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APPENDIX A
Fourier Transform Infrared Spectroscometer (FT-IR) [18]

Recently, infrared spectroscometers based on Fourier transform
interferometry have gained acceptance. The infrared instruments employing the

Fourier transform , offer even more favorable resolution and signal-to-noise

characteristics than dispersiva i : \1 I ‘

The Fourier tran *_q___ 'is a feteettg >neral mathematical operation.

By the use of this Operat s caf (radsmeas  -sults obtained as a function of
time (interferogram) ag of frequency (absorbance
spectra). The infrare spersive instruments do have

Fg

certain limitations. are relatively slow requiring

several minutes to #Bia; p i 'v,‘ll"'-,\- lution and signal-to-noise
for the common spegfal & n iad ' :t'», ! : the detectability of low
level components is ngfp f rsp \\‘ annot be routinely obtained
for extremely small sagble : of Fourier transform infrared

spectroscometers greatly alle H ablems.

The basisjadSOUREEN drpscopy is the Micheson

Interferometer sh st A from an infrared source

passes to a beam sJfitter. c WO equair oeams #ig: then directed to moving
mirror and stationary@magror. If the ngigrors are positioned such that optical

paths of theﬂ; afb ﬂag o) B Vad W ol oohde | When they retum to the

beam sphttcr Consequently, gle heams mterﬁ:re constructwcly, giving an

ener nWﬁ}ﬁ Qﬂﬁm ﬂx W a’ﬂwa\relengtb of
the indddent light will bring the two beams 180 degrees out of phase when they

return to the beam splitter. This results in destructive interference (an energy
minimum). Movement of moveable mirror gives an alternating energy
maximum and minimum for each quarter wavelength movement of the mirror.
This corresponds to a wavelength change of A/2 since the beam travels this

distance twice.
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If monochromatic energy of wavelength A is passed through the
interferometer and moveable mirror is moved with velocity, V, the signal

detected will have a frequency, f, given by the following equation :

f=2V
A

The result of plotting dete esponse versus mirror travel is a pure

cosine function. When polg Fdiation is used as the source, the

detector output signal bechme s rompl e function. The resulting output

is called an interferog PO SRR ;5% d S ™ i rier transformation to yield

--L_t__‘

the familiar absorption ggmation requires the use of a

digital computer.

Advantages of Fourier

The Fourier trogtf: % O0rs certain advantages over

dispersive infrared tecl}
1. Fellgett’s Advi

The Fourier transforr i« measures all wavelengths of the
infrared spectru #iscometer measures only

one wavelength a! v ;‘: o system is capable of

measuring a comp I e speclil ° same (#e it takes a dispersive

spectmscumeter to m‘aﬂe one resolugien element. The Fourier transform

e LB DA BTETIEIRH For i v

of resolution $ements in the spe?rum Alternately, for the same measurement

ARG AN VTN URE

spersive spectroscometer.
2. Jacquinot’s Advantage

This advantage concerns comparison of the light through-put of the
interferometer versus a dispersive instrument at a given resolution. The

interferometer has a circular aperture of, for example, 50 nm diameter, and has
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no slits. A dispersive instrument operating at 1 cm™' resolution has a slit area of
approximately 1 mm? . Comparison of these figures suggests a through-put
advantage of nearly 2000 for the interferometer. However, the solid angle of
view for a dispersive instrument is about 50 times that of an interferometer,

hence the actual through-put advantage for the interferometer is more nearly a

factor of 40.
&s use a laser to calibrate the

M heprecision.

3. Connes’s Advantag

Fourier transfo

wavelength of each sc

In Fourier t o ,_ Fooii g2 & ®equency is chopped by the
interferometer ( accy , Wiferent frequency, resulting

in essentially zero stragfii

Unmodulated
Incident Beam

| e TETTSNETS
AR INGIRY

Modulated
Exit Beam

Figure A.1 Diagram of a Michaelson Interferometer [18]
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APPENDIX B

IR spectra of coked catalysts at 300°C, 400°C, and cooled down to room
temperature in N; atmosphere

:
Z

2000 1800 1000

Figure B.1 IR spectrum t?:__,.::;r gst at 300°C in N atmosphere
Y1
X ‘o v/
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Figure B.2 IR spectrum of 5 min.coked catalyst at 400°C in N; atmosphere
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2000 1200 1000

Figure B.3 4R £ Frunill58in ok SAcilllyst cooled down to room
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Absorbance (a.u.)
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2000 180

Figure B.4 IR spef
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Figure B.5 IR spectrum of 10 min.coked catalyst at 400°C in N; atmosphere
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Absorbance (a.u.)
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1200 1000
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Absorbance ( a.u. )

2000 1200 1000
Figure B.7 IR spey I ‘ ) iy d ‘GD"C in N, atmosphere
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Figure B.8 IR spectrum of 30 min.coked catalyst at 400°C in N, atmosphere
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Absorbance (a.u.)
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2000

1200 1000

Figure B.1GMR g8 fruniZ08 colh W (Nt at 300°C in N; atmosphere

1800 1600 1400 1200 1000
Wavenumber (cm™)

Figure B.11 IR spectrum of 1 hr.coked catalyst at 400°C in N; atmosphere
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2000 1200 1000

Figure B.1 #F 114 £Ct W& 0kt cooled down to room

AULINENTNEINT
ARIANTAUNM TN



Absorbance (a.u.)

Absorbance (a.u.)
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|
2000 1200 1000
Figure B.13 IR spgfingf | .i'*- o ."-,“‘ A1 %h0°C in N, atmosphere
2000 1800 1600 1400 1200 1000

Wavenumber (cm™)

Figure B.14 IR spectrum of 2 hr.coked catalyst at 400°C in N atmosphere
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2000 1200 1000

Figure B.16 IR sp, _ Wo°c in N atmosphere

2000 1800 1600 1400 1200 1000
Wavenumber (em™)

Figure B.17 IR spectrum of 4 hr.coked catalyst at 400°C in N, atmosphere
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