CHAPTER III

RESULTS

- 1. Effects of 5-HT on isolated rat atria
 - 1.1 Positive chronotropic effect.

Contractile responses of the right atria when exposed to different concentration of 5-HT (0.20 µg/ml to 7.75 µg/ml) were measured in Locke solution for a period of 15 min after addition of each concentration of 5-HT to the bathing fluid. As shown in Fig.1, 5-HT caused a concentration-dependent increase of the spontaneous rate. Doses of 0.2 µg/ml and 0.8 µg/ml produced a slight increased. Some experiments have been studied at high dose 7.75 µg/ml which also produced a dose dependent. The time to maximum peak effects were relatively to the doses (see Fig.1), but they showed a prolonged chronotropic effects more than 15 min. In Fig.1, collection of the effects of a dose 2.00 µg/ml have been demonstrated. In this study a dose of 2.00 µg/ml was used to investigated for the mechanism of 5-HT antagonists. The positive chronotropics effects at this dose was about 10% increase from normal rate. The average normal right atrial rate collected in this study from 75 rats was 266.4 ± 22.3 beats/min. No cardiac arrhythmias was observed in all experiments.

1.2 Positive inotropic effect

The inotropic effect of 5-HT on a constant left atrial force have been investigated. As shown in Fig. 2, 5-HT produced dose-dependent increased in contractile force. The peaks to maximum effect were about 3 min after addition of drug which faster than those observed on the right atrial rate (about 5-10 min depend on doses). As shown in Fig. 2, higher doses produced faster decline after peak-effects. No cardiac arrhythmias was observed in all experiments.

- Antagonism of 5-HT effects on right atrial rate and left atrial isometric tension by 5-HT antagonists.
 - 2.1 Antagonism of 5-HT effect on right atrial rate and left atrial contractile force by one 5-HT antagonist.

Cyproheptadine 0.02 µg/ml caused slight reduction on right atrial rate and left atrial isometric tension. As shown in Fig. 3, a small reduction occurred 1 min after addition of cyproheptadine and then sustained at that level for a period of more than 15 min. In Fig. 4, there was no change in left atrial force of contraction during 3 min after administration and then a small gradually reduction was observed which differed from the right atrial rate.

Prior administration of cyproheptadine 0.02 μ g/ml (5 min before addition of 5-HT) could reduce the positive chronotropic effects of 5-HT about 50% at each period (Fig. 3), but not statistically significant (P > 0.05). As shown in Fig. 4 prior administration of cyproheptadine 0.02 μ g/ml (5 min before addition of

5-HT) could significantly (P < 0.05) reduce the positive inotropic effect of 5-HT which differed from those observed on the right atrial rate.

Methysergide 0.47 μ g/ml caused slight reduction (2-3% from control) on both right atrial rate (see Fig.5) and left atrial force of contraction (see Fig.6). The pattern of a reduction were similar to those produced by cyproheptadine.

In Fig. 5, prior administration of methysergide (5 min before 5-HT) could significantly (P < 0.05) reduce the positive chronotropic effect of 5-HT at every periods except at 15 min (P > 0.05). The percentage of these reduction was about 50% from the effect of 5-HT alone. Again, in Fig. 6 prior administration of methysergide (5 min before 5-HT) could significantly reduce (P < 0.05) the positive inotropic effect of 5-HT. At 15 min the average percentage change was only 101.6 ± 1.7 but was not statistically significant (P > 0.05). As shown in Fig. 5 and Fig. 6, methysergide showed a greater reduction in the effect of 5-HT on left atrial force of contraction than on the right atrial rate.

 Effects of a beta-blocking agent (propranolol) on positive chronotropic and inotropic actions of 5-HT

A dose of 0.15 μ g/ml of propranolol was selected to investigate in this study. It could abolish the positive chronot-ropic effect of norepinephrine (0.4 μ g/ml) which produced chronot-ropic effect equal to 5-HT (2.0 μ g/ml). As shown in Fig.7 and 8 propranolol 0.15 μ g/ml caused no significant reduction on both right atrial rate and left atrial force of contraction. Prior administration of propranolol (5 min before 5-HT) could reduce the

positive chronotropic effect of 5-HT on the right atrial rate (see Fig.7). The average percentage of reduction were about 50% but are not statistically significant at all periods (P > 0.05). The peak maximum effects of 5-HT after administration of propranolol was about 1 min after administration which faster than the effects of 5-HT alone (about 3-5 min) and also differed from the effects after cyproheptadine (Fig.3) and methysergide (Fig.5).

The results observed in Fig. 8 was clearly showed that propranolol 0.15 μ g/ml could not antagonize the positive inotropic effect of 5-HT on left atria.

- 4. Effects of 5-HT antagonists and beta-blocking agent on positive chronotropic and inotropic actions of 5-HT
 - 4.1 Effects of cyproheptadine and propranolol on positive chronotropic and inotropic actions of 5-HT.

Combination of propranolol 0.15 µg/ml and cyproheptadine 0.02 µg/ml caused a slight reduction (about 2-3%) on right atrial rate (see Fig.9) and also 2-3% on the left atrial isometric tension (see Fig.10). Prior administration of both propranolol and cyproheptadine (5 min before 5-HT) could significantly reduce (P < 0.025) the positive chronotropic effect of 5-HT. This combination antagonists effect was greater than a single effect produced by single drug. Again the result in Fig.10, prior administration of combined propranolol and cyproheptadine, showed a statistically significant (P < 0.005) on reducing the left atrial force of contraction. The peak maximum effect was 101.6 ± 1.3% at 3 min after addition of 5-HT. This maximum effects was closed to the

effects antagonized with cyproheptadine alone (101.1 \pm 1.1 at 3 min, see Fig.4) but differed from the antagonizing effect of propranolol alone (see Fig.8).

4.2 Effects of methysergide and propranolol on positive chronotropic and inotropic effects of 5-HT

The combination of methysergide (0.47 μ g/ml) and propranolol (0.15 μ g/ml) caused a very small reduction on right atrial rate (see Fig.11) and left atrial force of contraction (see Fig.12). Prior administration of both methysergide and propranolol (5 min before 5-HT) could mitigate positive chronotropic effect (see Fig. 11) induced by 5-HT, positive inotropic effect (see Fig.12) and also the reduction effect was completly and all of the points were highly significant difference (P < 0.005).

5. Effects of 5-HT antagonists on isolated reserpinized rat atria

The rats were pretreated with reserpine 5 mg/kg i.p. 2 days before experiment. The average body weight was decreased about 43.72 ± 1.49 gm.(n = 32). Normal right atrial rate collected from 32 rats was about 263.4 ± 18.4 beats/min which was similar to non-treated rats (266.5 ± 22.3 , n = 75). As shown in Fig.13, the pattern of chronotropic effect of 5-HT on right atrial rate in reserpinized rats are similar but less than those observed from non-treated rats. However, they are not statistically significance.

Similar results were also observed (see Fig.14) on the effects of 5-HT on left atrial isometric tension between reserpinized and non-reserpinized rats.

As shown in Fig. 15 the effects of cyproheptadine (0.02 μ g/ml) on the right atrial rate was similar to those observed in non-reserpinized rats. Prior administration of cyproheptadine (5 min before 5-HT) could significantly antagonized (P < 0.05) the positive chronotropic effect of 5-HT. However, the antagonized effect of cyproheptadine was gradually reduced after 5 min and were not statistically difference at 10 and 15 min (P > 0.05).

Prior administration of cyproheptadine also significantly antagonized (P < 0.05) the positive inotropic effect produced by 5-HT at every periods of investigation (see Fig. 16).

Methysergide 0.47 μ g/ml showed very slightly change on right atrial rate (see Fig. 17) and left atrial isometric tension (Fig. 18) from control values. But 5-HT 2.0 μ g/ml caused increased in both right atrial rate and left atrial contraction similar to non-reserpinized rats. Prior administration of methysergide (0.47 μ g/ml), 5 min before 5-HT, could completly antagonized the positive chronotropic and inotropic effects of 5-HT (see Fig. 17 and 18).

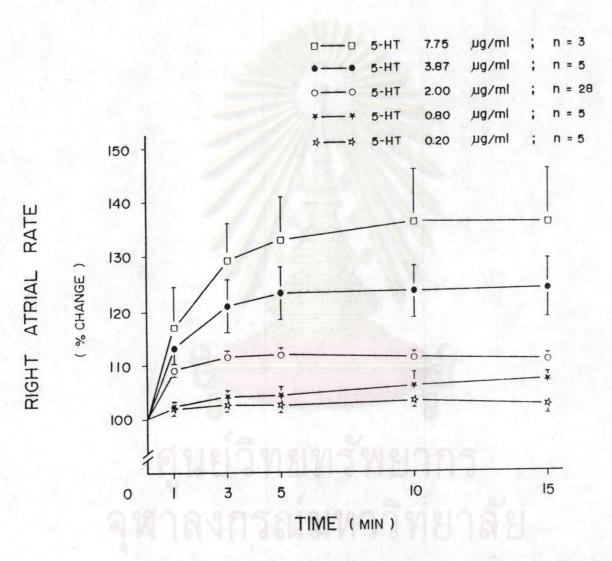


Fig. 1 Dose-response curves of 5-HT on the isolated rat right atrial rate. Each point on the curves represents the mean value ± S.E.M. of the percentage change from the control values.

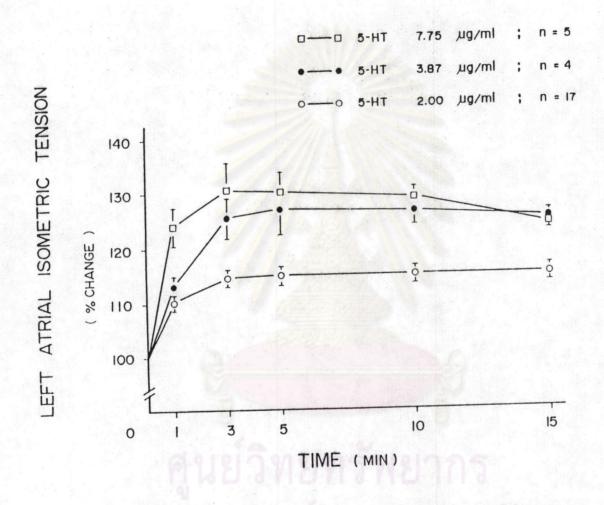


Fig. 2 Dose-response curves of 5-HT on the isolated rat left atrial isometric tension. Each point on the curves represents the mean value ± S.E.M. of the percentage change from the control values.

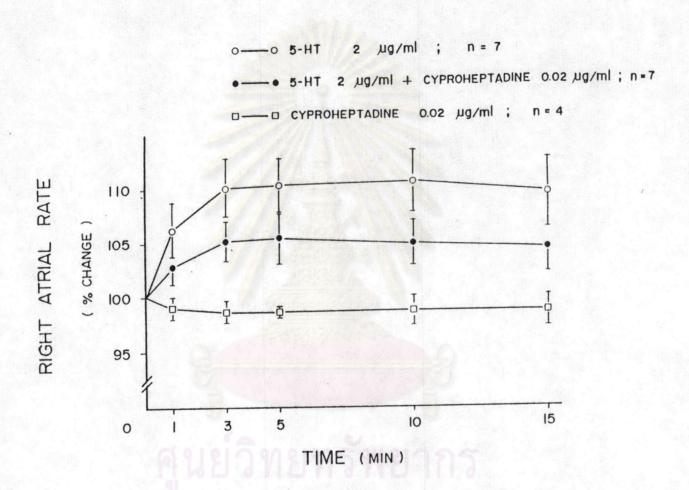


Fig. 3 The effect of 5-HT 2.0 μ g/ml, cyproheptadine 0.02 μ g/ml and 5-HT 2.0 μ g/ml + cyproheptadine 0.02 μ g/ml upon the rat right atrial rate. Each point on the curves represents the mean value \pm S.E.M. of the percentage change from the control values.

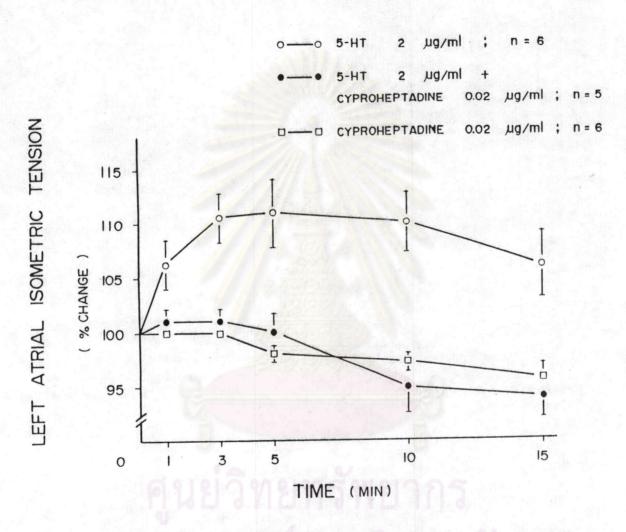


Fig. 4 The effect of 5-HT 2.0 μ g/ml, cyproheptadine 0.02 μ g/ml and cyproheptadine 0.02 μ g/ml + 5-HT 2.0 μ g/ml, upon the isolated rat left atrial isometric tension. Each point on the curves represents the mean value \pm S.E.M. of the percentage change from the control values.

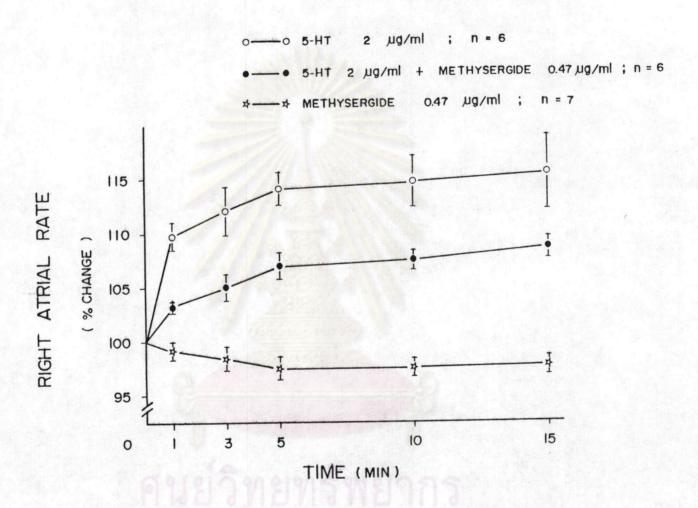


Fig. 5 The effect of 5-HT 2.0 μ g/ml, methysergide 0.47 μ g/ml and methysergide 0.47 μ g/ml + 5-HT 2.0 μ g/ml, upon the isolated rat right atrial rate. Each point on the curves represents the mean value \pm S.E.M. of the percentage change from the control values.

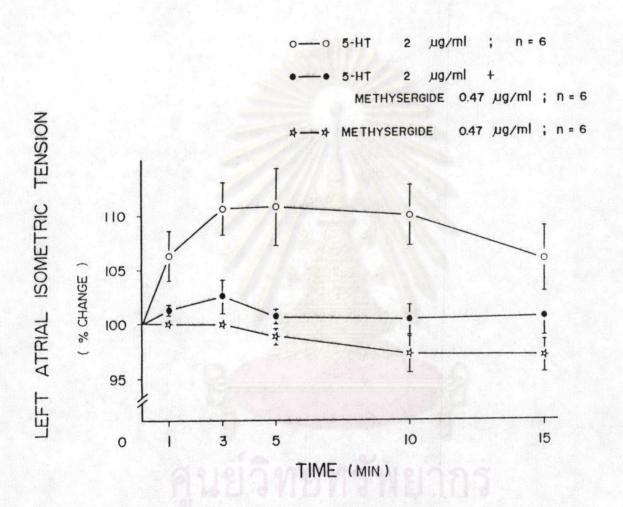


Fig. 6 The effect of 5-HT 2.0 μ g/ml, methysergide 0.47 μ g/ml and methysergide 0.47 μ g/ml + 5-HT 2.0 μ g/ml, upon the isolated rat left atrial isometric tension. Each point on the curves represents the mean value \pm S.E.M. of the percentage change from the control values.

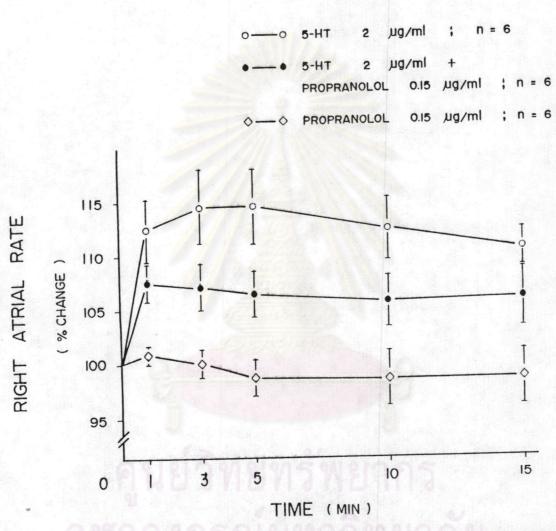


Fig. 7 The effect of 5-HT 2.0 μ g/ml, propranolol 0.15 μ g/ml and propranolol 0.15 μ g/ml + 5-HT 2.0 μ g/ml, upon the isolated rat right atrial rate. Each point on the curves represents the mean value \pm S.E.M. of the percentage change from the control values.

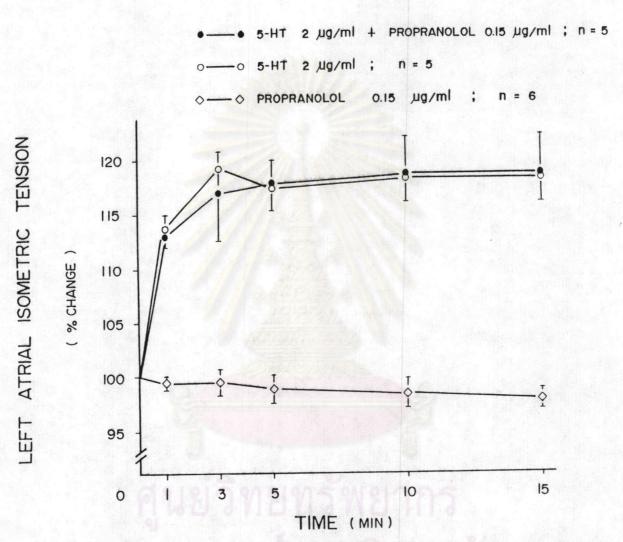


Fig. 8 The effect of 5-HT 2.0 μ g/ml, propranolol 0.15 μ g/ml and propranolol 0.15 μ g/ml + 5-HT 2.0 μ g/ml, upon the rat left atrial isometric tension. Each point on the curves represents the mean value \pm S.E.M. of the percentage change from the control values.

•—• 5-HT 2 µg/ml; n = 5

•—• 5-HT 2 µg/ml + PROPRANOLOL 0.15 µg/ml
+ CYPROHEPTADINE 0.02 µg/ml; n = 5

PROPRANOLOL 0.15 µg/ml +
CYPROHEPTADINE 0.02 µg/ml; n = 5

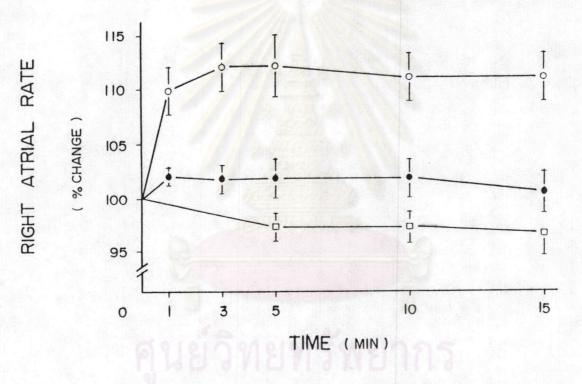


Fig. 9 The effect of 5-HT 2.0 $\mu g/ml$, propranolol 0.15 $\mu g/ml$ + cyproheptadine 0.02 $\mu g/ml$ and propranolol + cyproheptadine + 5-HT, upon the isolated rat right atrial rate. Each point on the curves represents the mean value \pm S.E.M. of the percentage change from the control values.

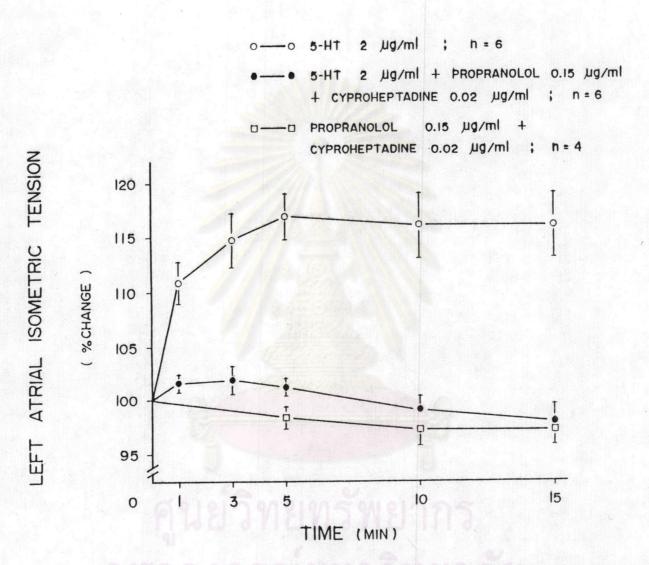


Fig. 10 The effect of 5-HT 2.0 μ g/ml, cyproheptadine 0.02 μ g/ml + propranolol 0.15 μ g/ml and propranolol + cyproheptadine + 5-HT, upon the isolated rat left atrial isometric tension. Each point on the curves represents the mean value \pm S.E.M. of the percentage change from the control values.

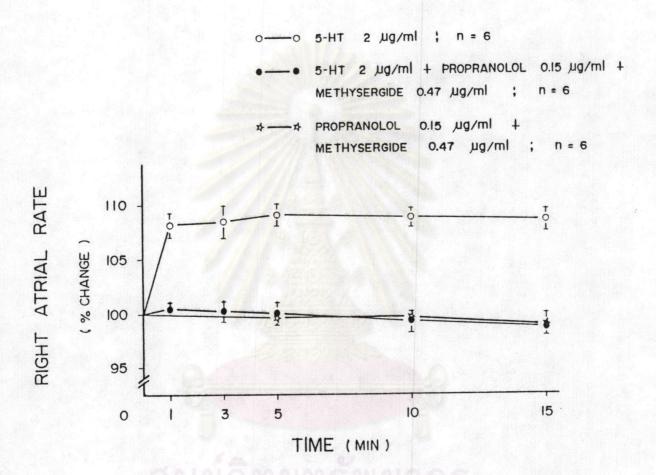


Fig. 11 The effect of 5-HT 2.0 μg/ml, methysergide 0.47 μg/ml + propranolol 0.15 μg/ml and methysergide + propranolol + 5-HT, upon the isolated rat right atrial rate. Each point on the curves represents the mean value ± S.E.M. of the percentage change from the control values.

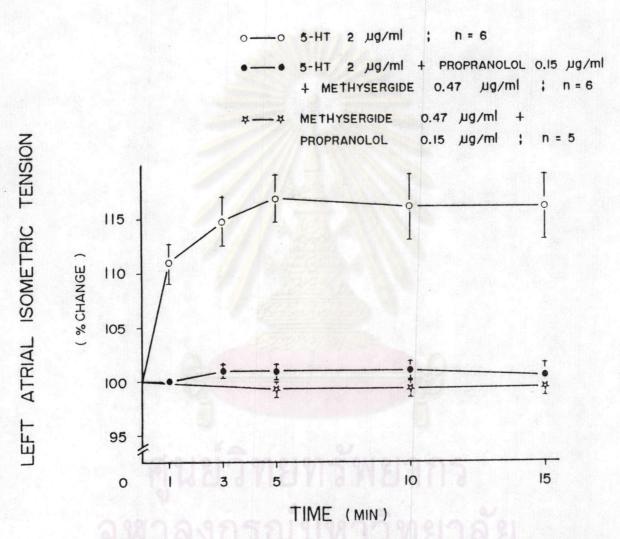


Fig. 12 The effect of 5-HT 2.0 μg/ml, methysergide 0.47 μg/ml + propranolol 0.15 μg/ml and methysergide + propranolol + 5-HT, upon the isolated rat left atrial isometric tension. Each point on the curves represents the mean value ± S.E.M. of the percentage change from the control values.

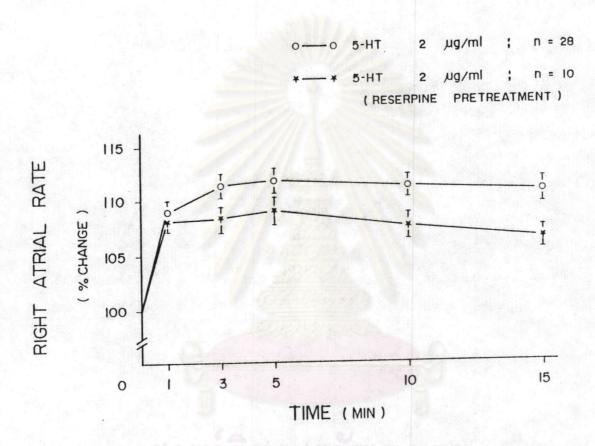


Fig. 13. Comparison the effect of 5-HT 2.0 μg/ml in non-reserpinized rat o — o, and reserpinized rat ¥ — ¥, upon the isolated rat right atrial rate. Each point on the curves represents the mean value ± S.E.M. of the percentage change from the control values.

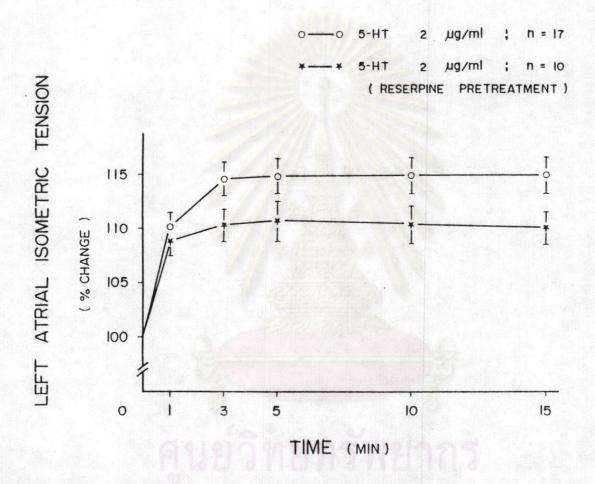


Fig. 14 Comparison the effect of 5-HT 2.0 µg/ml in non-reserpinized rat o — o, and reserpinized rat ¥ — ¥, upon the isolated rat left atrial isometric tension. Each point on the curves represents the mean value ± S.E.M. of the percentage change from the control values.

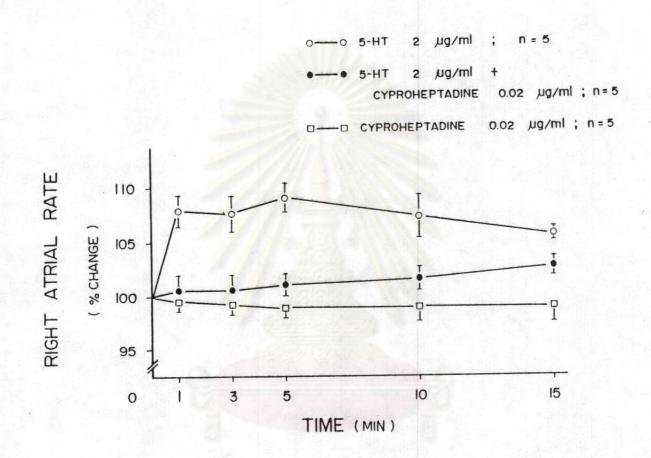


Fig. 15 The effect of 5-HT 2.0 μ g/ml, cyproheptadine 0.02 μ g/ml and cyproheptadine 0.02 μ g/ml + 5-HT 2.0 μ g/ml, upon the isolated reserpinized rat right atrial rate. Each point on the curves represents the mean value \pm S.E.M. of the percentage change from the control values.

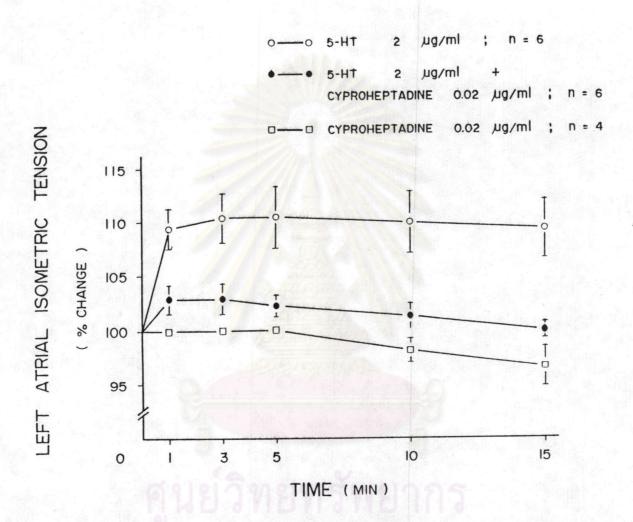


Fig. 16 The effect of 5-HT 2.0 μ g/ml, cyproheptadine 0.02 μ g/ml and cyproheptadine 0.02 μ g/ml + 5-HT 2.0 μ g/ml, upon the isolated reserpinized rat left atrial isometric tension. Each point on the curves represents the mean value \pm S.E.M. of the percentage change from control values.

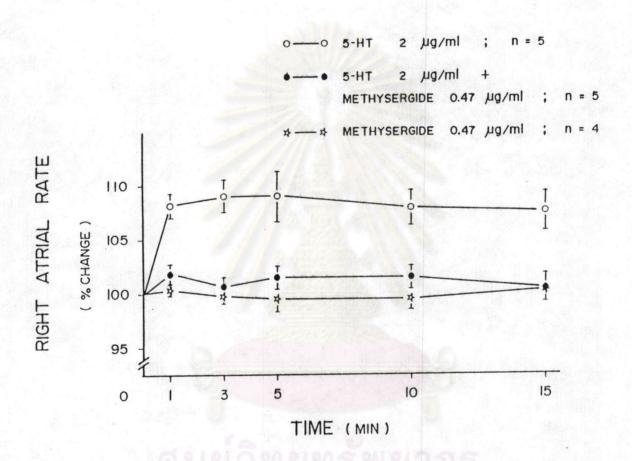


Fig. 17 The effect of 5-HT 2.0 μ g/ml, methysergide 0.47 μ g/ml and methysergide 0.47 μ g/ml + 5-HT 2.0 μ g/ml, upon the isolated reserpinized rat right atrial rate. Each point on the curves represents the mean value \pm S.E.M. of the percentage change from control values.

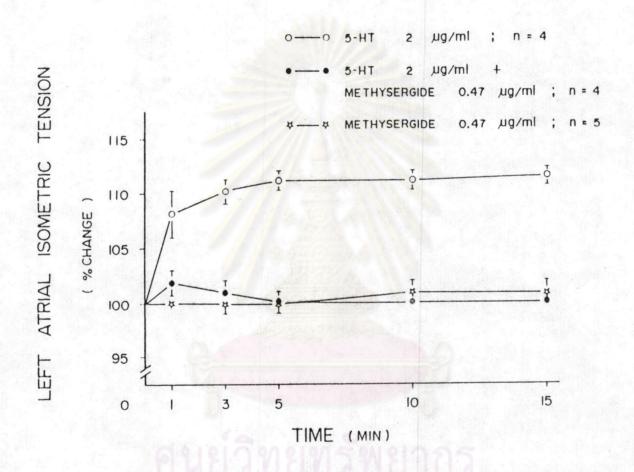


Fig. 18 The effect of 5-HT 2.0 μ g/ml, methysergide 0.47 μ g/ml and methysergide 0.47 μ g/ml + 5-HT 2.0 μ g/ml, upon the isblated reserpinized rat left atrial isometric tension. Each point on the curves represents the mean value \pm S.E.M. of the percentage change from control values.