UCI datasets in the experiments .. 51

5.2 Accuracy results where applying SMOTE family on UCI datasets 52

5.3 F-value results where applying SMOTE family on UCI datasets 53

5.4 AUC results where applying SMOTE family on UCI datasets 55

5.5 t-test: paired two sample for means on Accuracy ... 57

5.6 t-test: paired two sample for means on F-value ... 57

5.7 t-test: paired two sample for means on AUC ... 58

6.1 The discussion on SMOTE family... 61

x

List of Figures

Figure ... Page

2.1 Data mining process .. 6

2.2 One-Against-One ... 9

2.3 Over-sampling and Under-sampling .. 11

2.4 One-Sided Selection .. 12

2.5 ROC curve ... 15

2.6 Decision tree .. 16

2.7 A simplified MLP network architecture ... 18

2.8 K nearest neighbors ... 19

3.1 SMOTE over-sampling ... 21

3.2 (a) Core instance and border instance (b) Directly density-reachable 23

3.3 (a) Density-reachable (b) Density-connected .. 24

3.4 A sorted k-dist graph ... 27

4.1 Safe-Level-SMOTE algorithm ... 32

4.2 The five cases corresponding to the safe level ratio .. 33

4.3 MUTE algorithm .. 34

4.4 An over-lapping region before and after under-sampling .. 35

4.5 A directly density-reachable graph .. 38

4.6 A shortest path found in a directly density-reachable graph 39

4.7 An over-sampling framework integrated with DBSMOTE ... 40

4.8 DBSMOTE algorithm .. 43

1

CHAPTER I

Introduction

In the first chapter, according to my thesis proposal, goal, scope, achievement, and

research methodology are described as follows.

 My thesis goal is to develop an integration technique of DBSCAN and DBSMOTE

to over-sample a minority class in an imbalanced dataset; as a result, the classification

performance of a classifier is improved.

 My framework relies on a density-based concept to operate on an imbalanced

dataset with multiple minority classes. After applying my density-based framework for

handling the class imbalanced problem I expect to achieve the significant improvement

of decision tree C4.5, RIPPER, and multilayer perceptron (MLP), when evaluating on

accuracy, F-value, and AUC.

 I design a new data structure as a connected graph for the over-sampling

purpose. In my framework, I construct the graph from a cluster of a minority class and

then generate a synthetic instance along the path between each instance and the

pseudo-centroid of this cluster. Consequently, the synthetic instances are dense nearby

the centroid and sparse far from this centroid. The distribution of the synthetic instances

prevents the overlapping problem and causes a classifier to concentrate on the core of

a cluster which contains important information.

1. Objective

In this thesis, I aim to design the combination algorithm of DBSCAN and SMOTE to

strengthen a minority class distribution by over-sampling this class. This affect will

guarantee the minority class detection to be satisfactory; in addition, the classifier is

guided to emphasize more dense regions for the minority instances. My research shows

2

the improvement of the predictive performance of a classifier for both minority and

majority instances in an imbalanced dataset.

2. Scope of Work

Due to the scope of my research, my framework applies a density-based concept for

handling the class imbalanced problem and is operates on multiple minority class

datasets with continuous attributes. In my experimental design, my framework is

compared with various over-sampling techniques in the SMOTE family by evaluating

accuracy, F-value (as the term of Precision and Recall), and AUC of C4.5, Ripper, and

SVM available in WEKA 3.6.5 on UCI datasets.

3. Expected Outcome

After applying my framework on imbalanced UCI datasets with multiple minority classes,

I expect to achieve the significant improvement of accuracy, F-value, and AUC when

applying decision tree C4.5, RIPPER, and multilayer perceptron.

.

4. Research Methodology

In this thesis, the concept of my framework is to emphasize on the core information

contained in the core of a cluster than the border information contained in the border of

a cluster. The key idea of my approach can be acquired by defining a new data

structure for the over-sampling purpose. My framework applies this data structure for

generating synthetic instances into the line segments close to the core with a higher rate

and the line segments far from the core at a lower rate.

 My framework applies a particular graph whose shortest paths reside within the

shape of a cluster. An edge between two nodes in the graph exists if and only if these

3

two nodes lie within a threshold distance so this graph would consist of many short

edges. As an over-sampling process generates a synthetic instance and then positions

it along a shortest path searched in the graph transformed from an arbitrarily shaped

cluster, it will be located inside the shape of the graph because this shortest path is

similar to a skeleton path, a path which is formed inside a cluster. Consequently, the

density of the synthetic instances is dense nearby the core and is sparse far from the

core and then a classifier is induced to emphatically learning in the important

information contained around the core so the overlapping problem between a minority

class and a majority class would be treated.

 My framework outperforms SMOTE and Borderline-SMOTE due to the following

facts. SMOTE is negatively impacted by the over-generalization problem because

SMOTE blindly generalizes throughout a minority class without considering a majority

class, especially in an overlapping region, which is a mix between a minority class and a

majority class, so it is consequently difficult for a classifier to accurately detect an

instance; however, my framework treats each region differently. Borderline-SMOTE

operates only on borderline instances in the overlapping region where synthetic

instances are most dense so the rate of detection of majority classes is disappointing

because the classifier mis-detects instances as being positive in this context; however,

my framework avoid generating positive instances around border region and will relief

the negative impact around border region.

4

CHAPTER II

Background

In this chapter, the backgrounds of my thesis comes from my research interest, a

specific problem I encounter with, suitable methods and evaluators for the class

imbalance problem, experimental classifiers, and the concept of k nearest neighbours.

 Data mining is one research area of Computer Science, Computer Engineering,

and Information Technology, and is a process of analyzing collections of data. The

objective of data mining is to discover knowledge, relations, or patterns from large

databases in structures that human can understand.

 Class imbalanced problem is an interesting one among classification tasks in

data mining and occurs in an application when a target class (minority class) has a very

small fraction compared with another class (majority class); as a result, a classifier loses

its predictive performance because a huge majority class dominates a tiny minority

class during classification processing.

 Re-sampling techniques are categorized in the data level concept and are

applied for handling the class imbalanced problem. In addition, the techniques re-

balance classes in an imbalanced dataset by inserting (over-sampling) and/or deleting

(under-sampling) instances into/from this dataset until the classes are approximately

balanced.

 Accuracy is a traditionally measure applied in a balanced dataset but

inappropriate for an imbalanced dataset because this performance measure tends to

count a large number of instances in a majority class as correctly classified. Fortunately,

F-value and AUC are suitable for the class imbalanced problem because these

performance measures concentrate on a minority class with its high priority.

 In my experiment, I apply three kinds of classifiers. The first one is a statistical

classifier C4.5 applied for generating a decision tree. The second one is a rule-based

5

classifier RIPPER applied for discovering a rule set. The last one is a neural network

model MLP applied for distinguishing a set of instances which is not linearly separable.

 K nearest neighbours is the concept of finding the k nearest instances which

orbit around a considered instance by calculating from a distance metric such as

normalized euclidean distance function which is applied in this thesis. Besides, the

nearest instances are more similar to the considered instance than the other instances

due to the distances between them. In this thesis, I apply k nearest neighbours to select

a suitable instance to be over-sampled.

1. Data Mining

Data mining or knowledge discovery in large databases (KDD) is a challenging field of

Computer Science, Computer Engineering, and Information Technology, and is a

process of analyzing a collection of huge number of instances by applying various

machine learning and artificial intelligence algorithms. Technically, the objective of data

mining is to discover or extract knowledge, relations, or patterns from different

perspectives and summarizing them into useful structures that human can understand.

Data mining tool such as WEKA, RapidMiner, SASEM, or R, is one of analytical softwares

for analyzing large databases, and allows users to analyze data from many different

dimensions or angles, categorize it, and summarize the relationships identified. They

support the main functionalities of data mining which are classification, clustering, and

association analysis.

 Fig 2.1 illustrates the process of data mining which starts from understanding of

the application domain, the relevant prior knowledge, and the goals of the end-user. In

the selection step, the process creates a target dataset by integrating a DBMS

(Database Management System), or focusing on a subset of variables or data samples,

on which discovery is to be performed. In the preprocessing step, the process cleans

noise or outliers, collects necessary information to model, strategies for handling

missing dat

the transfo

depending

effective nu

the data. In

whether the

analysis, et

methods to

parameters

overall crite

process sea

such repre

rules, and

discovered

ta fields, and

ormation ste

 on the goa

umber of var

n the data m

e goal of th

tc; in addit

 be used fo

 may be ap

eria of the

arches for p

sentations

so forth. Ev

 knowledge

d accounts

ep, the pro

al of the tas

riables unde

mining step,

he data min

tion, he/she

or searching

ppropriate, a

data minin

patterns of in

as classific

ventually, an

.

Fig. 2

 for time seq

ocess finds

sk, and use

er considera

 an analyst

ning proces

e chooses

g for pattern

and matchin

g process.

nterest in a

cation rules

n analyst in

2.1. Data mi

quence infor

s useful fea

es dimensio

ation or to fi

chooses the

ss is classif

the data m

ns in the dat

g a particul

 In the inte

 particular re

 or trees, c

terprets min

ning proces

rmation and

atures to r

onality reduc

nd invariant

e data minin

fication, clu

mining algor

ta, deciding

ar data min

erpretation/e

epresentatio

clustering m

ned pattern

ss.

d known cha

represent t

ction to red

t representa

ng task by d

stering, ass

rithms by s

g which mod

ing method

evaluation s

onal form or

models, ass

ns and cons

6

anges. In

he data

duce the

ations for

deciding

sociation

selecting

dels and

 with the

step, the

r a set of

sociation

solidates

7

 Classification, prediction, and forecasting have the similar meaning in data

mining. It is a method for predicting future values by considering probability of past

events. For example, I may aim to predict that a new customer will pay the bill within 60

days or take longer than 60 days. For another example, the forecast may be used to

predict tomorrow weather that it will be rain, sunny, or cloudy. For the classification, I

may want to diagnose whether a patient will have cancer in his/her body.

 Clustering is a method for grouping data into distinct clusters that have similar

characteristics so I may treat each cluster differently. For example, a health-insurance

company may discover a cluster of customers who are television science-fiction fan.
Consequently, the company can target this kind of customers by using television

advertisements in new science-fiction episodes. The well-known and widely-used

clustering algorithms are k-means and DBSCAN.

 Association analysis is a method for discovering interesting relations between

items in large databases. This method can be applied to market basket analysis. For

example, the relation {Milk, Bread} → Butter means that if customers buy milk and

bread together, they are likely to also buy butter. This information can be used as the

basis for decisions about marketing activities such as promotional pricing or product

placements.

 For evaluating the performance of data mining models, separating data into

training and testing sets is an important part of evaluating data mining models. Typically,

when users partition a data set into a training set and testing set, a large proportion of

data is used for training, and a smaller portion of the data is used for testing. Stratified

sampling randomly samples the data to help ensure the proportion of class instances.

By using similar data for training and testing, users can minimize the effects of data

discrepancies and help classifier recognize the characteristics of the datasets. After a

model has been processed by using the training set, users test the model by making

predictions against the test set. Because the data in the test set already contains known

8

values for the class attribute, it is easy to determine whether the model's predictions are

correct.

 The other method evaluating the performance of a classifier is cross validation

which reserves a portion of the data to test the accuracy of the model building from the

set of the data. Cross validation randomly divides data into two or more subsets;

training samples (used to construct the model), validated samples (some methods need

these to tune the model), and test samples (evaluate performance of the model). The

procedure of k-fold cross validation begins to divide the data in k parts; (k - 1) parts for

building (train) and one part for predicting (test); after that the process fit the model on

the training data; finally, it measures the data in the test sample. This procedure is

repeated multiple times, each time dividing the data into subsets at random.

2. Class Imbalanced Problem

A dataset is considered to be imbalanced if the target class has a small number of

instances compared to the other classes. A problem encountered with an imbalanced

dataset is called class imbalanced problem [1], [2], [3], [4]. Many applications in these

problems consider the two-class case [5], [6], [7], [8], [9], [10]. In this case, the smaller

class is called the minority class of which the instance in this class is referred as

positive, and the larger class is called the majority class of which the instance in this

class is referred as negative.

 Because the objective of the class imbalance problem is to correctly classify the

(minority class) positive instances, if a dataset has more than two classes, the target

class will be selected as the minority class while the remaining classes will be merged

as the majority class. In multiple class datasets, there are two widely used techniques;

One-Against-All (OAA) and One-Against-One (OAO). OAA treats these datasets as a

binary classification problem for each distinct class so a classifier for each class is

trained to predict whether the label is the class or not the class. OAO extracts all pairs of

classes and

the training

are ignored

 In th

classes bec

dataset in F

consider B

then I can

complete th

among A, B

as the view

 In v

related to c

[11], the d

fraudulent t

detection o

certain pr

d construct

 set contain

d during the

his thesis, I

cause my fr

Fig 2.2 has

 as a minori

apply my f

he strategy

B, and C. OA

 of a consid

various rea

class imbala

etection of

telephone c

f oil spills in

oducts in

 a binary cl

ns only elem

 construction

 apply OAA

ramework is

a majority c

ity class and

framework to

. As a resu

AA is suitab

ered class a

Fig.

l-world dom

anced prob

 unknown a

calls [13], i

n satellite ra

direct m

lassification

ments of two

n.

A to treat an

 design to h

class A and

d merge bo

o this datas

ult, a classi

ble for my fra

and uncons

. 2.2. One-A

mains, analy

blems, such

and known

n-flight heli

adar images

arketing p

 between th

o classes a

 imbalanced

handle the t

 two minorit

oth A and C

set. I then r

ifier can ge

amework be

idered class

Against-One

ysts encou

 as telecom

network int

copter gea

s [15], the i

problems [

he two class

nd the othe

d dataset w

two-class ca

ty classes: B

C as a single

repeat this

enerate the

ecause it op

ses.

.

nter many

mmunication

trusions [12

rbox fault m

dentification

16], and

ses in each

er training in

with multiple

ase. For exa

B and C. I

e majority cl

framework

 decision b

perates on a

classificatio

ns risk mana

2], the dete

monitoring [

n of likely b

the detec

9

h pair so

nstances

 minority

ample, a

begin to

lass and

again to

boundary

a dataset

on tasks

agement

ection of

[14], the

buyers of

ction of

10

microcalcifications in mammography [17]. In these domains, a standard classifier needs

to accurately predict an important and rare minority class, but the classifier seldom

predicts this class due to its tiny size.

 The example of an application which encounters the class imbalance problem is

network intrusion detection. Intrusion occurs when hackers or virus attack the machine

in a computer network. Number of intrusions on the network is typically a very small

fraction of the total network traffic and is more important than typical usages. If an

administrator can built a classifier which efficiently detects the intrusion before it

compromises the network, the network will be more secured.

 There was a study [18] which evaluated AUC of classifiers training after these

preprocessing techniques, over-sampling, under-sampling, and data cleaning, by

applying decision trees C4.5. The experiments showed that the over-sampling

techniques were better than the under-sampling techniques. Moreover, the

combinations of over-sampling and data cleaning provided satisfactory results when a

minority class was small.

 In this thesis, the density-based minority over-sampling framework for handling

the class imbalanced problem is proposed. My framework relies on the density concept

of arbitrarily shaped clusters of positive instances. In addition, my framework considers

the density of each region in an imbalanced dataset and then generates more synthetic

instances in the dense regions rather than the sparse regions because the information

contained in the dense regions is more important than that in sparse regions.

3. Re-sampling Technique

One strategy for handling class imbalanced problems is a re-sampling technique [3],

[19]. It is a preprocessing technique that adjusts the distribution of classes in an

imbalanced dataset until all classes are nearly balanced before feeding this modified

dataset into a classification algorithm.

11

 There are two types of re-sampling techniques: over-sampling techniques and

under-sampling techniques. The former inserts positive instances into a minority class,

while the latter removes negative instances from a majority class. Both techniques

change the distribution of a dataset until its classes are approximately equally

represented. However, the over-sampling technique may encounter the over-fitting

problem [20] if this technique creates smaller and more specific decision regions by

duplicating instances. In contrast, the under-sampling technique may diminish some

important information in a dataset-especially in its core.

 Fig 2.3 illustrates an original dataset (left side) and a modified dataset (right

side) in the two dimensional space after applying both over-sampling and under-

sampling techniques. In this figure, a symbol + represents a positive instance in a

minority class and a symbol - represents a negative instance in a majority class. Over-

sampling duplicates or synthesizes positive instances into a minority class and under-

sampling cleans some negative instances from a majority class; as a result, a minority

class is better learned by classifiers.

Fig. 2.3. Over-sampling and Under-sampling.

 SHRINK [10] is a system which searches for the best positive region. The region

is an overlapping region, mixing of positive instances and negative instances, which

have a maximum ratio of the positive instances to the negative instances. The system

insists that the overlapping region be classified as positive, whether positive instances

12

prevail in the region or not. However, the system fail to learn on disjunctive concepts [4]

because the system was designed specifically for overlapping classes so there is no

benefits if the classes do not overlap.

 One-Sided Selection [19] considers only numeric attributes. the heuristic

technique under-samples a majority class by eliminating the negative instances, which

can easily be detected using the concept of Tomek Links [18], from noise regions and

borderline regions; however, the experiment reveals that the performance of the induced

classifier is largely unaffected by the choice of removed negative instances. In addition,

negative instances can roughly be divided into four regions: noise, borderline, safe, and

redundant. The noise region overlaps the decision regions of a minority class. The

borderline region is the boundary between positive and negative regions and is

unreliable due to the fact that even a small amount of noise instances can send the

borderline instances to the wrong side of decision surface. The safe region is kept for

future classification tasks. The redundant instances do not harm correct classifications

but increase classification costs.

 Fig 2.4 illustrates an original dataset (left side) and a modified dataset (right

side) after applying One-Sided Selection which detects Tomek Links to remove both

noise and borderline instances in a majority class; as a result, a minority class is more

dominant to be recognized by classifiers. Note that Tomek Links connect between

positive and negative instances which are nearest neighbours to each other.

Fig 2.4. One-Sided Selection.

13

 Another strategy is to apply cost-sensitive learning, which operates on an

imbalanced dataset by assigning distinct costs to correctly classified instances or

classification errors [21], [22], [23]. Other techniques deal with this situation differently,

such as internal bias discrimination, boosting based algorithm [24], [25], and clustering

based classification [2].

4. Performance Measure

The performance of a classifier is customarily evaluated by a confusion matrix, as shown

in Table 2.1. The rows of the table are the actual class label of an instance, and the

columns are the class labels predicted by a classifier. Typically, the class label of an

instance in a minority class is set as positive and that of a majority class is set as

negative. TP, True Positive, is the number of positive instances correctly classified. FN,

False Negative, is the number of positive instances incorrectly classified. FP, False

Positive, is the number of negative instances incorrectly classified. TN, True Negative, is

the number of negative instances correctly classified. From Table 2.1, the six

performance measures of classification [9], accuracy, Precision, Recall, F-value, TP

rate, and FP rate, are defined by formulae (2.1) through (2.6).

Table 2.1. A confusion matrix for the two-class imbalance problem.

 Predicted Positive Predicted Negative

Actual Positive TP FN

Actual Negative FP TN

Accuracy = (TP + TN) / (TP + FN + FP + TN) (2.1)

Recall = TP / (TP + FN) (2.2)

Precision = TP / (TP + FP) (2.3)

14

F-value = ((1 + β)2⋅Recall⋅Precision) / (β2⋅Recall + Precision) (2.4)

TP Rate = Sensitivity = TP / (TP + FN) (2.5)

FP Rate = 1 - Specificity = FP / (TN + FP) (2.6)

 In the class imbalance problem, accuracy is an inappropriate measure due to

the tiny misclassification error on a minority class. In the domain studied by Lewis and

Catlett [26], their dataset had only 0.2% positive instances and nearly 100% negative

instances. A trivial classifier can reach an accuracy of 99.8% by predicting every

instance as a negative instance and ignoring the existence of the positive instances.

However, the objective of the problem is to aim for high prediction performance on a

minority class.

 Considering the definition of accuracy, if most positive instances are

misclassified and most negative instances are correctly classified by a classifier,

accuracy will be still high because the large number of these negative instances can

influence the whole classification result on accuracy. On the other hand, Precision and

Recall are effective measures for the problem because they can evaluate the

classification rates by concentrating on a minority class.

 F-value [27] integrates recall and precision. The F-value is large when both

recall and precision are large. The parameter β, corresponding to the relative

importance of precision and recall, is usually set to 1, meaning that Precision is as

important as Recall.

 ROC [28], the Receiver Operating Characteristic, is a standard technique for

summarizing the prediction performance of a classifier over the range of trade-offs

between TP rate and FP rate. The ROC curve is a graph in two-dimensional space in

which the x-axis represents FP rate and the y-axis represents TP rate. One ROC curve

would be c

the left of th

 AUC

a classifier.

rank a rand

instance. If

regions.

 Fig

predictive p

positive inst

positive inst

considered t

he others.

C [28], Area

 The AUC o

domly chos

 one AUC is

2.5 illustrate

performance

tances are c

tances.

to dominate

a Under ROC

of a classifie

sen positive

s the largest

es ROC cur

e of VA is b

correctly cla

e other ROC

C, can also

er is equival

e instance h

t, its ROC w

rves of two

better than t

assified and

Fig 2.5. RO

C curves if th

 be applied

ent to the p

higher than

would domin

strep rules:

that of NE.

 no negative

C curve.

he one is a

 to evaluate

probability th

 a random

ate other RO

 VA and NE

Note that a

e instances

lways above

 the perform

hat this class

ly chosen

OC curves o

E. In this gr

at the ideal p

are misclas

15

e and to

mance of

sifier will

negative

on some

raph, the

point, all

sified as

5. Experime

C4.5 [29] is

and is an e

C4.5 can b

statistical c

 Fig

not play ba

node. The d

tests of h

classificatio

instances. I

ental Classif

s an algorith

extension of

be used for

lassifier.

2.6 illustrate

ased on clim

degrees of t

umidity an

ons. This ex

n my examp

fier

hm used to

 Quinlan's e

r classificat

es the exam

mate conditio

the node are

d windy, l

xample also

ple, there ar

F

generate a

earlier ID3 a

ion, and fo

mple of a dec

ons. In this

e attribute v

leading to

 includes th

re 9 "play" d

Fig 2.6. Deci

 decision tre

algorithm. Th

r this reaso

cision tree i

 case, outlo

values. In thi

the leaf

he correspo

days and 5

ision tree.

ee develope

he decision

on, it is ofte

nvolving the

ook is in the

is example,

nodes whic

nding data,

"no play" d

ed by Ross

 trees gene

en referred

e decision to

 position of

 the child no

ch are the

 also referre

days.

16

 Quinlan

rated by

 to as a

o play or

 the root

odes are

e actual

ed to as

17

 RIPPER [30] is a rule-based classifier is based on if and then conditions that

called the rule set. The rules have to have two properties. The first one is that the rules

should be mutually exclusive. The second one is that the rules should be exhaustive.

The rule based classifier is very similar to the tree based classifier and it is very easy to

convert a tree to a rule based classifier. Actually in order to guarantee the above two

properties it is recommended to construct a tree and then convert it to a set of rules.

However, rule base classifier has advantage over decision tree that its rules can be

simplified.

 A rule r covers an instance x if the attribute of the instance satisfy the condition

of the rule. For example, a rule r and instances x1, x2, and x3 are given as follows.

 r: (Age < 35) ∧ (Status = Married) → Cheat = No

 x1: (Age = 29, Status = Married, Refund = No)

 x2: (Age = 28, Status = Single, Refund = Yes)

 x3: (Age = 38, Status = Divorced, Refund = No)

To consider all of them, only x1 is covered by the rule r. Note that more than one rule

may cover the same instance.

 MLP [27] (multilayer perceptron) is a feedforward artificial neural network model

that maps sets of input data onto a set of appropriate output. MLP consists of multiple

layers of nodes in a directed graph, with each layer fully connected to the next one.

Except for the input nodes, each node is a neuron or processing element with a

nonlinear activation function. MLP utilizes a supervised learning technique called

backpropagation for training the network. MLP is a modification of the standard linear

perceptron, which can distinguish data that is not linearly separable.

 Fig 2.7 illustrates MLP. In brief, an input vector is placed on the input nodes and

is propagated to the output layer via the weight connections and the hidden-layer. This

is done for each vector in the training set (one iteration). Each node in the hidden and

18

output layers transforms the sum of its inputs via an activation function, normally known

as a sigmoid function.

Fig 2.7. A simplified MLP network architecture.

6. K Nearest Neighbours
To demonstrate the k nearest neighbors (KNN) analysis, consider the task of classifying

a new object (query point) among a number of known examples. This is shown in Fig

2.8, which depicts the examples (instances) with the plus and minus signs and the

query point with a circle. The task is to estimate (classify) the outcome of the query point

based on a selected number of its nearest neighbors. In other words, I want to know

whether the query point can be classified as a plus or a minus sign. To proceed,

consider the outcome of KNN based on 1 nearest neighbor. It is clear that in this case

KNN will predict the outcome of the query point with a plus (since the closest point

carries a plus sign). Now I increase the number of nearest neighbors to 2, i.e., 2 nearest

neighbors. This time KNN will not be able to classify the outcome of the query point

since the second closest point is a minus, and so both the plus and the minus signs

achieve the same score (i.e., win the same number of votes). For the next step, I

19

increase the number of nearest neighbors to 5 (5 nearest neighbors). This will define a

nearest neighbor region, which is indicated by the circle shown in the figure. Since there

are 2 and 3 plus and minus signs, respectively, in this circle KNN will assign a minus

sign to the outcome of the query point.

Fig 2.8. K nearest neighbors.

 I apply this concept for determining the k nearest neighbours of an instance and

then use them in the over-sampling step for generating synthetic instances because the

considered instance and its selected k nearest neighbours are considered similar. In

this thesis, I fix k as 5 as the default value.

20

CHAPTER III

Related Work

In this chapter, my thesis relates to two researches; a widely-used re-sampling

technique, SMOTE (Synthetic Minority Over-sampling TEchnique) [8] and a well-known

clustering algorithm, DBSCAN (Density-Based Spatial Clustering of Applications with

Noise) [31] because I aim to combine them to achieve a new efficient over-sampling

framework.

 SMOTE is the state-of-the-art over-sampling technique which generates a

synthetic instance along the line segment between each instance and its selected

nearest neighbor from a minority class. Unfortunately, SMOTE blindly generalizes the

regions of a minority class without considering a majority class; thus, SMOTE encounters

the overlapping problem.

 DBSCAN is a density-based clustering algorithm which is applied to discover

clusters of arbitrary shapes and also to detect noises. In the algorithm, for each instance

in a cluster, the neighbourhood of this instance within the radius Eps has to contain at

least MinPts instances. To approximate the values of Eps and MinPts, a sorted k-dist

graph is considered for this purpose.

1. SMOTE

SMOTE is the state-of-the-art over-sampling technique which generates synthetic

instances by operating in the feature space rather than the data space. These synthetic

instances are generated along the line segments joining each instance to its k nearest

neighbours. A dataset can have continuous attributes or nominal attributes. The authors

chose the euclidean distance metric for continuous attributes.

By the SMOTE algorithm, for each instance, compute the vector difference

between the feature vector of the instance and one from its k nearest neighbours and

21

then multiply this difference by a random number between 0 and 1. After that, add this

difference to the feature vector of an original feature vector, thus generating the new

synthetic instance. This process is illustrated in Fig 3.1 in which a white point and a gray

point represent a positive instance and a synthetic instance, respectively; in addition, a

centre point is a considered positive instance and satellite points orbited around it are

its k nearest neighbours

.

Fig 3.1: SMOTE over-sampling.

The synthetic instances cause a classifier to create larger and less specific

decision regions rather than smaller and more specific regions. More general regions

are learned for positive instances rather than those positive instances being subsumed

by negative instances around them. The effect is that a classifier generalizes better.

However, SMOTE encounters the overgeneralization problem because this

technique blindly generalizes the region of a minority class without considering a

majority class-especially in overlapping regions. If a dataset has a highly skewed class

distribution, the synthetic instances in overlapping regions will be sparse with respect to

the instances in a majority class. Thus, the majority and minority classes would be

blended.

22

2. DBSCAN

DBSCAN is the density-based clustering algorithm which is applied to discover clusters

of arbitrary shapes based on the metric distance and number of neighbor points. In

addition, DBSCAN can be used as a noise detection algorithm.

 The algorithm requires two parameters; the distance Eps and the threshold

MinPts. The key idea of DBSCAN is that for each instance in a cluster, its

neighbourhood within the radius Eps must include at least the number of instances

MinPts. Their definitions are repeated for the purpose of comparison.

Definition 1: (Eps-neighbourhood)
Let D be a dataset. The Eps-neighbourhood of an instance p, denoted by NEps(p), is

defined by NEps(p) = {q ∈ D | dist(p, q) ≤ Eps}.

Definition 2: (Directly density-reachable)

An instance p is directly density-reachable from an instance q wrt. Eps and MinPts if

1) p ∈ NEps(q) and

2) |NEps(q)| ≥ MinPts (Core instance condition).

By Definition 1, the Eps-neighbourhood of an instance p is the set of all

instances whose distances measured from p do not exceed the threshold Eps. In

addition, the metric function dist(p, q) returns the distance between the instances p and

q. Any type of distance can be applied to this function. In this thesis document, I

illustrate all figures in the two-dimensional space with normalized euclidean distance

function.

In a cluster, there are two types of instances; core instances and border

instances. The first type relies on the core instance condition and is located in the center

23

of the cluster. The second type does not rely on this core instance condition and is

located around the border of the cluster. Fig. 3.2 (a) illustrates where a core instance

and a border instance are located in the two dimensional space. In this figure, each

point represents an instance and each circle represents the region of the radius Eps

from a center point. If there are points located in this space, they will be in the Eps-

neighbourhood of the center point. This example uses a MinPts value of 5; thus,

instance p is a border instance while instance q is a core instance.

By Definition 2, if an instance p is a member of the Eps-neighbourhood of a core

instance q, p will be directly density-reachable from q. This relation is not symmetric

when one is a core instance and the other is a border instance. Fig. 3.2 (b) illustrates the

asymmetric case in which an arrow represents the direction of directly density-

reachable relation; a head point is directly density-reachable from a tail point. In this

figure, the instance p is directly density-reachable from the instance q, but q is not

directly density-reachable from p.

Fig. 3.2. (a) Core instance and border instance (b) Directly density-reachable.

Definition 3: (Density-reachable)
An instance p is density-reachable from an instance q wrt. Eps and MinPts if there is a

chain of instances p1, …, pn, p1 = q, pn = p such that pi+1 is directly density-reachable

from pi.

Definition 4: (Density-connected)

24

An instance p is density-connected to an instance q wrt. Eps and MinPts if there is an

instance r such that both p and q are density-reachable from r wrt. Eps and MinPts.

By Definition 3, density-reachable is the transitive extension of directly density-

reachable. In addition, density-reachable is transitive but not symmetric because if there

exists at least one border instance in a pair, this border instance cannot hold the core

instance condition and thus the partner cannot be density-reachable from the border

instance. Fig. 3.3 (a) illustrates the asymmetric case. In this figure, the instance p is

density-reachable from the instance q, but q is not density-reachable from p.

By Definition 4, if there is a core instance from which two instances in a cluster

are density-reachable, these instances will be density-connected to each other. This

relation is not only symmetric but also reflexive. Only a pair of core instances can hold

the reflexive property. Fig. 3.3 (b) illustrates the symmetric case. In this figure, the

instances p and q are density-connected to each other by an instance r.

Fig. 3.3. (a) Density-reachable (b) Density-connected.

Definition 5: (Cluster)
A cluster C wrt. Eps and MinPts is a non-empty subset of a dataset D satisfying the

following conditions:

1) ∀ p, q: if p ∈ C and q is density-reachable from p wrt. Eps and MinPts, then q ∈

C (Maximality)

25

2) ∀ p, q ∈ C: p is density-connected to q wrt. Eps and MinPts (Connectivity)

Definition 6: (Noise)
Let C1, …, Ck be the k clusters of a dataset D wrt. Epsi and MinPtsi where

i ∈ {1, …, k}. noise is the set of instances not belonging to any clusters Ci and is

defined as noise = {p ∈ D | ∀i: p ∉ Ci}.

By Definition 5 and Definition 6, a density-based cluster is defined as a set of

instances that satisfy the density-connected relation and are maximal with respect to

density-reachable. A cluster includes not only core instances but also border instances.

Noise is a set of instances that are not located in any clusters. Note that some border

instances are treated as part of a cluster, while the remainder is considered to be noise.

A core instance cannot be noise because a cluster must include at least one core

instance to satisfy the maximality and connectivity conditions restricted by Definition 5.

Moreover, only one core instance and its Eps-neighbourhood can be treated as the

thinnest cluster.

DBSCAN can not only discover arbitrarily shaped clusters but also detect noise

instances in a dataset. This algorithm constructs a cluster by determining a core

instance as a root, then retrieving all instances that are density-reachable from this root

to acquire a cluster included in this root. The time complexity of the algorithm DBSCAN

was analyzed as a logarithmic function O(nlgn) [31], where n is the number of instances

in a dataset.

The DBSCAN algorithm operates in the following manner. For each instance in a

dataset, determine whether this instance satisfies the core instance condition. If an

instance does, it will be a core instance p. After that, construct a cluster C by including

all instances in the Eps-neighbourhood of p. For each instance in C that has not yet

been processed, seek a core instance q and then merge C with the instances in the

26

Eps-neighbourhood of q that are not already located in C. Recursively, check their Eps-

neighbourhood in the next step. This loop executes iteratively until no new instance can

be included in the current cluster C.

However, the appropriate values of Eps and MinPts are difficult to decide.

Fortunately, the authors provide a heuristic to determine these parameters from the

given k, the number of nearest neighbours. Let d be the distance between an instance p

and its furthest kth nearest neighbour. If Eps is assigned as d, the number of instances in

the Eps-neighbourhood of p will be exactly (k + 1). In cases where the distances

between several instances and p are the same, the Eps-neighbourhood of p would

include more than (k + 1) instances.

The function k-dist requires an instance p and returns the distance d. The sorted

k-dist graph illustrated in Fig. 3.4 plots all distances d in descending order. In this

figure, the x-axis represents each instance p in a dataset and, the y-axis represents the

distance d assigned by k-dist(p). This graph can guide the values of Eps and MinPts of

the thinnest cluster. If an instance q is selected as the threshold instance, then setting

Eps and MinPts to k-dist(q) and k, respectively, any instances p for which k-dist(p) does

not exceed k-dist(q) will be core instances and the remainder will be border instances.

In the sorted k-dist graph, all instances that lie to the right of the threshold

instance are core instances, whereas all instances that lie to the left of the threshold

instance are border instances. Note that the threshold instance is considered to be a

core instance. In addition, the threshold instance should be the first instance in the first

valley of the sorted k-dist graph. It is inconvenient to design an algorithm that can

automatically detect this threshold instance; however, an analyst can conveniently

determine this threshold instance by visualizing and considering this sorted k-dist

graph.

Fig. 33.4. A sortedd k-dist grapph.

27

28

CHAPTER IV

Problem Methodology

In this chapter, I describe my three approaches to handle the class imbalanced

problems, two over-sampling and one under-sampling techniques, as follows.

Safe-Level-SMOTE [7] is an improvement of SMOTE which carefully over-

samples a minority class by generating synthetic instances along the same line segment

of SMOTE with different weight degree called safe level computed by counting the

minority class nearest neighbours. By synthesizing instances more around larger safe

level instances, these synthetic instances are located closer to minority instances than

majority instances.

MUTE (Majority Under-sampling Technique) [6] is an under-sampling technique

which gets rid of noise majority instances which overlap with minority instances. The

removal majority instances are considered based on their safe levels relying on the

Safe-Level-SMOTE concept. MUTE not only reduces the classifier construction time

because of a downsizing dataset but also improves the prediction rate on a minority

class.

DBSMOTE (Density-Based Minority Over-sampling Technique) [9] relies on a

density-based notion of clusters and is designed to over-sample an arbitrarily shaped

cluster discovered by DBSCAN. DBSMOTE generates synthetic instances along a

shortest path from each positive instance to a pseudo-centroid of a minority-class

cluster. Consequently, these synthetic instances are dense near this centroid and are

sparse far from this centroid.

1. Safe-Level-SMOTE

SMOTE is an original work of the over-sampling techniques for handling the class

imbalanced problem by generating synthetic instances. Unfortunately, SMOTE might

29

generates synthetic instances to be crashed against the opposite-class instances

especially in the border of a minority class; thus, SMOTE encounters the overlapping

problem.

 Basing on SMOTE, Safe-Level-SMOTE carefully over-samples by considering

safe positions to generate synthetic instances. In addition, Safe-Level-SMOTE assigns

each positive instance its safe level before generating synthetic instances along the line

between the positive instance and their selected positive nearest neighbours. Each

synthetic instance is positioned closer to the largest safe level so all synthetic instances

are generated only in safe regions. This is the advantage of my technique because it

can prevent the case of over-sampling in unwanted locations such as noise and

overlapping regions.

 The safe level (sl) is defined as formula (4.1). To interpret this formula, if the safe

level of an instance is close to 0, the instance is nearly noise. But, if it is close to k, the

instance is considered safe for over-sampling.

 The safe level ratio (sl_ratio) is defined as formula (4.2). The safe level ratio is

used for selecting the safe positions in an over-sampling line segment of SMOTE to

carefully generate synthetic instances of a minority class.

safe level = the number of positive instances among its k nearest neighbours (4.1)

safe level ratio = sl of a positive instance / sl of a nearest neighbour (4.2)

 The Safe-Level-SMOTE algorithm is showed in Fig. 4.1. All variables in this

algorithm are described as follows. p is an instance in the set of all original positive

instances D. n is a selected nearest neighbours of p. s included in the set of all synthetic

positive instances D′ is a synthetic instance. slp and sln are safe level of p and safe level

of n respectively. sl_ratio is safe level ratio. numattrs is the number of attributes. dif is

30

the difference between the values of n and p at the same attribute id. gap is a random

fraction of dif. p[i], n[i], and s[i] are the numeric values of the instances at ith attribute. In

the algorithm, D and D′ are set of positive instances. p, n, and s are vectors. slp, sln,

sl_ratio, numattrs, dif, gap, p[i], n[i], and s[i] are scalars.

 The algorithm begins to computer the k nearest neighbours of p. After that, the

algorithm assigns the safe level to p and the safe level to n and then calculates the safe

level ratio of the pair of p and n. There are five cases corresponding to the value of safe

level ratio illustrated in Fig. 4.2. In this figure, the meanings of all variables are described

below.

 The first case illustrated in Fig. 4.2 (a). The safe level ratio is equal to ∞ and the

safe level of p is equal to 0. It means that both p and n are noise instances because all k

nearest neighbours of p and n are opposite-class instances. If this case occurs,

synthetic instance will not be generated because the algorithm does not want to

emphasize the important of noise regions.

 The second case illustrated in Fig. 4.2 (b). The safe level ratio is equal to ∞ and

the safe level of p is not equal to 0. It means that n is noise because all k nearest

neighbours of n are negative instances. If this case occurs, a synthetic instance will be

generated far from noise instance n by duplicating p because the algorithm want to

avoid the noise instance n.

 The third case illustrated in Fig. 4.2 (c). The safe level ratio is equal to 1. It

means that the safe level of p and n are the same. If this case occurs, a synthetic

instance will be generated along the line between p and n because p is as safe as n.

Besides, this case is SMOTE.

 The fourth case illustrated in Fig. 4.2 (d). The safe level ratio is greater than 1. It

means that the safe level of p is greater than that of n. If this case occurs, a synthetic

instance is positioned closer to p rather than n because p is safer than n. The synthetic

31

instance will be generated in the range [0, 1/sl_ratio] illustrated by the dark line in the

figure.

 The fifth case illustrated in Fig. 4.2 (e). The safe level ratio is less than 1. It

means that the safe level of p is less than that of n. If this case occurs, a synthetic

instance is positioned closer to n rather than p because n is safer than p. The synthetic

instance will be generated in the range [1 - sl_ratio, 1] illustrated by the dark line in the

figure.

 In the algorithm, when each iteration of for loop in line 2 finishes, if the first case

does not occurs, s will be generated along the specific-ranged line segment between p
and n, and then s will be added to D′. After the algorithm terminates, it returns a set of

all synthetic instances D′. The algorithm generates |D| - t synthetic instances where |D|

is the number of all positive instances in D, and t is the number of iterations that satisfy

the first case.

 Safe-Level-SMOTE carefully over-samples a minority class in an imbalanced

dataset. Each synthetic instance is generated in safe position by considering the safe

level ratio of the pair of instances. The synthetic instances generated in safe positions

can improve prediction performance of classifiers on the minority class.

32

Input: a set of all original positive instances D

Output: a set of all synthetic positive instances D′

 1. D′ = ∅

 2. for each positive instance p in D {

 3. randomly select one from the k nearest neighbours of p, call it n

 4. compute slp and sln

 5. if (sln ≠ 0)

 6. sl_ratio = slp / sln

 7. else

 8. sl_ratio = ∞

 9. if (sl_ratio = ∞ ∧ slp = 0) ; the 1st case

10. skip

11. else

12. for (atti = 1 to numattrs) {

13. if (sl_ratio = ∞ ∧ slp ≠ 0) ; the 2nd case

14. gap = 0

15. else if (sl_ratio = 1) ; the 3rd case

16. random a number between 0 and 1, call it gap

17. else if (sl_ratio > 1) ; the 4th case

18. random a number between 0 and 1/sl_ratio, call it gap

19. else if (sl_ratio < 1) ; the 5th case

20. random a number between 1 - sl_ratio and 1, call it gap

21. dif = n[atti] - p[atti]

22. s[atti] = p[atti] + gap·dif

23. }

24. D′ = D′ ∪ {s}

25. }

26. return D′

Fig. 4.1. Safe-Level-SMOTE algorithm.

33

(a) The 1st case: sl_ratio = ∞ ∧ slp = 0

(b) The 2nd case: sl_ratio = ∞ ∧ slp ≠ 0

(c) The 3rd case: sl_ratio = 1

(d) The 4th case: sl_ratio > 1

(e) The 5th case: sl_ratio < 1

Fig. 4.2. The five cases corresponding to the safe level ratio.

2. MUTE

My proposed strategy, MUTE was inspired by Safe-Level-SMOTE, which defines safe

levels on only minority (positive) instances before processing an over-sampling routine.

In contrast to Safe-Level-SMOTE, MUTE applies safe levels on majority (negative)

instances for the purpose of under-sampling.

 A safe level of a majority instance, calculated by (4.1), is computed by the

number of minority instances among k nearest neighbours. A majority instance is

located in a safe region if a safe level is equal to 0. On the other hand, if a safe level is

equal to k, a majority instance is considered to be noise.

34

 The MUTE algorithm, shown in Fig. 4.3, is to wipe out the Majority Noise Set,

defined by Definition 7, from a dataset. In the algorithm, τ is a minimum number of

minority nearest neighbours of a majority instance, which permits MUTE to remove this

instance, thus τ is set as k because I aim to delete only noise majority instances in a

dataset.

Input: an original dataset D, a threshold τ

Output: an under-sampling dataset D - N

1. N = ∅

2. for each majority instance n in D

3. if sln ≥ τ

4. N = N ∪ {n}

5. return D - N

Fig. 4.3 MUTE algorithm.

Definition 7: Let D be a dataset, and sln be a safe level of a majority instance n. The
Majority Noise Set is defined by N = {n ∈ D | sln = k}.

In the class imbalanced problem, noise majority instances are frequently screwed
into the crowd of minority instances as shown in Fig. 4.4, in which symbols + and –
represent minority and majority instances respectively. MUTE cleans this crowd to be
more unmixed with majority instances in an overlapping region. After cleaning this region,
a classifier better generates a decision boundary because majority and minority
instances are not extremely blended. In addition, MUTE does not diminish important
information in a dataset because each delible majority instance is orbited by all nearest
neighbors from a minority class. By-product of MUTE is the speedup for a classifier
construction.

35

Fig. 4.4. An overlapping region before (left) and after (right) under-sampling.

3. DBSMOTE

In the class imbalanced dataset, there are two significant questions to be answered:

Which minority class region should be emphasized by an over-sampling technique? and

How should synthetic instances generated by the SMOTE family be distributed?

 For the first question, typically, a dataset is divided into three regions; noise, safe,

and overlapping. A noise region is located outside a cluster. A classifier often detects

noise instances as negative because negative instances encompass these noise

instances, and thus an over-sampling technique should not operate in this region. A safe

region is located inside a cluster. A classifier easily recognizes this region because it has

sufficient numbers of instances. However, for the class imbalance problem, a safe region

of a minority class does not contain enough instances, and thus a classifier often

misclassifies this region. An overlapping region is located around a cluster border, which

contains a blend of positive and negative instances. This region is detected with great

difficultly because a classifier cannot efficiently distinguish between the two classes, and

thus over-sampling in this region might be harmful. To summarize, for the class

imbalance problem, an efficient over-sampling technique should concentrate on a safe

region and treat with caution any overlapping regions.

 For the second question, SMOTE operates throughout a dataset, and thus

synthetic instances are spread throughout every region. Borderline-SMOTE operates only

36

on a dataset border, and thus synthetic instances are dense in an overlapping region.

Safe-Level-SMOTE operates throughout a dataset and positions synthetic instances in an

overlapping region close to a safe region. Accordingly, these instances are sparse in an

overlapping region and are not dense in a safe region. In this thesis, I design a new re-

sampling technique which produces more synthetic instances around a dataset core

than a dataset border and does not operate within a noise region. Thus these instances

are dense in a safe region and are sparse in an overlapping region.

 The efficient over-sampling technique called DBSMOTE is proposed for handling

class imbalanced problems. This technique combines the density-based clustering

algorithm DBSCAN and the over-sampling technique SMOTE.

 Naturally, the distribution of any class in a real-world balanced dataset is

compact near the core of a cluster and is sparse near the edge of the cluster.

Consequently, the predicted result for an unidentified instance depends on its location. A

classifier would predict the instance to be the same class as the core if the instance was

close enough to the core.

 The development of DBSMOTE was inspired by the over-sampling technique

Borderline-SMOTE [9], which concentrates on over-sampling only the borderline regions

of a cluster. Normally, these regions contain a high overlap between positive instances

and negative instances. After over-sampling, these regions are dense in the positive

instances, and thus a trivial classifier would predict more instances as positive instances

whether they are positive instances or not. Accordingly, this effect improves a classifier’s

detection rate on a minority class but decreases it on a majority class. However, an

efficient over-sampling technique should induce a classifier to accurately predict a

minority class while not sacrificing the prediction rate on a majority class.

 The approach of DBSMOTE is opposite to Borderline-SMOTE, which not over-

samples around the center of a cluster, but DBSMOTE concentrates on this center. The

concept of DBSMOTE is to emphasize the core information rather than the border

information. This goal can be accomplished by over-sampling different regions with

37

different rates. The regions near the centroid of a cluster are over-sampled at a higher

rate than the regions far from the centroid because the center of a cluster is more

important than the edge of a cluster. Thus synthetic instances are dense near the

centroid and sparse far from the centroid. Normally, the centroid of a cluster is located in

the center of the cluster and is computed by the average of all instances.

 In this thesis, I designed a new data structure called a directly density-reachable

graph, which is defined in Definition 8. The graph is transformed by a cluster of instances

and is an underlying weighted directed graph [32]. In the graph, each node represents

an instance in a cluster while each edge represents a directly density-reachable relation.

To consider a pair of connected nodes, if at least one is directly density-reachable from

the other, the edge between this pair will be created. In the weight function, each weight

is computed based on the distance in the pair. Note that R is a set of real numbers.

Definition 8: (Directly density-reachable graph)

A directly density-reachable graph of a cluster C discovered by DBSCAN, denoted by

G(C) = (V, E), where V is a set of nodes represented as instances in C and E is a set of

edges. E is defined as E = {(v1, v2) ∈ V×V | an instance v1 is directly density-reachable

from an instance v2 wrt. Eps and MinPts or vice versa}. Let w: E → R be a weight

function where w(v1, v2) is equal to the distance between a pair of connected nodes v1,

v2 ∈ V.

A directly density-reachable graph is illustrated in Fig. 4.5. All black points are

core instances and the others are border instances. At least one from a pair of

connected nodes is guaranteed to be a core instance, but no link connects a pair of

border instances because they cannot hold the directly density-reachable relation in

Definition 2.

38

Fig. 4.5. A directly density-reachable graph.

 A directly density-reachable graph was designed based on the requirements of

my research, which needs a particular graph whose shortest paths reside within the

shape of a cluster. In the graph, each edge exists if and only if the connected nodes in a

pair are close enough to each other, and thus this graph is composed of many low-

weight edges. The edges of a complete graph, whose edges link in every pair of nodes

whether the distances in the pairs are high weight or low weight, do not fit the shape of a

cluster; however, those of a directly density-reachable graph fit the same shape.

 For an arbitrarily shaped cluster, if an over-sampling process generates a

synthetic instance by locating it along the shortest path in a complete graph, this

synthetic instance may be located outside the shape. This effect causes an overlapping

problem between the synthetic instance and a negative instance. On the other hand, if a

data structure is a directly density-reachable graph, the synthetic instances are located

inside the shape because the shortest paths are similar to the skeleton path [33].

 A shortest path algorithm applied in a directly density-reachable graph is

illustrated in Fig. 4.6. Note that I do not show edges in the graph. The symbols in this

figure are described as follows. A circular point represents a positive instance, and the

black point represents the centroid of all positive instances in. The point p is one

positive instance to be considered. The solid line represents a shortest path in a directly

density-reachable graph for the pair of the considered point p and the centroid, whereas

the dotted l

shape of a

generated a

a majority

sampling p

path from a

F

 Nor

the cluster.

instances, w

affected by

cause the m

from the me

and detect

ine represe

 cluster is a

along the sh

class locate

rocess woul

 directly den

ig. 4.6. A sh

mally, the c

 This approa

which appar

y these nois

mean value t

ean value to

 noise insta

nts the shor

arbitrarily sim

hortest path

ed outside

ld not encou

nsity-reacha

hortest path

entroid of a

ach encoun

rently differ

se instance

to shift to a

o a lower nu

ances. If so

rtest path in

milar to the

h in a compl

of a cluste

unter the ov

able graph.

 found in a d

 cluster is c

ters the follo

from most in

s. If the no

larger value

umber. Fortu

me instance

 a complete

 cluster in t

ete graph m

er of a min

erlapping p

directly dens

omputed by

owing probl

nstances in

oise instanc

e while low-v

unately, DBS

es are extre

e graph for t

the figure, a

may overlap

ority class;

roblem whe

sity-reachab

y the averag

em. If a clus

 this cluster,

es have hig

valued noise

SCAN can d

emely far fro

the same pa

a synthetic

p with an ins

 however, a

en using the

ble graph.

ge of all inst

ster has som

, the centroi

gh values,

e instances w

discover all

om most in

39

air. If the

instance

stance in

an over-

 shortest

ances in

me noise

d will be

they will

will drop

 clusters

stances,

40

these instances will be identified as noise instances and excluded from any clusters.

Thus, this noise effect cannot interfere with the computation of the centroid. In my

research, I use the pseudo-centroid, which is determined by the nearest instance from

the centroid, because the centroid may not exist as an actual instance in a cluster.

 The flow diagram of the over-sampling framework integrated with DBSMOTE is

illustrated in Fig. 4.7 and is described as follows. First, all instances in a minority class

D+ are fed to DBSCAN. Note that a whole dataset D consists of D+ and D-, where D- is

all instances in a majority class. Second, DBSCAN produces m clusters: C1, C2, …, Cm.

These clusters are disjoint sets. In addition, DBSCAN can detect and remove a set of

noise instances N. Only the clusters are selected for processing in the next step. Third,

each cluster is over-sampled by DBSMOTE. Fourth, DBSMOTE generates m sets of

synthetic instances for each cluster: C1′, C2′, …, Cm′. Finally, all sets of synthetic

instances are merged with an under-sampling dataset DMUTE operated by MUTE. The

result is an over-sampled dataset D′. After the framework finishes, this modified dataset

can be fed to any classification algorithm.

Fig. 4.7. An over-sampling framework integrated with DBSMOTE.

 DBSCAN requires the two parameters Eps and MinPts, which are passed to all

DBSMOTE processes. Moreover, these parameters are global parameters for my over-

sampling framework. The values of the parameters can be determined by visualizing a

41

sorted k-dist graph, as described in Chapter 3.2. This setting guarantees that a directly

density-reachable graph is a connected graph; thus, all shortest paths in my graph can

be successfully searched. I design to set Eps and MinPts as global parameters

because if Eps and MinPts are local parameters for each DBSMOTE process, they will

be difficult to determine.

 The algorithm DBSMOTE is shown in Fig. 4.8. In this algorithm, the input is a

cluster i of instances Ci, Eps ε, and MinPts k while the output is a set i of synthetic

instances Ci′. All instances in Ci and Ci′ are in a minority class. The values of Eps and

MinPts in DBSCAN and DBSMOTE are the same and are derived from the sorted k-dist

graph. All variables and all functions in my algorithm are described as follows. In

addition, p is a positive instance located in a cluster i of instances Ci, and s is a

synthetic instance contained in a set i of synthetic instances Ci′.

 Let G be a directly density-reachable graph, which is an output from

construct_directly_density-reachable_graph(Ci, ε, k). This function constructs a directly

density-reachable graph G from a cluster Ci with respect to Eps ε and MinPts k, relying

on Definition 7. These parameters guarantee that a directly density-reachable graph is a

connected graph. This function operates in two steps. In the first step, it classifies each

instance in a cluster as a core instance or a border instance. The type of all instances is

determined because any instances must be directly density-reachable from a core

instance. In the second step, for each pair of nodes, if at least one instance in this pair is

directly density-reachable from its partner, the edge connecting the pair will be created.

 Let c be the pseudo-centroid, which is an output from determine_pseudo-

centroid(Ci). This function determines the pseudo-centroid c, which is the nearest

instance from the mean of all instances in a cluster Ci. Typically, the centroid of a cluster

is computed by the mean of all instances in a cluster, but the centroid may not be an

instance in the cluster. Thus, the nearest instance from the mean is selected as the

pseudo-centroid.

42

 Let π be a predecessor list, which is an output from Dijkstra(G, c). Dijkstra’s

algorithm [34] is a graph search algorithm that solves the single-source shortest path

problem for a graph whose edge weights are all non-negative. This predecessor list can

describe all visited nodes in a shortest path between the pseudo-centroid c and any

other node. The shortest path is obtained by traversing backwards through the

predecessor list. The time complexity of Dijkstra’s algorithm is O(|V|2 + |E|), where |V| is

the number of nodes and |E| is the number of edges. This time complexity can be

derived from a polynomial function O(n2) [34] when n is equal to |V|.

 Let § be a shortest path, which is an output from retrieve_shortest_path(π, p, c).

This function retrieves a shortest path between a positive instance p and the pseudo-

centroid c by traversing π.

 Let e be an edge, which is an output from select_random_edge(§). This function

randomly selects one edge in the shortest path §.

 Let {v1, v2} be a pair of nodes connected by an edge e, which is an output from

get_connected_nodes(e).

 For the variables in the loop for, atti is an attribute index, numattrs is the number

of attributes, dif is the difference between the numerical values of v2 and v1 at the same

attribute atti, and gap is a random number assigned by generate_random_number(0, 1),

which returns a real number in the range from 0 to 1. In addition, v1[atti], v2[atti], and

s[atti] are the numerical values of the instances at the same attribute atti.

 To summarize the algorithm, DBSMOTE begins to construct a directly density-

reachable graph from a cluster of positive instances with respect to the global

parameters Eps and MinPts, relying on Definition 7. Next, the pseudo-centroid of the

cluster is assigned to the nearest instance from the mean of instances in the cluster.

After that, for each instance in the cluster, DBSMOTE generates a synthetic instance

along the line segment in the pair of nodes connected by an edge that is randomly

selected from a shortest path, embedded in a directly density-reachable graph,

43

between the instance to the pseudo-centroid. After DBSMOTE is applied to a cluster i,

the algorithm returns a set of ni synthetic instances where ni is the number of instances

in a cluster Ci. Furthermore, the number of synthetic instances generated by my

framework depends on the size of a set of noise instances. If a dataset contains t noise

instances, the framework will generate (n - t) synthetic instances, where n is the number

of instances in a minority class contained in a dataset.

Input: a cluster i of positive instances Ci, Eps ε, and MinPts k

Output: a set i of synthetic instances Ci′

 1. Ci′ = ∅

 2. G = construct_directly_density-reachable_graph(Ci, ε, k)

 3. c = determine_pseudo-centroid(Ci)

 4. π = Dijkstra(G, c)

 5. for each instance p ∈ Ci {

 6. § = retrieve_shortest_path(π, p, c)

 7. e = select_random_edge(§)

 8. (v1, v2) = get_connected_nodes(e)

 9. for (atti = 1 to numattrs) {

10. dif = v2[atti] - v1[atti]

11. gap = generate_random_number(0, 1)

12. s[atti] = v1[atti] + gap·dif

13. }

14. Ci′ = Ci′ ∪ {s}

15. }

16. return Ci′

Fig. 4.8. DBSMOTE algorithm.

44

 DBSMOTE produces a set of synthetic instances. This set is dense near the

pseudo-centroid of a cluster and is sparse far from the pseudo-centroid. In other words,

the core information is more emphasized than the border information. The over-sampled

dataset causes a classifier to concentrate on learning around the core information

spread around the pseudo-centroid more than on in the border information spread near

the edge a cluster.

 A directly density-reachable graph satisfies the properties that cause similarities

between synthetic instances and core instances. In this section, I define two terms, core

node and border node. In the graph, a core node is a node that represents a core

instance, and a border node represents a border instance. In addition, the weight of an

edge is equal to the distance between the pair of connected nodes, and the degree of a

node is equal to the number of edges incident to the node. The lemmas related to these

properties are described as follows.

 Lemma 1 informs us that the weight of each edge in a directly density-reachable

graph cannot exceed Eps because Definition 1 and Definition 2 require the distance

between a core instance and its Eps-neighbourhood to be no greater than Eps.

 In the algorithm DBSMOTE, each synthetic instance is generated along the line

of an edge in a directly density-reachable graph. The length of this line is equal to the

weight of this edge and is related to the similarity between a synthetic instance and a

core instance connected by the edge. If the line is long, the similarity will be low. If the

line is short, the similarity will be high. A synthetic instance should be closer to a core

instance, which holds the core information, because the similarity between the

connected nodes in the pair should not be small. In the worst case, the similarity

guarantees that the distance between a synthetic instance and a core instance cannot

exceed the distance Eps. This similarity-guaranteed distance Eps is useful for an

application with the restricted condition of not allowing an algorithm to create a synthetic

instance whose similarity to an instance in a cluster exceeds the specified distance.

45

 In a complete graph in which each node connects to every other node, the

maximum weight among all edges incident to a node is equal to the distance from its

furthest (n - 1)th nearest neighbour where n is the number of instances in a cluster. In a

directly density-reachable graph, that maximum weight is equal to the distance from a

node to its furthest kth nearest neighbour. Because k is less than n, the similarity

between a core instance and a synthetic instance generated along the line of an edge in

a directly density-reachable graph would be more than that in a complete graph.

Lemma 1: The maximum weight of any edge in a directly density-reachable graph is not

greater than Eps.

Proof: Definition 1 and Definition 2 restrict the distance between two directly density-

reachable instances such that it cannot exceed Eps. □

 Lemma 2 informs us that the degree of a core node in a directly density-

reachable graph must reach MinPts because a core instance must obtain at least

MinPts Eps-neighbourhood relying on the restriction of the core instance condition in

Definition 2.

 Lemma 3 informs us that the degree of a border node in a directly density-

reachable graph must not reach MinPts because a border instance cannot hold the

core instance condition in Definition 2.

 Because the number of edges incident to a core node is greater than that of a

border node, most visited nodes in a shortest path would be core nodes. Thus, synthetic

instances would be closer to the core instances than the border instances. DBSMOTE

not only emphasizes the generation of synthetic instances near the pseudo-centroid of a

cluster over instances near the edge of the cluster, but also locates these instances

closer to core instances because the regions around the pseudo-centroid and the core

46

instances contain significant core information. This phenomenon produces similarity

between the information in synthetic instances and the core information.

Lemma 2: The minimum degree of a core node in a directly density-reachable graph is

not less than MinPts.

Proof: From the core instance condition in Definition 2, a core instance obtains at least

MinPts Eps-neighborhood. □

Lemma 3: The maximum degree of a border node in a directly density-reachable graph

is less than MinPts.

Proof: From the core instance condition in Definition 2, a border instance does not meet

this condition. □

By Theorem 1, DBSMOTE takes a polynomial running time O(n2) when n is the

number of instances in a cluster. In the algorithm SMOTE, finding k nearest neighbours

takes O(n) and producing a synthetic instance takes O(1) for one instance in a minority

class, so the running time of SMOTE is O(n2). Borderline-SMOTE also takes O(n2)

because the authors did not modify any parts of the algorithm SMOTE; they only

changed the input set from all instances to only borderline instances and then fed them

to the algorithm SMOTE. Among the SMOTE family, the running time of DBSMOTE is not

slower than SMOTE and Borderline-SMOTE. In the over-sampling framework integrated

with DBSMOTE, its running time is considered to be the total running time of DBSCAN

and DBSMOTE. In the worst case, DBSCAN detects all clusters and a number of noise

instances by taking O(nlgn). Next, DBSMOTE produces a set of synthetic instances by

taking O(ni
2) for a cluster i, where ni is the number of instances in a cluster i. Because

ni is not greater than n, I can derive that O(ni
2) is equivalent to O(n2). After that, merging

these sets takes O(n). Because the number of clusters is a constant, the running time of

my framework achieves a reasonable time complexity O(n2).

47

Theorem 1: (Time complexity)

The time complexity of DBSMOTE is O(numattrs·n2), where n is the input size.

Proof: All running times of the functions in DBSMOTE are specified as follows.

 Each instruction in the lines 1, 10, 12, 14, and 16 takes O(1). Let T1(n), T10(n),

T12(n), T14(n), and T16(n) be the running times of these instructions so there is a positive

constant ci such that 0 ≤ Ti(n) ≤ ci where i ∈ {1, 10, 12, 14, 16}.

 The step construct_directly_density-reachable_graph(Ci, ε, k) takes O(n2)

because classifying each instance as a core instance or a border instance takes O(n2)

and then creates all edges in a directly density-reachable graph takes O(n2). Let T2(n)

be the running time of this function so there are positive constants c2 and n0 such that 0

≤ T2(n) ≤ c2n2 where ∀n > n0.

 The step determine_pseudo-centroid(Ci) takes O(n) because computing the

mean of all instances in a cluster Ci takes O(n) and then determining the nearest

instance from the mean takes O(n). Let T3(n) be the running time of this function so

there are positive constants c3 and n0, such that 0 ≤ T3(n) ≤ c3n where ∀n > n0.

 The step Dijkstra(G, c) takes O(n2), relying on the time complexity of Dijkstra’s

algorithm. Let T4(n) be the running time of this function so there are positive constants c4

and n0 such that 0 ≤ T4(n) ≤ c4n2 where ∀n > n0.

 The step retrieve_shortest_path(π, p, c) takes O(n). In the worst case, all nodes

in a directly density-reachable graph are visited nodes in a shortest path. Let T6(n) be

the running time of this function so there are positive constants c6 and n0 such that 0 ≤

T6(n) ≤ c6n where ∀n > n0.

 The step select_random_edge(§) takes O(1) because this function randomly

selects one edge in a shortest path §. Let T7(n) be the running time of this function so

there is a positive constant c7 such that 0 ≤ T7(n) ≤ c7 where ∀n > n0.

48

 The step get_connected_nodes(e) takes O(1) because this function gets the

index information for a pair of connected nodes. Let T8(n) be the running time of this

function so there is a positive constant c8 such that 0 ≤ T8(n) ≤ c8 where ∀n > n0.

 The step generate_random_number(0, 1) takes O(1) because this function

generates a random real number in the range from 0 to 1. Let T11(n) be the running time

of this function so there is a positive constant c11 such that 0 ≤ T11(n) ≤ c11 where ∀n >

n0.

 Loop for in line 5 takes n steps.

 Loop for in line 9 takes numattrs steps when numattrs is a constant.

 Let T(n) be the total running time and be derived as the following inequalities:

0 ≤ T(n) ≤ T1(n) + T2(n) + T3(n) + T4(n) + n·(T6(n) +T7(n) + T8(n)
 + numattrs·(T10(n) + T11(n) + T12(n)) + T14(n)) + T16(n)

 ≤ c1 + c2n2 + c3n + c4n2
 + n·(c6n + c7 + c8 + numattrs·(c10 + c11 + c12) + c14) + c16

 ≤ (c1 + c16) + (c3 + c7 + c8 + c14 + numattrs·(c10 + c11 + c12))·n
 + (c2 + c4 + c6)·n2

 ≤ (c1 + c16)·n2 + (c3 + c7 + c8 + c14 + numattrs·(c10 + c11 + c12))·n2
 + (c2 + c4 + c6)·n2

 ≤ (c1 + c16 + c3 + c7 + c8 + c14 + numattrs·(c10 + c11 + c12)
 + c2 + c4 + c6)·n2

 ≤ c·numattrs·n2

Because there is a positive constant c such that T(n) ≤ c·numattrs·n2 where ∀n > n0, I

can derive that T(n) = O(numattrs·n2) □

49

By Theorem 2, the shortest paths of each instance to the pseudo-centroid of a

cluster exist in a directly density-reachable graph. In addition, the correctness of the

algorithm DBSMOTE can be validated by this theorem because the algorithm cannot be

halted unless all shortest paths are completely searched by line 6 in the algorithm. If

there is even one instance whose shortest path from the pseudo-centroid does not exist,

the results will be incorrect, and the algorithm cannot be applied in practice. This

theorem is important because it indicates that the algorithm is reliable.

Theorem 2: (Correctness)

There exist all shortest paths between each instance and the pseudo-centroid of a

cluster.

Proof: Assume to the contrary that there is an instance z whose shortest path from the

pseudo-centroid c of a cluster does not exist. Relying on condition 2 in Definition 5, z

and c are in the same cluster; thus, z is density-connected to c. By Definition 4, there

must be an instance r such that z and c are density-reachable from r. By Definition 3,

there is a chain of instances p1, …, pn, p1 = r, pn = z such that pi+1 is directly density-

reachable from pi, where n is the number of instances in this chain and i is an integer in

the range from 1 to n - 1. By Definition 7, pi+1 is directly density-reachable from pi; thus,

an edge connecting pi+1 and pi exists. This sequence of instances is a path between r

and z. Because z and c are density-reachable from r, a path between z and c also

exists, contradicting my assumption that there is a path between z and c. Thus, all

shortest paths between each instance and the pseudo-centroid in the cluster exist when

the instances in this pair are represented as nodes in a directly density-reachable

graph. □

50

CHAPTER V

Experiment

In this chapter, I describe my collected datasets form UCI and show my experimental

results with their statistical tests as follows.

 In my experiment, I compared three performance measures: accuracy, F-value,

and AUC of my framework with those of SMOTE and Safe-Level-SMOTE, by applying

three classifiers: a decision tree C4.5, a rule-based classifier RIPPER, and a neural

network model MLP, on five UCI imbalanced datasets: Glass, Letter Recognition, Page-

Blocks, Satimage, and Segmentation, with multiple minority classes. In addition, I run the

paired t-tests to test a difference in means across the paired observations of my

framework with SMOTE and Safe-Level-SMOTE.

1. Dataset

I selected the multi-class datasets with various degrees of imbalance from the UCI

Repository of Machine Learning Databases [35], Glass Identification, Letter Recognition,

Page-Blocks, Satimage, and Image Segmentation, which are shown in Table 5.1.

 I randomly split each dataset except Satimage, which has separated training

and test sets, into a training set (2/3) and a test set (1/3). In addition, target classes were

selected as minority classes and remaining classes were merged as a majority class. In

order to avoid the randomness of SMOTE techniques, I determined median accuracy, F-

value, and AUC from 3 independent running.

51

Table 5.1. The descriptions of UCI datasets in the experiments.

Dataset Attributes Instances Class

ID

Minority Class Name Minority

Class %

Glass 10 17 3 Vehicle Windows 7.94

13 5 Containers 6.07

Letter

Recognition

16 736 3 C 3.68

734 8 H 3.67

734 26 Z 3.67

Page-blocks 10 329 2 Horizontal Line 6.01

88 4 Vertical Line 1.61

115 5 Picture 2.10

Satimage 36 479 2 Cotton Crop 10.80

415 4 Damp Grey Soil 9.36

470 5 Soil with Vegetation

Stubble

10.60

Segmentation 19 330 3 Foliage 14.29

330 5 Window 14.29

2. Experimental Result

For my experimental design, I used the performance measures accuracy, F-value (as

Precision and Recall), and AUC to evaluate the over-sampling techniques SMOTE, Safe-

Level-SMOTE (SAFE), and DBSMOTE (DBS). The value of β in F-value was set to 1. The

number of k nearest neighbour to be over-sampled was set to 5 as the default value of

SMOTE [8]. The standard classifiers, Decision Tree C4.5, RIPPER, and Multilayer

Perceptron (MLP), were applied. The experimental results from all datasets are

illustrated in Tables 5.2 through 5.5.

52

Table 5.2. Accuracy results when applying SMOTE family on UCI datasets.

Classifier Dataset DBS SMOTE SAFE

C4.5 Glass 84.21 76.31 78.94

Letter Recognition 96.56 97.01 96.57

Page-blocks 97.85 97.30 97.63

Satimage 85.85 86.30 86.95

Segmentation 96.73 95.69 96.08

Ripper Glass 84.21 78.94 80.26

Letter Recognition 96.84 97.01 96.69

Page-blocks 97.46 97.52 97.57

Satimage 88.25 86.80 87.15

Segmentation 95.30 95.30 94.90

MLP Glass 90.78 81.57 86.84

Letter Recognition 96.35 95.94 95.97

Page-blocks 96.97 96.53 96.47

Satimage 90.20 88.75 88.95

Segmentation 97.65 97.25 96.86

53

Table 5.3. F-value results when applying SMOTE family on UCI datasets.

Classifier Dataset Class DBS SMOTE SAFE

C4.5 Glass 3 0.286 0.400 0.167

5 0.750 0.333 0.727

Letter

Recognition

3 0.888 0.883 0.883

8 0.742 0.798 0.754

26 0.905 0.899 0.892

Page-blocks 2 0.936 0.933 0.933

4 0.867 0.867 0.867

5 0.725 0.676 0.712

Satimage 2 0.958 0.945 0.935

4 0.603 0.564 0.580

5 0.813 0.814 0.832

Segmentation 3 0.939 0.930 0.933

5 0.905 0.867 0.890

Ripper Glass 3 0.400 0.375 0.375

5 0.667 0.600 0.444

Letter

Recognition

3 0.915 0.901 0.899

8 0.733 0.743 0.720

26 0.935 0.933 0.926

Page-blocks 2 0.916 0.919 0.926

4 0.906 0.867 0.867

5 0.727 0.714 0.740

Satimage 2 0.951 0.944 0.935

4 0.624 0.607 0.612

5 0.833 0.828 0.839

Segmentation 3 0.932 0.920 0.912

5 0.863 0.865 0.851

54

Table 5.3. F-value results when applying SMOTE family on UCI datasets (Continue).

Classifier Dataset Class DBS SMOTE SAFE

MLP Glass 3 0.600 0.167 0.200

5 0.833 0.769 0.833

Letter

Recognition

3 0.865 0.852 0.848

8 0.777 0.728 0.735

26 0.881 0.861 0.861

Page-blocks 2 0.903 0.870 0.867

4 0.800 0.800 0.792

5 0.718 0.684 0.684

Satimage 2 0.971 0.951 0.969

4 0.679 0.662 0.647

5 0.880 0.859 0.861

Segmentation 3 0.960 0.959 0.951

5 0.929 0.915 0.906

55

Table 5.4. AUC results when applying SMOTE family on UCI datasets.

Classifier Dataset Class DBS SMOTE SAFE

C4.5 Glass 3 0.783 0.740 0.669

5 0.907 0.747 0.870

Letter

Recognition

3 0.978 0.964 0.958

8 0.930 0.951 0.942

26 0.958 0.961 0.961

Page-blocks 2 0.971 0.972 0.972

4 0.946 0.946 0.929

5 0.852 0.890 0.895

Satimage 2 0.985 0.973 0.977

4 0.852 0.795 0.787

5 0.927 0.892 0.908

Segmentation 3 0.981 0.980 0.977

5 0.961 0.917 0.922

Ripper Glass 3 0.714 0.706 0.713

5 0.786 0.714 0.695

Letter

Recognition

3 0.966 0.961 0.959

8 0.899 0.902 0.873

26 0.977 0.974 0.975

Page-blocks 2 0.974 0.981 0.975

4 0.981 0.933 0.934

5 0.897 0.825 0.826

Satimage 2 0.980 0.968 0.965

4 0.858 0.844 0.836

5 0.918 0.923 0.905

Segmentation 3 0.987 0.981 0.947

5 0.951 0.927 0.921

56

Table 5.4. AUC results when applying SMOTE family on UCI datasets (Continue).

Classifier Dataset Class DBS SMOTE SAFE

MLP Glass 3 0.867 0.838 0.840

5 0.990 0.983 0.861

Letter

Recognition

3 0.995 0.977 0.960

8 0.961 0.951 0.956

26 0.989 0.985 0.981

Page-blocks 2 0.983 0.978 0.979

4 0.992 0.981 0.990

5 0.954 0.955 0.954

Satimage 2 0.999 0.996 0.998

4 0.941 0.939 0.936

5 0.989 0.972 0.976

Segmentation 3 0.998 0.998 0.997

5 0.994 0.995 0.991

For the statistical analysis illustrated in Tables 5.5 through 5.7, I applied the

paired t-tests to all the accuracy, F-value and AUC results above. For each test, the null

and alternative hypotheses were

H0: µ1 - µ2 = 0
H1: µ1 - µ2 ≠ 0

where µ1 is the mean of DBSMOTE and µ2 is the mean of SMOTE or Safe-Level-SMOTE.

All pairs of variances were not significantly different. For each result, I did two paired t-

tests: DBSMOTE to SMOTE and DBSMOTE to Safe-Level-SMOTE. The significance level

(α) was set to 0.05. If P(T ≤ t) two-tail < α, H0 is rejected, which meant that there was a

difference in means across the paired observations.

57

Table 5.5. t-test: paired two sample for means on accuracy.

 DBS SMOTE DBS SAFE

Mean 93.014 91.21467 93.014 91.85533

Variance 27.11577 55.94568 27.11577 41.6465

Observations 15 15 15 15

Pearson Correlation 0.944343 0.975887

Hypothesized Mean Difference 0 0

Degree of Freedom 14 14

t Stat 2.261047 2.519068

P(T ≤ t) one-tailed 0.020104 0.012272

t Critical one-tailed 1.76131 1.76131

P(T ≤ t) two-tailed 0.040207 0.024545

t Critical two-tailed 2.144787 2.144787

Table 5.6. t-test: paired two sample for means on F-value.

 DBS SMOTE DBS SAFE

Mean 0.808077 0.77441 0.808077 0.777051

Variance 0.023457 0.036204 0.023457 0.037869

Observations 39 39 39 39

Pearson Correlation 0.862332 0.940544

Hypothesized Mean Difference 0 0

Degree of Freedom 38 38

t Stat 2.168379 2.67111

P(T ≤ t) one-tailed 0.018229 0.005534

t Critical one-tailed 1.685954 1.685954

P(T ≤ t) two-tailed 0.036458 0.011068

t Critical two-tailed 2.024394 2.024394

58

Table 5.7. t-test: paired two sample for means on AUC.

 DBS SMOTE DBS SAFE

Mean 0.937718 0.920897 0.937718 0.915641

Variance 0.004557 0.006839 0.004557 0.006971

Observations 39 39 39 39

Pearson Correlation 0.924886 0.922806

Hypothesized Mean Difference 0 0

Degree of Freedom 38 38

t Stat 3.211854 4.108829

P(T ≤ t) one-tailed 0.001343 0.000102

t Critical one-tailed 1.685954 1.685954

P(T ≤ t) two-tailed 0.002685 0.000204

t Critical two-tailed 2.024394 2.024394

To summarize the experimental results, it is apparent that DBSMOTE achieves

the best accuracy, F-value (as Precision and Recall), and AUC when applying various

types of classifiers. According to the paired t-tests, the performances of DBSMOTE are

significantly better than that of SMOTE and Safe-Level-SMOTE for all measures.

59

CHAPTER VI

Discussion and Conclusion

In the last chapter, I discuss and summarize my research and also point out my future

works as follows.

 The trade-off between re-sampling techniques in this thesis is revealed as

following facts. SMOTE consumes the least execution time in seconds but fails to

operate on an overlapping region. Safe-Level-SMOTE can treat the overlapping problem

but does not apply the features scaling process. DBSMOTE efficiently remedy the

overlapping problem but consumes the least execution time in seconds. It has been

evidenced that SMOTE is the fastest in the experiment; however in the class imbalanced

problem I aim to archive the predictive performance but not the execution time so

DBSMOTE is the best technique for handling this kind of problem.

 The trade-off between re-sampling techniques in this thesis is revealed as

following facts. SMOTE consumes the least execution time in seconds but fails to

operate on an overlapping region. Safe-Level-SMOTE can treat the overlapping problem

but does not apply the features scaling process. DBSMOTE efficiently remedy the

overlapping problem but consumes the least execution time in seconds. It has been

evidenced that SMOTE is the fastest in the experiment; however in the class imbalanced

problem I aim to archive the predictive performance but not the execution time so

DBSMOTE is the best technique for handling this kind of problem.

 In conclusion, the class imbalanced problem has got more attentions among

machine learning society. Unfortunately, traditional data mining techniques are still

unsatisfactory when applications encounter this kind of problem. In this thesis, I propose

the density-based over-sampling framework DBSMOTE which concentrates to operate

on the core of a cluster of a minority class rather than the border of this cluster because

this core contains significant information; as a result, a classifier emphasizes to learn on

this core. Moreover, I also provide future works to improve both predictive performance

and execution time of my framework.

60

1. Discussion

SMOTE family is the group of over-sampling techniques based on SMOTE and consists

of an original SMOTE, Safe-Level-SMOTE and DBSMOTE. The discussion among these

techniques is described as Table 6.1.

 For SMOTE, the main advantage is that the execution time of SMOTE in the

experiment is the fastest comparing with the other techniques in SMOTE family because

computing k nearest neighbours consumes the low cost; in addition, the disadvantage is

that SMOTE cannot treat the overlapping regions because the synthetic instances

generated in these regions would crash into the negative instances.

 For Safe-Level-SMOTE, the advantage is that Safe-Level-SMOTE can treat the

overlapping regions because the synthetic instances generated in these regions would

be closer to the core of a cluster rather than the border of this cluster so these synthetic

instances would not crash into the negative instances; in addition, the disadvantage is

that an instance which its attributes have highly values might not be considered as the k

nearest neighbours because the features scaling approach is not applied.

 For DBSMOTE, the advantage is that DBSMOTE can efficiently treat the

overlapping regions because the synthetic instances generated in these regions located

closer to the safe regions which contain the core information of a minority class so a

classifier is induced conveniently to separate the regions between a minority class and a

majority class; in addition, the disadvantage is that the execution time of DBSMOTE in

the experiment is the slowest comparing with the other techniques in SMOTE family

because Dijkstra’s algorithm consumes the high cost.

61

Table 6.1. The Discussion on SMOTE family.

Technique Concept Pros Cons

SMOTE • SMOTE over-samples all

instances spreading

throughout a cluster in

every region.

• SMOTE generates all

synthetic instances along

a line joining each

positive instance and its

randomly selected

positive nearest

neighbours.

• The density of the

synthetic instances is not

dense in any particular

regions.

• SMOTE consumes

the least execution

time in the

experiment

comparing with the

other techniques.

• SMOTE is widely

available in data

mining softwares

such as WEKA.

• SMOTE is easy to

implement in

various computer

languages.

• SMOTE

poorly

handles the

overlapping

regions.

62

Table 6.1. The Discussion on SMOTE family (Continue).

Technique Concept Pros Cons

Safe-Level-

SMOTE
• Each positive instance

has its safe level

computed by the

number of positive

instances among the k

nearest neighbours.

• Each synthetic instance

is generated along the

same over-sampling line

of SMOTE but

positioning closer to a

larger safe level

instance.

• The density of the

synthetic instances is

similar to that of SMOTE

but not spreading in the

overlapping regions.

• Safe-Level-

SMOTE

handles the

overlapping

regions.

• An instance with a

highly value-

feature may not be

considered as the

k nearest

neighbours.

63

Table 6.1. The Discussion on SMOTE family (Continue).

Technique Concept Pros Cons

DBSMOTE • Each synthetic instance is

generated along the

shortest path from each

positive instance to the

pseudo-centroid of a

minority class-cluster when

these instances in the pair

are represented as nodes

in a directly density-

reachable graph.

• The density of the synthetic

instances is dense nearby

the pseudo-centroid and is

sparse far from the

pseudo-centroid.

• DBSMOTE

efficiently

handles the

overlapping

regions.

• Although the time

complexity is

O(n2), the

execution time in

the experiment is

slower than the

other techniques.

64

2. Conclusion

Class imbalanced problems are beginning to receive more attention among data miners

and researchers. An application encounters this problem when the classes in a dataset

are imbalanced. In addition, there are many techniques for handling the problems, such

as over-sampling and under-sampling. Unfortunately, traditional data mining techniques

are not capable of solving this kind of problem. I have designed an efficient technique

called DBSMOTE based on the density concept for dealing with class imbalanced

problems.

 DBSMOTE begins to run DBSCAN to discover arbitrarily shaped clusters and to

detect noise instances to be deleted and then execute SMOTE to generate synthetic

instances inside the shapes of these clusters. These instances tend to avoid appearing

in any regions of a majority class so the prediction rate on a minority class would be

improved.

 According to the experimental results, the performance of DBSMOTE evaluated

by F-value (as Precision and Recall), and AUC is better than that of SMOTE and Safe-

Level-SMOTE when applying various types of classifiers. This phenomenon stems from

DBSMOTE’s generation of all synthetic instances along the shortest paths between each

instance and the pseudo-centroid of a cluster in a directly density-reachable graph.

Thus, the synthetic instances are dense near the pseudo-controid and sparse far from

the pseudo-controid. Consequently, these synthetic instances cause a classifier to

concentrate on the core information located around the pseudo-centroid instead of on

the border information located around the edge of a cluster. In summary, the synthetic

instances can improve prediction performance on a minority class. Furthermore, the

statistical analysis supports my conclusions.

 Analysis of the algorithm reveals that DBSMOTE takes O(numattr·n2) when n is

the size of an input set, and both SMOTE and Safe-Level-SMOTE take the same running

time. The correctness of DBSMOTE is also validated. The information contained in the

synthetic instances is more similar to the core information than the border information.

65

3. Future Work

Although the experimental results have provided evidence that DBSMOTE can

successfully classify an imbalanced dataset, there is considerable room for future work

in this line of research. First, different density-based clustering algorithms could replace

DBSCAN by integrating with DBSMOTE. Second, pruning a directly density-reachable

graph might improve the performance of DBSMOTE. Third, automatic determination of

the number of synthetic instances generated by DBSMOTE and the values of Eps and

MinPts should be addressed.

References

[1] Chawla, N.V., Japkowicz, N., Kolcz, A.: Editorial: Special Issue on Learning from

 Imbalanced Data Sets. SIGKDD Explorations, vol. 6, no. 1, pp. 1--6 (2004)

[2] Japkowicz, N.: Class imbalance: Are we focusing on the right issue?. Proceedings

 of the 20th International Conference on Machine Learning, pp. 17--23.

 Washington, District of Columbia, USA (2003)

[3] Japkowicz, N.: The Class Imbalance Problem: Significance and Strategies.

 Proceedings of the 2000 International Conference on Artificial Intelligence,

 pp. 111--117. Las Vegas, Nevada, USA (2000)

[4] Jo, T., Japkowicz, N.: Class Imbalances versus Small Disjuncts. SIGKDD

 Explorations, vol. 6, no. 1, pp. 40--49 (2004)

[5] Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: DBSMOTE: Density-Based

 Synthetic Minority Over-sampling Technique. Applied Intelligence, DOI:

 10.1007/s10489-011-0287-y (2011)

[6] Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: MUTE: Majority Under-

 sampling TEchnique. Proceedings of the 8th International Conference on

 Information, Communications, and Signal Processing. Singapore (2011)

[7] Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: Safe-Level-SMOTE: Safe-

 Level-Synthetic Minority Over-sampling TEchnique for handling the class

imbalanced problem. Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B.

(eds.) the 13th Pacific-Asia Conference on Knowledge Discovery and Data

Mining, Bangkok, Thailand. Lecture Notes in Artificial Intelligence, vol. 5476, pp.

475--482. Springer, Heidelberg (2009)

[8] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority

 Over-Sampling TEchnique. Journal of Artificial Intelligence Research, vol. 16, pp.

 341--378 (2002)

[9] Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: A New Over-Sampling

 Method in Imbalanced Data Sets Learning. Huang, D.-S., Zhang, X.-P.,

 Huang, G.-B. (eds.) the 2005 International Conference on Intelligent Computing,

 Hefei, China. Lecture Notes in Computer Science, vol. 3644, pp. 878--887.

67

 Springer, Heidelberg (2005)

[10] Kubat, M., Holte, R.C., Matwin, S.: Learning When Negative Examples Abound.

 Proceedings of the 9th European Conference on Machine Learning,

 pp. 146--153. Prague, Czech Republic (1997)

[11] Ezawa, K.J., Singh, M., Norton, S.W.: Learning Goal Oriented Bayesian Networks for

Telecommunications Risk Management. Proceedings of the 13th International

Conference on Machine Learning, pp. 139--147. Bari, Italy (1996)

[12] Fan, W., Miller, M., Stolfo, S., Lee, W., Chan, P.K.: Using Artificial Anomalies to

 Detect Unknown and Known Network Intrusions. Proceedings of the 1st IEEE

 International Conference on Data Mining, pp. 123--130. San Jose, California,

 USA (2001)

[13] Fawcett, T., Provost, F.: Combining Data Mining and Machine Learning for Effective

 User Profile. Proceedings of the 2nd International Conference on Knowledge

 Discovery and Data Mining, pp. 8--13. Portland, Oregon, USA (1996)

[14] Japkowicz, N., Myers, C., Gluck, M.: A Novelty Detection Approach to

 Classification. Proceedings of the 14th International Joint Conference on Artificial

 Intelligence, pp. 518--523. Montreal, Canada (1995)

[15] Kubat, M., Holte, R.C., Matwin, S.: Machine Learning for the Detection of Oil Spills in

 Satellite Radar Images. Machine Learning, vol. 30, no. 2-3, pp. 195--215 (1998)

[16] Ling, C.X., Li, C.: Data Mining for Direct Marketing Problems and Solutions.

 Proceedings of the 4th International Conference on Knowledge Discovery and

 Data Mining, pp. 73--79. New York, New York City, USA (1998)

[17] Woods, K.S., Doss, C.C., Bowyer, K.W., Solka, J.L., Priebe, C.E., Kegelmeyer, W.P.:

 Comparative Evaluation of Pattern Recognition Techniques for Detection of

 Microcalcifications in Mammography. International Journal of Pattern

 Recognition and Artificial Intelligence, vol. 7, no. 6, pp. 1417--1436 (1993)

[18] Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior of Several

 Methods for Balancing Machine Learning Training Data. SIGKDD Explorations,

 vol. 6, no. 1, pp. 20--29 (2004)

68

[19] Kubat, M., Matwin, S.: Addressing the Curse of Imbalanced Training Sets:

 One-Sided Selection. Proceedings of the 14th International Conference on

 Machine Learning, pp. 179—186. Nashville, Tennessee, USA (1997)

[20] Tetko, I.V., Livingstone, D.J., Luik, A.I.: Neural Network Studies. 1. Comparison of

 Overfitting and Overtraining. Journal of Chemical Information and Computer

 Sciences, vol. 35, no. 5, pp. 826--833 (1995)

 [21] Domingos, P.: Metacost: A General Method for Making Classifiers Cost-sensitive.

 Proceedings of the 5th ACM SIGKDD International Conference on Knowledge

 Discovery and Data Mining, pp. 155--164. San Diego, California, USA (1999)

[22] Fan, W., Stolfo, S.J., Zhang, J., Chan, P.K.: AdaCost: misclassification cost-sensitive

 boosting. Proceedings of the 16th International Conference on Machine Learning,

 pp. 97--105. Bled, Slovenia (1999)

[23] Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T., Brunk, C.: Reducing

 Misclassification Costs. Proceedings of the 11th International Conference on

 Machine Learning, pp. 217--225. San Francisco, California, USA (1994)

[24] Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: Improving

 prediction of the Minority Class in Boosting. Proceedings of the 7th European

 Conference on Principles and Practice of Knowledge Discovery in Databases,

 pp. 107--119. Cavtat-Dubrovnik, Croatia (2003)

[25] Freund, Y., Schapire, R.: Experiments with a New Boosting Algorithm. Proceedings

 of the 13th International Conference on Machine Learning, pp. 325--332. Bari,

 Italy (1996)

[26] Lewis, D.D., Catlett, J.: Heterogeneous Uncertainty Sampling for Supervised

 Learning. Proceedings of the 11th International Conference on Machine Learning,

 pp. 148--156. New Brunswick, New Jersey, USA (1994)

[27] Kamber, M., Han, J.: Data mining: Concepts and Techniques, 2nd Edition. Morgan

 Kaufman, USA (2000)

[28] Bradley, A.P.: The Use of the Area Under the ROC Curve in the Evaluation of

 Machine Learning Algorithms. Pattern Recognition, vol. 30, no. 6, pp. 1145--

 1159 (1997)

[29] Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, USA

69

 (1992)

[30] Cohen, W. W.: Fast Effective Rule Induction. Proceedings of 12th International

 Conference on Machine Learning, pp. 115--123. Lake Tahoe, California, USA

 (1995)

[31] Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm for

 Discovering Clusters in Large Spatial Databases with Noise. Proceedings of the

 2nd International Conference on Knowledge Discovery and Data Mining,

 pp. 226--231. Portland, Oregon, USA (1996)

[32] Jungnickel, D.: Graphs, Networks and Algorithms. Springer, Heidelberg (2003)

[33] Bai, X., Yang, X., Yu, D., Latecki, L.J.: SKELETON-BASED SHAPE CLASSIFICATION

 USING PATH SIMILARITY. International Journal on Pattern Recognition and

 Artificial Intelligence, vol. 22, no. 4, pp. 733--746 (2008)

[34] Corman, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd

 Edition. The MIT Press, USA (2001)

[35] Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases.

 http://archive.ics.uci.edu/ml/. Department of Information and Computer

 Sciences, University of California, Irvine, California, USA (2010)

70

Biography

 I received my B.Eng. in Computer Engineering from Rangsit University and my

M.S. in Computer Science from Chiang Mai University. I am a lecturer in the Department

of Computer Science, Chiang Mai University. I am studying a Ph.D. Program in

Computer Science at Chulalongkorn University. My research focus is Data Mining-

especially in the Class Imbalanced Problems and Clustering.

 Chumphol Bunkhumpornpat

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Tables
	2.1 A confusion matrix for the two-class imbalance problem
	5.1 The descriptions of UCI datasets in the experiments
	5.2 Accuracy results where applying SMOTE family on UCI datasets
	5.3 F-value results where applying SMOTE family on UCI datasets
	5.4 AUC results where applying SMOTE family on UCI datasets
	5.5 t-test: paired two sample for means on accuracy
	5.6 t-test: paired two sample for means on F-value
	5.7 t-test: paired two sample for means on AUC
	6.1 The discussion on SMOTE family

	Figures
	2.1 Data mining process
	2.2 One-against-one
	2.3 Over-sampling and Under-sampling
	2.4 One-sided selection
	2.5 ROC curve
	2.6 Decision tree
	2.7 A simplified MLP network architecture
	2.8 K nearest neighbors
	3.1 SMOTE over-sampling
	3.2 (a) Core instance and border instance (b) directly density-reachable
	3.3 (a) Density-reachable (b) density-connected
	3.4 A sorted k-dist graph
	4.1 Safe-level-SMOTE algorithm
	4.2 The five cases corresponding to the safe level ratio
	4.3 MUTE algorithm
	4.4 An over-lapping region before and after under-sampling
	4.5 A directly density-reachable graph
	4.6 A shortest path found in a directly density-reachable graph
	4.7 An over-sampling framework integrated with DBSMOTE
	4.8 DBSMOTE algorithm

	Chapter 1 Introduction
	1.1 Objective
	1.2 Scope of work
	1.3 Expected outcome
	1.4 Research methodology

	Chapter 2Background
	2.1 Data mining
	2.2 Class imbalanced problem
	2.3 Re-sampling technique
	2.4 Performance measure
	2.5 Experimental classifier
	2.6 K nearest neighbours

	Chepter 3Related work
	3.1 Smote
	3.2 Dbscan

	Chepter 4Problem methodology
	4.1 Safe-level-SMOTE
	4.2 Mute
	4.3 Dbsmote

	Chepter 5Experiment
	5.1 Dataset
	5.2 Experimental result

	Chepter 6Discussion and conclusion
	6.1 Discussion
	6.2 Conclusion
	6.3 Future work

	References
	Vita

