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gas production rate and cumulative gas | rod 5 a4 key component in determining

e 1"

-new well to the field depends

technique to predict s Artificial Neural Network

(ANN) which can lea  a representation of complex
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In this study, the ANNis applied in @ junction with numerical reservoir
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the network to forec& gas pwducnen at ung jon. Many input parameters
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few case studies were to highlig ¢ importance of these input parameters.

Finally, the prediction peffesmance of ANN, was evaluated. The results show that the

ANN can be ﬁ uﬂ %%&}ﬂiaw Hu’}cﬂ 'jh accurate prediction

perfermance. How ever, substantial grrors still occurred at some well locations due to
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CHAPTER |
INTRODUCTION

With an increasing demand for energy and rising gas prices around the world,
petroleum producing companies are trying to improve the recovery factor of gas
production. There are many methods that have been used for this purpose, with
varying levels of difficulty. The easiest: method that has been used in recent years is
the drilling of infill wells. It is one effeciive method that is widely used to increase
gas production in an existing large oil field-~The advantage of this method is that
drilling more wells results_ia-increase in connecting paths from the reservoir to the
surface. This means gas.ean be'transported out to the surface easier, and we are able
to speed up the production of gas. Mereover, It helps reduce a pressure drop from
friction loss in the pore spacé of rock when gas travels from the location that is far
away from a well. And in the ¢ase that thére are faults obstructing the flow path of gas
to the existing wells, drilling more Wells. Will help increase the amount of gas
produced. However, evenithough the drilling 6f infill wells is easy to perform, but the
cost of drilling a well is very expensive. T’Hljs,._,before making a decision to drill, we

have to ensure that the location will-give en‘o‘u_gh_gas production to justify the cost.

Consequently,-a-key-componentin-making-the-final decision of whether or not
to drill the well is the-expected production profiles inciuding the gas production rate
and cumulative gas production. The success of adding a new well to the field depends
on the prediction accuracy-of ithese parameters: ;The more-accurate the prediction is,
the better the decision on drilling location will be. However, a‘large variability in rock
properties, well spacing, and the large number of‘wells involved make a prediction to
be difficult. From the past until now, many methods have.been performed in order to
yield the best prediction. In the past, analysis based on conventional decline curve and
pressure transient analysis which is only valid for production data from homogeneous
reservoirs often produce inaccurate results which lead to wrong conclusions. Presently,
with the growing availability of new technologies, conducting the reservoir simulation
through computer software is the most accurate way to determine infill-drilling
potential. However, complete reservoir evaluation involves geological, geophysical,

reservoir analyses, and a large set of input parameters needed in the software. This



includes the developing of a geological model of the studied area, estimating
distributions of reservoir properties such as porosity and permeability, constructing
and calibrating a reservoir simulation model, and then using the reservoir model to
predict future production at potential infill well locations. While it may be accurate,
this technique is time consuming and expensive, especially in a large basin when a
large number of wells are involved. Therefore, a new technique that is inexpensive
and less time consuming needs to he. developed in order to produce accurate

predictions.

In recent years, there has been a growing interest in applying Artificial Neural
Network (ANN) to varieus fields such as science; engineering, and finance. The
major advantage of thestechnique.is thap the ANN has the ability to learn a complex
relationship between iaput and/output. The ANN is a mathematical model that has a
working algorithm applied from a workiljé process of the biological nervous system
in the human brain to fofm & learning ability. With this ability, the ANN has been
widely used to solving various kinds:of prdblems in many applications such as pattern
classification, clustering, function. approximation, forecasting, optimization, and

& §d

control.

The objectivey of this study IS to prnédi'ct gas production for infill wells
development project in closed boundary depletion drive gas reservoirs by using the
Artificial Neural Network (ANN) technique.



1.1 Outline of Methodology

w

N o g &

10.

11.

12.

Gather and prepare data by referring most properties such as fluid and geological
properties from an actual gas field in the Gulf of Thailand to create reasonable
reservoir simulation model.

Specify the output parameters of ANN based on the purpose of study.

Select appropriate input parameters for the ANN using knowledge from past
literature and theories.

Set up multiple case studies based on cambination of input and output parameters.
Run reservoir simulation-to create production data used to train the network.
Generate pair datasets between input of ANN and target output.

Partition all datasets into 3 main sets that are 1) training sets, 2) validating sets,
and 3) testing sets. !

Set up various kinds of network configuration by varying the number of hidden
node, number of hiddenlayer, Iearninﬁ rate, and momentum.

Train all network configurations for-'-'éébh case study using Artifitial Neural
Network Toolbox of “MATLAB” softﬁ;a}_e‘._‘

Choose 2 best performance modeis Whic.;hjr!épresent the lowest MSE of validating
sets. ' o=

Test the accuracy; of trained ANN by using testing-sets, compare the accuracy,
and then choose only one best performance model to predict the performance of
the infill well.

Analyze the accuracy for predicted result of the infill‘welk:



1.2 Thesis Outline

This thesis paper consists of six chapters, and the outline of each chapter is

listed below:

Chapter 1l reviews previous work related to infill drilling project and Artificial
Neural Network.

goncept related to this study.

ﬁin this study.
o —

ficial Neural Network model
1 \\\

to predict gas product umulative gas production.

N7 \\
Chapter VI provi f'the study and recommendations for further

study.

]
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CHAPTER II
LITERATURE REVIEW

This chapter describes past studies that are related to various methods to
predict performance of infill wells and Artificial Neural Network (ANN) studies.

2.1 Prediction of Infill Drilling Performance

Coats!™! proposed a two dimensional’ aumerical calculation of semi-steady-
state flow to determine an optimum drilling sehedule for remaining field development,
starting from an initial-time corresponding to an arbitrary degree of depletion and
arbitrary number and decations of existing wells. This eptimum schedule consists of
specified well locations™todrill and the time at which each is to be drilled. The
additional well requirements for maintehénce of field productivity are determined
from back-pressure curves that relate well deliverability to the difference between

average field pressure and flowing wellbore pressures.

McCain? used a /statistical teéﬁjﬁiq};e, “Moving Window” method to
determine infill potential in a complex, 'JIOV\-)-permeabiIity gas reservoir (Cotton
Valley). “Moving Window™ is the techniqﬁé “tflélt evaluates the performance of each
well with surrounding wells within the same window, compares new wells to old
wells for signs of depletion, calculates effective well density, and once linked to a
scattering of conventional estimates of drainage area, provides estimates of undrained
acreage and infill reserves. In his study, three productivity indicators selected were 1)
maximum monthly production rate, 2) average monthly production rate for the most
productivestwelve month<period;and3) monthly production-rateyatithe time when a
cumulative production of 250° MMsct was reached. Thebest year of production is
simply the best 12 consecutive months of production divided by 12. The “Best Year”
indicator can be used to provide a rough estimate of the gas recovery per well by
making a plot of the best year production indicator versus the 10 year cumulative.

This is a very good correlation between best year indicator and long term performance.

Voneiff and Cipolla!® further developed the “Moving Window” technique and
applied it for rapid assessment of infill and recompletion potential in the Ozona field.



They chose “Best Year” and “Decline Ratio” (maximum month of production)/(Best
Year) as indicators. The production indicator plot can be used to rapidly identify areas
of depletion before drainage areas had been calculated through conventional reservoir

engineering techniques.

Guant! assessed the accuracy of the moving window technique for selecting
infill candidate wells in low permeability gas reservoirs by analyzing synthetically
generated production data. He extended the method described by Voneiff and Cipolla
by using the model based on a combinaiion_ ef the material balance equation and
pseudo steady state flow equation, simplified by assuming that many properties are
constant within an individual windew. He showed that the moving window technique
can predict average infill performance of a group of candidate wells reasonably well
often to within 10%.Thus, it /can seérve as a useful screening tool. However,
predictions for individual wells ¢an_be éff by more than 50%. He summarized the
parameters that affect accuracy as permeability, heterogeneity, well spacing, and

number of wells.

Gao™ proposed “Rapid-Inversion ﬁéthpd”, a new simulation-base inversion
approach for rapid assessment of infill well _po;tential. Instead of focusing on small-
scale, hign-resolution, problem, he focused bnnr-large-scale, coarse-resolution studies
consisting of hundreds or, potentially, thousand of wells. This method is able to
identify potential areas or groups of wells for infill development quickly and
inexpensively. The result showed that this method is more accurate than moving

window statistiec methods in synthetic cases.

Guan et.al.®! discussed the’two recentlys.developed techniques which are
moving'window technigue and rapid inversion methad to determine the infill drilling
potential” in large tight gas reservoirs. The paper summarizes what petroleum

engineers have learnt about the application of those two techniques.

Soto et.al.™™ used multiple mathematical techniques to develop primary
ultimate oil recovery, initial waterflooding ultimate oil recovery, and infill drilling
ultimate oil recovery models for carbonate reservoirs in West texas. These techniques
are 1) non-linear regression, 2) non-parametric regression, and 3) neural network

model.



2.2 Artificial Neural Network (ANN)

Boomerl” used the Atrtificial Neural Network technique as a new method to
predict the oil production rate profile which are more accurate than human prediction
in infill drilling field development of the Permian Basin of West Texas and Southeast
New Mexico. He used the concept of “Data Mask™ to collect the production data of
every well within each concentric ring to be the input of the neural network on a per-
ring basis instead of per-well basis. The output is the production rate of well that Data

Mask is placed over.

Al-Fattah and Startzman'® developed a neural network model to forecast U.S.
natural gas supply to thewear2020. The Network was developed with an initial large
pool of input parameters.” After applying reduction techniques, the number of input
parameters was decreased. Acthree-layer Reural network was successfully trained with
yearly data starting from 1950 to 1989 using the quick-propagation learning algorithm.
The target output is the"production raie of natural gas. A test set, not used to train the
network and containing data from 1990 t@ 1998, was used to verify and validate the

network performance for prediction. 2

Sampaio et.al.l” proposed an alternative to speed up the history matching
process by using the application of feed=forward neural-networks as nonlinear proxies
of reservoir simulation. The focus of their study is to show the steps of choosing the

best number of hidden layers, the neurons and the training method.

Doraisamy!%!

proposed a methodolegy: for optimizingfield development. The
objective of his'study is to structure the field development schemes using Artificial
NeuralNetwork (ANN) in conjunction with numerical reservoir;simulation, a process
he call neuro-simulation. In neuro-simulation, a few field development scenarios were
examined using a numerical simulator. The results of these studies were then used to
train the ANN. Using neuro-simulation, the number of numerical simulations is

significantly reduced.

Jalali™ proposed uncertainty quantification of a complex coalbed methane

production enhancement reservoir model. He proposed a new technique by



developing a Surrogate Reservoir Model that can accurately mimic the behavior of
commercial reservoir model by using an Artificial Neural Network.
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CHAPTER 111
THEORIES AND CONCEPTS

3.1 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is a mathematical model that has an ability
to learn complex relationship between, a pair of input and output samples namely,
"Training Dataset". The idea of Artificial /Neural Network is motivated from the
biological nerve cell called “"Neuron". BillionS.efneurons are connected to each other
to form a biological nervous system like in the human brain. The human brain has an
ability to memorize a misiake«in the past and learning to improve itself to avoid
making the same mistakedn the future. ANN is completely different when compared
with a conventional computer that-operates by following the order which has been
programmed in by the"human user. Théfe_f.ore, the same mistake can still occur as
long as the error of programyis not fixed y‘ét. In contrast, a working algorithm of ANN
was applied from a workifg process of bio'lgog’j-ical nervous system to form a learning
system. With this ability, the ANN has bééﬁ,yyidely used to solve various kinds of
problems in many applications stich as pattern classification, clustering, function

approximation, forecasting, optimization, and control.

The following-section describes the fundamentals of ANN. The first part
describes the main uniis and a working process of biological neuron. The second part
describes the main,units and working process.of, artificial .neuron that is applied from
the biological neuren. The third part describes the-structure of the network, showing
the algorithm of data transfer frominput through. hidden layer @and output, and the

fourth part describes the learning pracess to determine appropriate weights.
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3.1.1 Biological Neuron

The biological neuron is a unit of the nervous system in the human brain
which has a simple or uncomplicated working process. A task of these neurons is to
receive signal from a previous neuron, change amplitude, and send it to the next
neuron that connects to each other. Figure 3.1 shows a schematic of a biological

neuron. Each neuron consists of four maln units that are the dendrite, cell body, axon,

and synapse. The dendrite is a um S
The cell body is a unit that aI | |gnal from dendrite, changing the

amplitude of signal, an:yectroﬁhenw
receives signal from W N,

ignal from other neuron to cell body.

axon. The axon is a unit that

synapse. The synapse is a gap

between each neuron. ' rom the axon to a dendrite of the

neighboring neuron ¥ ‘ ‘iﬂjqn of biological neurons are
‘.i‘l - -

connected to each ot osea i ural network like in the human

brain. A learning proce

connects the neurons.

Cell body (soma)

,Synapse

QqW’Wﬂ\‘iﬂ

=

m\ s
7 .

- ¥ . "
5 ( I

Myelin sheath

Figure 3.1: Schematic of biological neuron 4
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3.1.2 Artificial Neuron

The artificial neuron is a simple processing unit that applies a working
algorithm from the biological neuron. The schematic of multiple neurons in one layer
is shown in Figure 3.2,

Inputs  Layer of Neurons

(3.1)

where

= transfed'junctlon

ﬂUEJ’mEJSW@WEJﬂﬂ‘ﬁ

output of summmg function (mput of transfer

ARSI IO, e

neuron number i

aj = predicted output of neuron number i
bi = bias of neuron number i
R = number of inputs

= number of neurons in layer
i = [1,2,3,...,9]
j = [1,2,3,...,R]
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Each neuron consists of six main units as shown in Figure 3.2 from the left to
the right, which are input, weight, bias, summing function, transfer function, and the
output. Input value (p;) can be transferred to a neuron from 2 sources that are 1)
inputted by a user in case that the neuron is located in the first layer and 2) from
previous neuron in case that the neuron is located at layer greater than or equal to 2.
The number of input can be any values based on the number of available data. After
that, input values are multiplied by, weights (w;;j) which are values that connect
between neurons in different layers. The weights are used for adjusting the amplitude
of input values. Using the same concept as-the“biological neurons, the network can
learn by adjusting these Weights that behave like synapse's strengths of biological
neurons. Then, the produci-of input multiplied with weight (w;; p;) from all nodes in
the previous layer is mowved {0 & summing function. At the same time, a bias (b;)
which behaves like a weight exeept that the input that is multiplied with bias will be
only "1" all the time is sent to'summing fUn_ction to sum together with product w;; p;.
Each neuron has only one hias, the task of!,-a bias is that it helps to speed up a training
process and enables a network to gét more_éi_:g':éhrate output. Next, a summed value (n;)
is passed through a transfer fungtion to chaﬁgé }{)e amplitude. There are many transfer

functions studied by many researchers:

1) Linear Transfer Function - The value of ouiput from the function is the

same value as the input parameters as shown in Figure 3.3.

"""""" BHINg]

Figure 3.3: Linear transfer function

[13]

The equation for linear transfer function is written as

a=n (3.2)
where a = output of transfer function
n = input of transfer function
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2) Log-sigmoid Transfer Function - The value of output will be in the range

of 0 to 1. Figure 3.4 depicts log-sigmoid transfer function.

S

Figure 3.4: Log-sigmoid trahsfer function [**!

The log-sigmoid transfer function is expressed as:

o=\ v (3.3)

%,

3) Tan-sigmoid_ transfer functio;nj- The value of output will be in the range
of -1 to 1. Figure 3.5 depiets tan-sigmoid transfer function.

Figure 3.5: Tan-sigmoid transfer function [**

The tan-sigmoid transfer function, is-expressed as:

eTL_e—TL

a= (3.4)

et+e™ M

The' transfer “function "will generate the output (a) and this output will be

passed to the neighboring neuron in the next layer as input.
3.1.3 Network Structure

Using the same concept as biological neural network, many artificial neurons
connected to each other compose an Artificial Neural Network. The network with

multilayer multiple neurons can be created by assembling several networks of one
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layer multiple neurons together. The schematics of the network with multilayer
multiple neurons and associated mathematical equations are shown in Figure 3.6 and

Equation 3.5.

Inputs  Hidden Layerl Hidden Layer2 Outputs

Fr # .
ematic.of n@ltllayer multiple neurons ™!

== AZ (v ) + bl
af = f2me) = 5w al) + bf]
i AL =

b

2 ad = ) = P (ia)E b
-

wd _ A8
df=f*(nf) = FHE(wl T af ) + bf] (35)
where Pj = input number |
fie = transfer function at layer-number k
> = summing function
nk = output of summing function (input of transfer

function) from neuron number i of layer number
k

iwll = weight connect between input and 1% hidden
layer (iw stand for input weight), superscript
means that connection is within hidden layer

number 1



15

lwl.”‘j'k_lz weight connected between output of neuron
number j of layer k-1 and neuron number i of
layer k

a¥ = predicted output of neuron number i of layer k

b¥ = bias of neuron number i of layer number k

R = number of inputs

S = number of neurons in layer (can be different
for eachdayer)

Q = number Oi-ayers (all hidden layers and output)

[ - [1]2, sy

j = fLLA R

K F [1.2,3,.:,Q]

The main strueture of ithe network consists of at least three main layers as
shown in the above schematic from the left to the right that are 1) one input layer, 2) a
certain number of hidden layers, and 3) one q'oijtput layer. The training data set will be
input through the input layer. The numberdf"ngurons in this layer is not limited, as it
can be any value depending on the number“of”"i-nput parameters which have a strong
relationship with the, output. Too small a number of input neurons can cause the
accuracy of prediction to be Tow, whereas too large a number of input neurons will
cause the network to require more number of training data sets. After that, a data set is
passed to the hidden layer. Because this layer is located within a network, we cannot
see any outputvalue fromthis‘layer. So'it‘is called the "hidden layer". The number of
neurons in eachylayer and the number of layers in a network is not limited. A large
number-ofyneurons-and layers: would, besuseful t0 solve, a difficult, problem with a
complex:relationship between input and output. However, the farger the number of
neurons and layers, the larger the number of weights and biases there will be,
resulting in a time consuming calculation process. The last layer is the output layer.
The prediction result will be shown at this stage. A number of output neurons can be

any value depending on the number of the answers we need.

There are many types of networks studied by many researchers, "Feed forward

back propagation network (BPN)", known as the most famous and effective network
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will be used in this study. The name "feed forward network™ is used to explain the
behavior of network in which the data will be transferred in only forward direction to
the next layer, no data transfer across a node in a same layer and transfer backward to
a node in a previous layer. The name "back propagation” is used to explain the
behavior of network to adjust weights. After the network compares predicted output
with desired output, the error will be calculated, and will be back propagated to adjust
the weights step by step from the last layer until the first layer. The adjustment is
made until the error meets a target value set up by the user. For BPN, the transfer
function of all hidden layers are log-sigmoid-transfer function which limits the output
in the range of 0 and 1, and the transfer function of the output layer is set to be linear

transfer function which hasano limit of output value.
3.1.4 Learning Algorithm

After the input is passed onto the network, then the predicted output will be
calculated through a netwark. The. target output must be prepared and shown to the
network. Then, the error between predicted and target outputs will be calculated. The
BPN uses "Mean Square Error (MSE)" to be the error criteria as shown in equation

3.6 as follow:
MSE ==Y (¢, = ,)? (3.6)
N &i=1 "1 : '
where MSE = Mean Square Error
& = predicted,output
t = target ‘output
N = number of training set

The error (MSE) will be used for updating of all connection weights in order
to minimize the error. The methodology to update the weights is the "Gradient
Descent Method". This method changes the weights in the direction that descent the
error surface. An example of error surface is shown in Figure 3.7. In this case, there
are only 2 weights. The weights must be updated until the error has reached the lowest
point in the error surface which has MSE equal to 0. The network will decide to

increase or decrease a weight by calculating the surface slope at that point. If the slope
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has a minus sign when compared with the direction of increasing weight, then the
network will increase that weight. On the otherhand, if the sign of the slope is positive,
then the network will decrease that weight. With this method, the error is moving
towards the minimum point step by step everytime that weight is updated. This
behavior can be described in easier way by the following example. Let the error
surface represent a mountain and there is a lake located at the bottom of mountain
which represents the location where MSE,is 0. A blind man stays on the mountain and
needs to find a way to the lake. Since he eaanot see anything, he knows just only
which direction the place that he stays inclines«t0. Therefore, what he can do to find

the lake is climb down following ihe difection to Which that mountain inclines.

So with this method,.each weight is updated by using the error between target
|

and predicted outputs.0 calculate a slo‘pe, The equation to calculate the change in

weight and bias is written in Equatiohs K A t0 3.10.

MSE

Figure 3.7: Error surface (MSE in function of w; and w,) I
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Aw; = lr (t; = FEF wip; + 5)) (F G wips + b)) pi +me(weg) — B7)

ab=1r(t = fFEY wipi + b)) (F EF wip; + b)) + mc(Woia) (38)
Wyew = Woia + Aw; (3.9)
bpew = boia + Ab (3.10)
where Ir = learning rate

mc momentuin

The learning ratesaetermines the acceleration of the weight and bias updating.
Normally, this value is*between O and 1. Figure 3.8 illustrates the effect of learning
rate on the error surfage (top view) whié_h ’has the target point where MSE is O at the
middle. The rightmost figurg shows the éﬁéct of setting the learning rate too low. The
weight will be updated with a small rate,“;reéUlting in slow training while too large of
it could result in an unstable - training ::_‘élg shown in the leftmost of the figure.
Sometimes, unstability may result in non‘édn,\_/ergence. That means the network will

e b

never reach the target.

Figure 3.9 shows the ééﬁématic of I‘o"(-:'ér!érlld glebal minimum. The target error
where MSE is 0 is.located at global minimum. But sometimes the network never
knows which one is glt_)bal minimum and may get stuck in the local minimum area.
Momentum is commoﬁly used in weight updating to hélp prevent the training being
stuck in the local minima area. . The-momentum takes a value between 0 and 1. A high
momentum willifeduce the risk of getting stuck. However, it may increase the risk of

overshooting:the,setution:
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CHAPTER IV
RESERVOIR SIMULATION MODEL

In order to perform the ANN model development, data sets (pairs of input and
target output) to train a network needs to be prepared first. As the purpose of this
study is to infill a well, so the data sets must be prepared from a large gas field which
already has some number of wells drilled within. These data sets can be taken from
the real gas field or taken from the reservoir simulation model. Using data sets taken
from the real field is more realistic. However,#n many cases there are not enough data
sets to train the network. Resevoir simulation is a good alternative to create pairs of
input and output for a_given eil field ‘given that reservoir and fluid properties are

known. This study will usé a production profile created by reservoir simulation.

The reservoir simulation is perforhed by using the reservoir simulator called
“ECLIPSE E100” from Schlumberger to s“i_rriﬁlate a synthetic case of field production.
Most of the reservoir properties and fluid b'roperties are obtained from a real gas field
in the Gulf of Thailand. -

The reservoir model is set up 0 bé"—_g'__clrosed boundary depletion drive gas
reservoir, consisting of 200 x 200 x 5 grid bldc—ks with grid size 100 ft x 100 ft x 20 ft
along the X, y, and z direction, respectively. These dimensions make up a reservoir of
the size 20,000 ft in width, 20,000 ft'in length, and 100 ft in thickness. The top face of
reservoir is located at depth-5,000 ft. Figure,4.1, 4.2, and 4.3 depict the side view, top

view, and a 3D"view.of'gas reservair, respectively.

The permeability for this_paper is calculated by using an-equation obtained
from one formation of'a gas field in Gulf of Thailand as'shown:in Equation 4.1. The
range of porosity used in this study and the calculated permeability are shown in
Table 4.1.
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k = 10[~2:9971+0.2089(%®)] (4.1)
where k = permeability (mD)
0] = porosity (%)

Table 4.1: Range of porosity and calculated permeability

Parameter Value Unit
Porosity 10 430 %
X Perm =Y Perm 0.12' 51862 mD
Z Perm = 0.1 x X Perm 0.012 — 1862 mD

L
Diglonce ol

¥ = T 1poog 20000
1 | 1 [ I | | 1 | I

4900

000

Figure4:1:-Side, view,of-reservoir model
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In order to create reasonable porosity distribution for the entire area,
Geostatistics needs to be considered. First, a certain number of grid blocks are
selected. In this study, 100 grid blocks from total 40,000 grid blocks spreading around
the entire area are selected. Second, the porosity value is randomly assigned to each
selected grid block. Third, use a geostatistic simulator called “SGeMS” to make
Gaussian simulation and then simulate a porosity of remaining grid blocks. The

porosity distribution map created by Geostatistics is shown in Figure 4.4.

0.10000 0.2000 0.25000 0.30000

P 1) EFapAe45mnydai 03

The initial conditions of r°eserv0|r are caIcuIated by Ung pressure and
o055 4 G783 10 ST DI sy wich ke
the pressure and temperature at the top depth of reservoir (5,000ft) to be 2,180 psia
and 250°F, respectively.

The PVT properties that are used in this study are generated by using a
program called “PROSPER”, assuming that the gas gravity is 0.9 and condensate to
gas ratio is 0 STB/MMscf. The PVT at surface and reservoir conditions are calculated
and shown in Table 4.2 and 4.3, respectively.
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Table 4.2: PVT properties at surface conditions (temperature = 60°F, pressure =
14.7psia)

Gas Gas Gas 4 Water Water Water Water
Temp | Pressure | density viscosity FVF factor | density viscosity FVF compressibility
(°F) (psig) (Ib/ft3) (cp) (RB/Mscf) (Ib/ft3) (cp) (RB/STB) (1/psi)
60 0 | 0.069125 0.009612 177.159 | 0.99494 62.5 1.22509 0.99957 4.70E-06

Table 4.3: PVT properties at reservoir conditions (temperature = 250°F)

Gas Gas Gas 4 \Water Water Water Water
Temp | Pressure | density Viscosity FVF_& factor density viscosity FVF compressibility
(°F) (psig) (Ib/ft3) (CP)s (RB/Mscf) (Ib/ft3) (cp) (RB/STB) (1/psi)
250 0 | 0.050457 0.013269 242.701 0.9981 |.58.9483 0.2349 1.05979 5.75E-06
250 | 421.053 1.57848 0.013716 7.7581§ 0.94512 | 58.9841 0.2349 1.05915 5.72E-06
250 | 842.105 3.27212 0.014524 3.74255 | 0,89648 59.02 0.2349 1.05851 5.69E-06
250 | 1263.16 5.11209 0.015678 2,3955% |, 0.8558 59.056 0.2349 1.05786 5.65E-06
250 | 1684.21 7.03176 0.04718 1.74154L b.82717 59.092 0.2349 1.05722 5.62E-06
250 | 2105.26 8.92502 0,018985 ) 1.37217, 0.81322 59.128 0.2349 1.05657 5.59E-06
250 | 2526.32 10.6923 0.020996 L.A45304 0.31362 59.1641 0.2349 1.05593 5.55E-06
250 | 2947.37 12.2793 0.023109 ‘ 0.99729 ‘0782586 59.2002 0.2349 1.05528 5.52E-06
250 | 3368.42 | 13.6753 0.02524 | "0,89549 1084697 | 59.2364 0.2349 1.05464 5.48E-06
250 | 3789.47 14.8938 0.027337 1.0:82223 -"0!.:81447 59.2726 0.2349 1.054 5.45E-06
250 | 4210.53 15.9575 0.029368 j[.+-+0.76742 0}9'065} 59.3088 0.2349 1.05335 5.42E-06
250 | 4631.58 16.89 0.0313197 0.72505 | 0.94181 | 59.3451 0.2349 1.05271 5.38E-06
250 | 5052.63 17.7129 0.033484{~"* 10.69137 10;'9_71‘1)4# I 59.3815 0.2349 1.05206 5.35E-06
250 | 5473.68 18.4445 0.034965 0.66394 | 1.01874 | 59.4179 0.2349 1.05142 5.32E-06
250 | 5894.74 19.1001={="0:036666 | 0:64115"|"1.05925°["59:4543 | | 0.2349 1.05077 5.28E-06
250 | 6315.79 19.692" |-, 0.038293 0.62188 | 1.10061 | 59.4908°| 0.2349 1.05013 5.25E-06
250 | 6736.84 20.2303 0.039852 0.60533 | 1.14259 | 59.5273 0.2349 1.04948 5.22E-06
250 | 7157.89 207229 | 0.041348 0.59004 | 1.18499 | 59.5639 0.2349 1.04884 5.18E-06
250 | 7578.95 21.1765 0.042788 0.57829 | 1.22768 | 59.6005 0.2349 1.0482 5.15E-06
250 8000 21.5964 0.044176 0.56704 | 1127055 | '59.6372 0.2349 1.04755 5.11E-06

For: drilling. schedule;~this) study ‘simulated ‘the Situationthat there are 100
existing wells drilled in the field. We plan to use the information from these wells to
make a prediction of well number 101. There are 2 groups of drilled wells. The 1*
group consisting of 25 wells with at least 3,000 ft of well spacing are located
randomly throughout the entire field area. The 2" group consisting of 75 wells with at
least 1,500 ft of well spacing located randomly throughout the entire field. This group
represents the latest infill development plan by using half of the well spacing of the 1°

group. Moreover, in real situations it is unlikely that a well is drilled in location close
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to a reservoir boundary because the boundary effect will cause the pressure to rapidly
drop faster than normal. Therefore, both groups of wells are located at least 750 ft
away from any reservoir boundary to avoid the boundary effect. These 100 wells were
drilled and produced at different times, i.e., Well number 1 was drilled first, and next
subsequent wells were drilled and completed 10 days afterward and so on until a total
of 100 wells have been drilled. The schematic of drilling location of all 100 wells on

porosity distribution map is shown in Fir’re 4.5.
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control, well economic limit, and vertical flow performance of the wells drilled in this

field were set to be the same. All wells were perforated at depth all along a thickness
of reservoir (Z = 1 to 5 in the simulation model). The minimum THP (Tubing Head
Pressure) is set at 314.7 psia. Well economic limit is set to be 0.5 Mscf/d. The well

will be automatically shut in after reaching this value.



Table 4.4: Downhole equipment
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Parameters Value Unit
Wellbore ID 6.125 inch
Tubing ID 2.992 inch

The ECLIPSE program itself is able to calculate only the inflow of gas.

Therefore, we need to provide the verfical lift performance table to the program, and

it will calculate the flow from the battom hole up to the surface. The vertical lift

performance is calculated byusing “PROSPLER” program and is shown in Table 4.5.

Table 4.5: Vertical flow pesformance by “PROSPER” program

Gas WellHead VLP
rate pressure pressure
(Mscf/day) (psig) « (psig)

1 -4 300 351.74

10 300 351.73

20 / 300 351.73

30 4.4 300 351.72

40 /. 300 351.72

50 =300 351.72

60 =300 351.72

70 =800 351.72

80 300 351.72

90 300 351.72

100 300 351.73

500 300 353.04

1000 300 357.51

5000 300 485.88

10000 300 764.96
15000 300 1080.14
20000 300 1403.91
30000 300 2055.87
40000 300 2713.46
50000 300 3385.04




CHAPTER V
ARTIFICIAL NEURAL NETWORK MODEL
DEVELOPMENT

This chapter describes a methodology to develop the Artificial Neural
Network model to predict the gas production of the next infill well. The production
data generated by the reservoir simulation in Chapter 4 are used as input for the
network. In order to choose appropriate dnpui and output of the network, related
theories and methods from past literature need to be reviewed. Several cases were
performed in order to investigaie the effect of Input-parameters on the output. The
ANN was trained with™ many.network configuration models in each case. The
accuracy of each case.was examined by comparing the predicted output obtained from
the ANN with the target‘ouipui taken from reservoir simulations. Finally, the trained
network was used to predict the best location for the next infill well, well number 101.
The accuracy of predictionis examined againby comparing the predicted output with

the simulation result.

5.1 Output of ANN

Since the purpose of this study s to predict a-0as production at potential
locations for drilling so that comparison among these locations can be made in order
to find the best location to infill, the output of the ANN Is expected gas production at
each candidate’well location; Gas production considerd in‘this-Study includes 1) initial

gas production rate and 2) cumulative gas production.

1) Initiall gas production rate. This parameter represents the performance of
drilling location at the moment when the well is put on production. It can be used as
the output of ANN because it can roughly indicate a long term performance of the
well located at a specific location. The location which has a higher initial gas rate will
be more likely to yield a large amount of gas production in the long run than locations

with lower initial gas rates.

2) Cumulative gas production. To determine locations that have better long-

term performance, cumulative gas production is a more appropriate output. But the
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problem is how long the cumulative production should be. The answer is that it
depends on the drilling schedule of existing wells. For example, suppose that 10 wells
have been drilled in the field and well number 8, 9, and 10 were drilled 2, 1.5, and 1
year ago. If we decide to predict 2 years of cumulative production, then we cannot use
well number 9 and 10 to train the network. In this study, we use 1 year cumulative
production as the output of ANN model such that data from more wells could be

included in the training.

Consequently, this study uses 2 paramegiers. as the output of ANN that are 1)
initial gas production rate, and 2) 1 year cumulative gas production to indicate short

term and long term perfermance; respectively.
5.2 Input of ANN

After appropriate output has been chosen, then appropriate inputs need to be
idenfified. In order to train anetwork and use it to predict accurate output, we need to
choose the right inputs, i.e., the thputs musf'héve a good relationship with the output.
With the right inputs, training a Aetwork becomes less difficult and good results can
be produced. Therefore, many parameters that may have a relationship with the
selected output need. to be considered. This section-desgribes how to choose these

input parameters.

In order to choose appropriate inputs tor the ANN for prediction of initial gas
rate and 1 year cumulativesgas production,we need to identify parameters that affect
the gas production. In general, there are;.3 sets of parameter that affect the gas
production which are 1) reservoir parameters representing inflow,, 2) well completion
parameters tepresenting outflow, and 3),control parameters ‘representing surface
conditions. In this study, we assume that all wells have the same completion and
surface conditions. Thus, only reservoir parameters affect the initial gas production
rate. The inflow of gas from the reservoir to the bottomhole can be analyzed via
Darcy equation as written in Equation 5.1.



29

Q = (2Tkh(P} — R2)/(1In (=) - 0.75 ) (5.1)

where Q = gas production rate

k = permeability

h = reservoir thickness

U = viscosity

Pr = average reservoir pressure

Pw = well flowing pressure

e = radiuste‘exiernal boundary

My - wellbore radius

The equation shews that-many parameters influence the gas production rate
but most of these parameters are constént throughout the field. The parameter that
should be used as inpuifor'the ANN ig}he one that is different from location to
location. Therefore, viscesity and thickness are exeluded in this study since the
reservoir fluids and thickness are. assum'e_d jto be the same throughout the field.
Wellbore radius is also ‘excluded because :all wells have the same diameter. The
drainage radius is represented by well spa('_:_i_'n’g": Since all wells are subjected to the
same controlled at the wellhead, i.e., the samé_WeJIhead pressure, the back pressure is
the same for all wells. Thus, the bottomhole flowing. pressure should not be
considered as an input. As a result, only two parameters remain as input for the ANN,

namely, permeability and average reservoir pressure.

The exact value of permeability at each locationican be,obtained after the well
is drilled and the core sample is Investigated. However, the permeability can be
estimated using-Geostatistics:~In-our,caseswe alteady know, the permeability at at
least 100 locations‘where'existing wells are located. So'we-can use this information to
estimate permeability in areas that are not drilled yet through a geostatistical method.
Generally, the gas producing companies seem to have this information already. So it
is not a big problem to find a permeability value in an undrilled area. But the average
reservoir pressure is not easy to find because it cannot be known unless we drill and
measure. Therefore, other parameters that affect the pressure should be considered

instead.
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The change in pressure after producing gas for a certain cumulative production
can be analyzed via material balance equation. The material balance equation for

depletion drive gas reservoir is written as Equation 5.2 as follows:

P (P Gp
=@ 0-7) 52
where Pi = initial reservoir pressure
Z; = initial gas compressibility factor

= reservoir pressure at certain time
= gas compressibility factor at certain time
= initial gas in place

Gy o~ cumulative gas production

In this study, the imttial pressure was set to be the same at 2,180 psia for all
locations. Since gas is‘assumed to have Ihq same gas properties at all locations, the
initial gas compressibility factor must be t‘h_e same for all locations. If 2 different areas
with the same initial pressure and. gas ]Qrd‘berties produce the same amount of
cumulative gas but the pressure drops are -d'.._iff_qr.‘ent, then the original gas in place for
the areas must be different. The area Withfhifé];her initial gas in place has a smaller
pressure drop than the area with lower iniﬁ‘e‘fl__éés' in plage. So, the amount of gas in
place in the area strongly affects the change in pressure of the area. The amount of gas

in place can be computed using Equation 5.3.

[Ah® (1=Sy,)]

G= > (5.3)
where G = initial gas in place
A = area 'of reservoir
h = reservoir thickness
0] = porosity
Sw = water saturation
By = gas formation volume factor

The equation shows that many parameters influence estimation of initial gas in
place but most of these parameters are constant throughout the field. As described

earlier, the parameter that should be used as input for the ANN is the one that is
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different from location to location. Therefore, thickness of reservoir, and water
saturation are excluded in this study since the thickness and water saturation are
assumed to be the same throughout the field. Area is represented by well spacing. Gas
formation volume factor is also excluded because the reservoir fluid is the same
everywhere. As a result, only porosity is different for each location. So the amounts of
initial gas in place are different depending on the porosity at each location. The area
with high degree of porosity will result in a high amount of initial gas in place, and
the rate of pressure drop is low when corﬁf_Sﬂ;,d to the other areas with low porosity.
So the porosity should be used as an input of-ANN as it affects the change in pressure

of the area the well is driffed in.

- |

Not only the p:’j}iﬁthe grig where the well is located which affects the

changing of reservoir pressure put also porosmes of grid blocks surrounding the well.
In order for the ANN to'in

' OrQSItIE.S of blocks around the well, a “Data Mask”
concept proposed by Baomer'? is usedbv(hth this concept, the area of interest is
divided into 3 concentric ging asshown lq Figure 5.1. The 1* ring consists of only

grid block number 1. It repr ents.f)orosntydiwell location. The 2" ring consists of a

group of grid blocks from grid {ﬂock number'
porosities in an area that is a bit-futher awaSr.‘fmm the well. The 3" ring consists of a

“to number 9. This ring represents the

group of grid blocksﬁ}

er25. It represents porosities
in an area that is further away from the well. The average porosny for each concentric
ring is calculated and used as representative porosity of‘each ring. These values will
be used as input.in.one.of the' ANN.trained.in this study.

3rd Ring
2nd Ring Ist-Ring

Figure 5.1: Schematic of porosity data mask
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The next parameter that affects the changing of pressure is the drilling date of
the well. Since the reservoir model in this study is closed boundary depletion drive
gas reservoir, no drive mechanism such as water is available to support the reservoir
pressure after the production starts. The reservoir pressure cannot be maintained and
will continue to drop as long as the production continues. Therefore, the reservoir

pressure at drilling date will be different from well to well

The other parameter that strongly affects the changing of reservoir pressure is
the number of surrounding wells. The higherthe amount of these wells, the lower the

reservoir pressure at the predicting well location will be.

In summary, parametersthat should be the input for ANN are tabulated in
Table 5.1.

Table 5.1: Summary of parameters that should be the input for ANN

Item No Parameters Unit
1 Permeability -4 mD
2 Pressure ¥R psia
3 Poraosity =L %
4 Starting date for drilling” day
5 Number of surrounding wells well

5.3 Partitioning Data Sets

With an’ ability of /ANN to! learn=campléex| relationship between input and
output from a training data Set fed to the network, in the first few iterations, the ANN
may not. give.a.good result because, the weights ‘and.biases have.not, been updated to
the right values Yyet. But'after the training process continues to‘a certain number of
iterations, the ANN will generally make a good prediction. However, it often presents
inaccurate results when used to predict the output that the network has never seen
before. This behavior is called “Overfitting”. Figure 5.2 and 5.3 show an example of
this behavior. Shown in Figure 5.2, the ANN was trained until the approximation line
is close to the target function. However, there are still some errors present at certain
data points. But after continued training with a large number of iterations, then the

error at all training points become zero as shown in Figure 5.3. But the approximation



33

line is completely different from the target function. So this network will surely not

give good prediction because it is overfitted to the training data set.
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Figure 5.3: An example of overfitting behavior [**!

In order to avoid overfitting, the training process needs to stop before the
network becomes overfitted by using the second group of data sets called “validating
sets”. In the training process, both training and validating data sets are given to the
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network at the same time but the weights and biases are updated only from the error
of the training set. No weight updates are made from the error of validating set. With
this method, the network will treat the validating set as a data set which it has never
seen before. At each iteration (epoch), the errors of both training and validating sets
are monitored, and the network will compare a new error of the validating set with the
error from the previous epoch. If it is decreasing, then the training process will
continue. The training processs will keep going as long as the trend of the error of
validating set is still decreasing. And at thesmement that the errors start to increase,
the network will know that further training will cause overfitting and the training
process should be stopped. Therefore,JWe will_have better opportunities to predict
accurate output when usingsthissnetwork for unseen group of data set. Figure 5.4 is an
example of error while traifling. From this figure, to avoid overfitting, we simply stop
training at epoch 12, whege perfarmance on the validating set is optimal.
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Figure 5.4: Learning process of ANN
Although the validating set is unseen by the network, the network can still be

dependent on data chosen for validation. Therefore, if we wish to test the trained
network on a set of independent data to measure its ability to generalize, we need
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another set of independent data, a third group of data set called “Testing set”. With

this type of data set, we can ensure the accuracy of the prediction of unseen data.

So before training a network, the pool of data needs to be divided into 3 main
sets, namely, training set, validating set, and testing set. There is no restriction for the
ratio of these 3 main sets. The famous and widely used ratio is 4:1:1 for training,
validating, and testing sets, respectively. This study will use this ratio for partitioning
the data.

Even if we have the production data-ef.all"100 wells which seem to be plenty
of information, we cannot use all-of them to train a network. The reason is that in a
real situation we want to.use.the information of surrounding wells to predict the
performance of well in the'middle. But some locations do not have enough number of
surrounding wells to referto/or need large area for the moving window to include
more wells. For example, if we look at the map after 100 wells have been drilled with
the well name in chronological ©rder (weli 1 is drilled prior to well 2, well 2 is drilled
prior to well 3, so on and so forth), we may: fiﬁd that there are well number 30, 37, 50,
62, and 99 surrounding wellnumber 1 as sﬁé\'ivr}_‘in Figure 5.5. But in the real situation
at the time when predicting the initial rate for well number 1, there is no well
surrounding well number 1 because well ‘nu“rﬁber 1 is drilled prior to other wells.
Therefore, well number 1 cannot be used to train the network. Another example is
concerned with well number 22. There are well number 30, 42, 53, 54, and 67
surrounding well number-22 as shown in Figure 5.6. In fact, at the time of the drilling
of well number 22, there i1s no' surrounding well 'becauseé well number 22 is drilled

before the others. Therefore, well number 22 cannot be included in the training.

In this study) we used the.data.sets from the 27 round of-infill wells to train a
network because we plan to infill the 101% well at the same well spacing that is 1500
ft. Therefore, we have a total of 75 data sets (from well number 25 to 100) to train the
network. The data sets are divided into 3 main sets, namely, training, validating, and
testing sets with ratio of 4:1:1. As a result, the numbers of training, validating, and
testing data sets are 51, 12, and 12, respectively.
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5.4 Artificial Neural Network Case Study

After the input and output parameters have been selected in Section 5.1 and
5.2, they are used to train the network and evaluate accuracy of prediction. Two kinds
of prediction are used in this studies: an initial gas production rate and one-year

cumulative gas production.
5.4.1 Initial Gas Rate Prediction

As described earlier via Darcy equation (Equation 5.1), the initial gas
production rate has a relationship only with pressure and permeability at each well
location since others parameters are constant. So in order to prove this conclusion and
test how well a prediction performance of ANN 1is, Case 1-1 is set up using the
pressure at the date of drilling and-permeability at well location as ANN input
parameters. However, In reality, the pressl;re-at the location to be drilled is not known
prior to drilling. Therefore, shut-in pressures from surrounding wells should be used
to represent pressure at the locationto be _dv_r'ilsled. In this study, there are 2 averaging
methods. 1) arithmetric average and 2) ir;\}ér§e distance average, closer wells will
affect the average value more than further We_!l. Case 1-2-1 and Case 1-2-2 are set up
using average pressure. This study also includés a case that does not use pressure as
an input but use other.parameters as a proxy of pressure instead. These parameters are
porosity, drilling date, and the number of surrounding wells. Case 1-3 is set up for this

scenario.

In each casestudy, ‘the ANN Is ‘trained ‘with training“and validating sets by
varying_network configurations that are number<6f hidden nodes,“-number of hidden
layers, 1earning rate, and momentum on a trial and erroribasis. Only.2 models which
give the lowest and next to lowest error of validating sets are used to test the accuracy
with testing set. After that the only one model which gives the lowest error of the
testing set will be chosen to be the best performance model for each case study.
Finally, best performance model will be used to predict the initial gas production rate

of well number 101 which is scheduled to be drilled one year after well number 100.
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54.1.1 Case 1-1

In this case, the network consists of 2 input parameters which are permeability
and pressure at the date of drilling at well location. The number of hidden layers and
the number of neurons in each hidden layer are varied based on trial and error to get
the best performance of predicted output. Figure 5.7 illustrates the schematic diagram
of ANN in this case.

Input layer Hidden'layer Output layer
2 inputs L 1 output
- Permeability = : - Initial gas rate
- Pressure o W \\
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Figure 5.7: Schematic diagram of ANN for Case 1-1

In real situation; the pressure at the well focation prior to drilling is unknown.
As a result, it cannot be used as an input to predict performance of the well to be
drilled. The purpose of this case study is just to prove a relationship between the input

that are permeability afd pressure with the‘output thatis initial-gas production rate.
5.4.1.1.1 Data Preprocessing

Before starting a training process, a total of 75 data sets taken from well
number 26 to 100 need to be divided into three main sets as described earlier. With
the ratio 4:1:1, the number of training, validating, and testing sets will be 51, 12, and
12, respectively. In order to train a network that can produce accurate output when
used to predict output for unseen input, each parameter of all 3 data set should exhibit
a similar distribution as much as possible. If the data sets are divided based on well

number sequence (first 51 wells are training set, next 12 wells are validating set, and
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last 12 wells are testing set), then the testing set will contain low values of reservoir
pressure because the reservoir pressure of closed boundary depletion drive gas
reservoir decreases as a function of time. So the distribution of reservoir pressure for
the three types of data sets will not have a similar trend. Therefore, we randomly
rearranged the data sets, divided into 3 sets, and then plotted their distribution to
observe their behaviors. If the trends look similar, then we use the three divided sets
of data to train the ANN. The histograms of the three data sets are shown in Figures

5.8 10 5.13 and their statistics are summaris‘éd’}n Table 5.2.
The histograms and statistics of the 3 data sets look similar. For example, the

mean values of pressure-oftraining, validating, and testing sets are 1251.43, 1195.37,

1248.57 psia, respecti\;e'/lfx{w are closlale to each other. This grouping of data sets are

kept unchanged throughout.the' study Decause we want to compare the accuracy by

varying only the netwerk /co fj-guLétioE So, all parameters except the network
configuration need to be ontrolled to bé,tﬁé same for all models in order to ensure

i

that the only changes appli e network canfiguration.
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oA
- il .ﬁﬂ
Statistical gtauset \ ?xiabl lity Pressure
parameter type.: = (psia)
Trainin T:" = 439.74 1,817.56
Maximum Validating 439.74 1,858.05
Testing. :_,-',;4_5 271.83 1,811.70
| Training ~ " /052 693.40
Minimum = Validati =085 676.13
=1 Testing = 01 704.13
| Training 7891 1,251.43
Mean | Validating 133.76 1,195.37
in A 51,93 1,248.57
Traini p| T 7580 974.86
1st quartile alidating O " 524 908.57
Testing ¢ o 5.240s 952.33
ﬂ’] g ]9 19AN I V1 ¢ ﬂ\@ |1 1,282.21
‘Median "Validati 1O TTW3dey & 1,183.70
Testing 19.85 1,249.92
Training 103.87 1,513.42
3rd quartile Validating 271.83 1,403.99
Testing 39.69 1,561.89
Training 123.30 328.43
SD Validating 172.62 371.58
Testing 82.83 407.96
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5.4.1.1.2 Model Training

In this study, the ANN model was developed by using the program
“MATLAB”. This program is widely used to calculate and solve problems in various
branches such as engineering and science. It consists of many useful tool boxes. One
of them is the neural network toolbox. With the toolbox, we can design the network
structure the way we want through the source code. An example of source code in this
study is shown in Figure 5.14.

1 3Input & TargetHOREEut 2

2 — input=[]:

3= target=[]:

4 ‘I

3 3Construct a Jaeriarie 1

& — net = newfEfinpart, target{jEJ,{'logsig'},'trainlm'];
7 i

2] 3Network canfj;umaritn‘ﬂTaginlng L abe &M omentum)
g — net.trainParam. 1g = 0.1 3 g

@ = net.trainPagam.mc = D.E} dd

11 - e

12 3Criteria toJStop traiﬂinngﬁ

13 = net.trainParam.min;gféd = 1éf§ﬁa

l1a — net.trainParam.epochs = 1uuqi:jﬁ

15 = net.trainParam.mu_max_= 1e2Dﬁﬁ;;

16 — net.trainParam.mék:fail = T

17 A -0

18 %Partitiqéﬁng ratio for training, validii)ng, and testing sets
o = net.divideParam.trainEatio = 4; -

20 — net.divideParam.valratio = 1; o

21 — net.divideParam. testratio = 0;

22

23 33t3Ft taol trainja hetwark

24 — [net gtr]=trainine=t, input, targest) :

Figure'b:14: Anexample of MATLAB source code’of ANN model

After a training process is finished, the training result window appears as
shown in Figure 5.15. The ANN training result window of MATLAB software can be

divided into 4 main sections as follows:

Section 1 represents roughtly schematic diagram of network configuration. In
our case, the network consists of 2 layers (1 hidden layer and 1 output layer). Note
that MATLAB software does not count the input as a layer. A logsig and linear

transfer function is used for the hidden and output layers, respectively.
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Section 2 represents the algorithms that were used to train a network. In our
case, the training method is Levenberg-Marquardt with the Mean Squared Error
(MSE) as a criterion to check the performance of the network and the data sets are
divided by choosing from a sequence that we input to the network by a method called
"divideblock™.

Section 3 represents the progress of the training process. Once one of these
criteria reaches its target, the training process is then stopped. There are 3 main

criteria used in this study as follows:

1) Target MSE criterion (performance) — The training will continue until
the MSE of training set reaehes the target MSE. Setting the target MSE to be a high
value will cause the netwerk o0 have low accuracy. On the other hand, setting it too

low will result in a long time 10 train‘a_ network or even non-convergence.

2) Number of epach & This valueis specified to limit the number of iterations
in the training. The advantage is .to stop:'t_he_- training in case that the performance
cannot reach the target MSE. In this study, the maximum epoch was set quite high

(1,000 epochs) because we would fike to ené_;'gr’é:-that the MSE is as low as possible.

3) Validation'Checks — As describé'd" _éarlrier, the walidating data set is used to
avoid a network to @Verfit training data set by stopping the training process when the
MSE of the validating set starts to increase. However, this criterion is too rigid since
the trend of the MSE may _change from increasing to decresing again in subsequent
epochs. Therefore, we should allow far some: flexibility for the network to continue
training even the! MSE of the validating set is increasing. In this study, the number of

epochs useg forthispurpase is:15:
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Table 5.3: Model configuration for Case 1-1

Model | Number of neurons
_ _ Learning rate | Momentum MSE

No | Hidden Hidden

Layer1 | Layer?2
1 5 0 0.1 0.1 10,599
2 5 0 0.5 0.1 51,291
3 5 0 0.1 0.5 42,843
4 5 0 0.5 0.5 54,947
5 10 0 Qi 0.1 57,338
6 10 0 0% 0.1 74,058
7 10 0 04 0.5 106,387
8 10 0 a5 0.5 92,292
9 20 Q 0.1 0.1 771,261
10 20 0 0.5 0.1 1,457,879
11 20 0 0.1 0.5 311,343
12 20 0 A0S 0.5 1,562,568
13 5 5 01 0.1 6,437
14 5 5 . 05 0.1 7,183
15 5 3) - 0.1 0.5 10,455
16 5 g 0.5 0.5 3,881
17 10 10 0.1 0.1 37,516
18 10 10 5 0.1 320,963
19 10 10 0.1 0.5 678,858
20 10 10 0.8 0.5 216,053

From a total 20 model configurations, two models with the lowest and next to
lowest MSE (model 13 and 16) which has the MSE of 6,437 and 3,881, respectively,
are chosen. Model 13 cangists of 2 hiddenglayers with 5 neurons in each layer. The
learning rate and momentum of 0.1 -were used. Simtlar to model 13, model 16 consists
of 2 hidden layers with 5 neurons.in each layer. However, the learning rate and
momentum were seiito"be 0.5:<The performance curves of model-13 @nd 16 are shown
in Figures 5.16 and 5.17, respectively. Model 13 was trained until epoch 107 but the
weight and bias were updated until epoch 92 only because the MSE of validating set
started to increase in this epoch. The training was continued for 15 more epochs for
validation check. The lowest MSE of model 13 is 6,437. For model 16, the training
was performed until epoch 123. However, the weight and bias were not updated after
epoch 108 due to the same reason for model 13. The lowest MSE of model 16 is
3,881 in epoch 108.
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Next, both models that produce the lowest MSE are further checked to ensure
the accuracy of prediction. The outputs predicted by the ANN are compared with the
target outputs of the training and validating sets by cross plotting them. Figures 5.18
and 5.19 represent the cross plots for the training and validating sets for model 13,
respectively, while Figures 5.20 and 5.21 represent the cross plots for the training and
validating sets for model 16, respectively. From the graph, the line Y = X refers to
correct prediction, i.e., each point on the 45-degree line is where predicted output is
matched with the target output. So the closerthe data points are located near the Y = X
line, the higher the accuracy of prediction.\\fe"can determine the accuracy of the
prediction using regression coefficient of determination (R?) as a criterion. R? equal to
1 represents a perfect fit to«He Y= X line. ANN will predict accurate output when R?

is close to 1.

From Figures 548 to 5.21, we cl:ah see that the ANN can predict accurate
output for both training and validating sets for both model 13 and 16. Model 13 gives
R? of training and validating sets equal to 4 and 0.9998, respectively, and model 16

gives R? of the training and validating sets equal to 4 and 0.9999, respectively as well.
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5.4.1.1.3 Model Testing Results and Discussion

In order to ensure the accuracy of ANN prediction when faced with unseen
data sets, model 13 and 16 which yield the lowest MSE were then tested for accuracy
by using testing data sets. After testing the ANN with testing sets, the outputs
predicted by ANN are then compared with the target outputs by cross plotting them.
Figures 5.22 and 5.23 represent the cross plots for model 13 and 16, respectively.
From the graphs, R? of model 13 and 16 are equal to 0.9997 and 0.9998, respectively.

This means that both model 13_’) and-16.geod performance of predicting the
initial gas production rate..However, the coefficient of determination for model 16 is

higher. Therefore, the best_}_performanqle model whieh produces the most accurate
predicted output is modﬁ»l/fé,

30000 _—_—__‘E- :F':: rARAT T ..._F*g:_-—-l: Y -
4 p TR P
A -~ Y=Xidw=} -+t 1 Q’/
25000 f ?.._.:_ l ,: : .‘-,Z'. . —l_ /’/—
=3 L s
20000 D TN 7 = e
T e )xa

15000 —-j, I B ¢ ‘._‘j.if.f, o

Predicted initial gas rate (Mscf/d)

10000 {H e —
2 e »
2000 e ' R2= 0.9997
HE e NS SAHe Y Y5
R E
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Actual initial ‘gas’rate (Mscf/d)

Figure 5.22: Cross plot of predicted vs actual initial gas rates of testing sets of
model 13 (Case 1-1)
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5.4.1.2 Case 1-2-1

Due to circumstances in real situation, we are unable to know the pressure at
the predicting well location. However, the average pressure from the surrounding
wells’ location can be obtained. These pressures were taken from surrounding wells
location at the time drilling started for the predicting well. For example, we are
predicting the flow rate for well number 20 and the well is surrounding by well
number 15 and 16. In this case, we have to use the pressures from well number 15 and
16 at the time when we start-to drill well naimber20 to find the average pressure and
feed it to the ANN asan input parameter. Figure 5.24 illustrates the schematic

diagram of ANN in this casgs

Input layer Hidden layer Output layer
2 inputs P 1 output
- Permeability / 2 \ oA \ - Initial gas rate
- Arithmetic S A
average pressure £ 7 \\ / b 4 \
(from surrounding wells) =\ <

N

Figure 5.24:Schematic diagram of ANN for Case 1-2-1

In order to average the pressure, the'number'of surrounding wells needs to be
counted first. Therefore, the area offinfluence needs to be specified: It is necessary to
choose‘the right size of ‘area of influence. Choosing the area to be too large can result
in largererror in estimating the pressure because pressure in different areas in the
reservoir are different due to heterogeneity. The pressure should be referenced from
nearest surrounding wells. On the other hand, choosing the area to be too small can
result in the lack of number of surrounding wells. From a trial and error basis, we
found that the area of the size 5,300 ft x 5,300 ft around the predicting well location is
the minimum size that has at least 1 well located around all predicting wells. Note that

is quite large when compared with the total reservoir size (20,000 ft x 20,000 ft).
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5.4.1.2.1 Data Preprocessing

Similar to the previous case, a total of 75 data sets taken from well number 26
to 100 were divided into three main sets namely, training, validating, and testing sets
with ratio of 4:1:1 (51:12:12 data sets). The wells in each data set are still the same as
the ones in the previous case study. Input parameters from all data sets are plotted to
observe the distribution. Since the distribution of permeabilities are the same as in the
previous case study, only the dlstnb\{t\(!/ erage pressures are then plotted. The
histograms are shown in Flg@‘s:S 25 10 5 their statistics are summarized in
Table 5.4. From the res

sets represent similar W /)
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Table 5.4: Summary of statistics of all data sets (Case 1-2-1)
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Statistical Dataset Arithmetic average pressure
parameters type (psia)

Training 1,798.89

Maximum Validating 1,857.74

Testing 1,533.35

Training 690.99

Minimum Validating 663.15

Testing 669.20

Training 1,181.31

Mean Validating 1,219.51

Testing 1,148.48

Training 931.72

1st Quartile Validating 879.81

Testing 859.91

Training. | 1,221.89

Median Validatings & 1,247.85

Testing™ 1,155.25

fraining - | 4 1,338.24

3rd Quartile \alidating 1,527.48

Testing ¥ 1,433.24

Training = 14 ) 301.00

SD Validating — 412.13

319.22

Testing
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5.4.1.2.2 Model Training

The ANN model was trained with various network configurations based on a
trial and error basis. There are 20 models that were run in this case. Each model was
trained many times to obtain the lowest MSE possible. The network configurations

and their MSE of validating set are summarized in Table 5.5.

Table 5.5: Model configuration for Case 1-2-1

Model | Number of neurons
i i Learnimng rate-1""Momentum MSE
No | Hidden Hidden
Layer1 | Layer?2

1 5 0 0.1 0.1 1,342,442
2 5 0 0.5 0.1 1,680,652
3 5 Q a0, 1 0.5 1,375,500
4 5 0 0.5 0.5 1,270,276
5 10 0 0.1 0.1 1,869,682
6 10 0 0.5 0.1 1,642,784
7 10 0) 0.1 0.5 1,842,319
8 10 0 0.5 0.5 2,025,834
9 20 0 =2 0.1 4,231,747
10 20 0 0.5 0.1 3,595,650
11 20 0 0.1 0.5 2,799,095
12 20 0 0.5 0.5 3,255,664
13 5 5 0.1 0.1 1,735,086
14 5 5 0.5 0.1 1,592,139
15 5 5 0.1 0.5 1,344,642
16 5 5 0.5 0.5 1,436,845
17 10 10 01 0.1 2,155,072
18 10 10 0.5 0.1 1,303,863
19 10 10 0.1 0.5 1,962,537
20 10 10 0.5 0.5 1,964,948

From a total 20 model configurations, two models with the lowest and next to
lowest MSE (model 1 and 4) which has the MSE of 1,342,442 and 1,270,276,
respectively, are chosen. Model 1 consists of only one hidden layers with 5 neurons.
The learning rate and momentum of 0.1 were used. Similar to model 1, model 4
consists of only one hidden layers with 5 neurons. However, the learning rate and
momentum were set to be 0.5. The performance curves of model 1 and 4 are shown in

Figures 5.28 and 5.29, respectively. Model 1 was trained until epoch 29 but the
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weight and bias were updated until epoch 14 only because the MSE of validating set
started to increase in this epoch. The training was continued for 15 more epochs for
validation check. The lowest MSE of model 1 is 1,342,442. For model 4, the training
was performed until epoch 32. However, the weight and bias were not updated after
epoch 17 due to the same reason for model 1. The lowest MSE of model 4 is
1,270,276 in epoch 17.

Train
Validation

Pl il e T 2
RININIUNRINYAE
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Best Validation Performance is 1270276.0447 at epoch 17
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Figure 5.29 Performance cUrye_.of model 4 (Case 1-2-1)

Next, both models that produce the"lli_'o'wfa_‘st MSE are further checked to ensure
the accuracy of prediction. The outpuis predicféd by the ANN are compared with the
target outputs of thetraining and validating'éé“t—is“ by crossyplotting them. Figures 5.30
and 5.31 represent the cross plots for the training and validating sets for model 1,
respectively, while Figures 5.32 and 5.33 represent the cross plots for the training and
validating sets for model 4, respectively. From the graph, the line Y = X refers to
correct prediction, i.e.;-each point'on the 45-degree line Is\where predicted output is
matched with the target output. So the closer the data points are located near the Y = X
line, the, higher-theyaceuracy-of-prediction: We-can determine~thesaccuracy of the
prediction Using regression coefficient of determination'(R?) as a'criterion. R? equal to
1 represents a perfect fit to the Y = X line. ANN will predict accurate output when R?

is close to 1.

From Figures 5.30 to 5.33, we can see that the ANN can predict accurate
output for both training and validating sets for both model 1 and 4. Model 1 gives R?
of training and validating sets equal to 0.9154 and 0.9614, respectively, and model 4
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gives R? of the training and validating sets equal to 0.9097 and 0.9628, respectively as

well.
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5.4.1.2.3 Model Testing Results and Discussion

In order to ensure the accuracy of ANN prediction when faced with unseen
data sets, model 1 and 4 which yield the lowest MSE were then tested for accuracy by
using testing data sets. After testing the ANN with testing sets, the outputs predicted
by ANN are then compared with the target outputs by cross plotting them. Figures
5.34 and 5.35 represent the cross plots for model 1 and 4, respectively. From the
graphs, R? of model 1 and 4 are equal to 0.8368.and 0.7374, respectively.

This means that both-model 1 arjp 4 good-performance of predicting the initial
gas production rate. Howewver; the coefficient of deiermination for model 1 is higher.
Therefore, the best perfermance model which produces the most accurate predicted
output is model 1. Copsé{gently, this ljhodel will be used to predict the initial gas

production rate for well)m’xmber 101"A\L\'/hi('f_h:':is drilled 1 year after the well number 100.
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5.4.1.3 Case 1-2-2

This case study is the same as case 1-2-1 except that the average pressure used
in this case is inverse-distance average pressure, i.e., pressure from the closer wells
will affect the average value more than pressure from wells that are further away.
Using this method to average the pressure should allow us to estimate the pressure
around the predicting well location more accurately than the previous case study. The
inverse-distance average pressure can be calculated via Equation 5.4. Figure 5.36
illustrates the schematic diagram of ANN in inis.ease. The size of area of influence is

the same as in the previous-ease which is 5,300 ftx'5,300 ft.

A sy - 1
Frveroge | T Zi:l D_i/zile_i (5.4)

where Paverage — . inverse-distance average pressure
Pi = ’L‘f ‘block pressure at well number i
Di = distance from well number i to
predicting well
N = ;'_nél’Fﬁber of surrounding wells
Input layer 7 Hidden layer Output layer
2 inputs — 1 output
- Permeability , - Initial gas rate
- Inverse-distance .

average pressure S
(from surraunding.wells)

Figure 5.36: Schematic diagram of ANN for Case 1-2-2
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5.4.1.3.1 Data Preprocessing

Similar to the previous case, a total of 75 data sets taken from well number 26
to 100 were divided into three main sets namely, training, validating, and testing sets
with ratio of 4:1:1 (51:12:12 data sets). The wells in each data set are still the same as
the ones in the previous case study. Input parameters from all data sets are plotted to
observe the distribution. Since the distribution of permeabilities are the same as in the
previous case study, only the dlstNBg\ Lﬁ/ inverse-distance average pressures are
then plotted. The hlstograms \shown m& 37 to 5.39 and their statistics are
resn’lt thuﬂd-that the histograms and statistics

summarized in Table 5.6:

of the 3 data sets represent si

Frequency
O P N W A~ 01 O N ©

1780
1840
1900

| I |
3 zmtgmmumawmummgsets
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Table 5.6: Summary of statistics of all data sets (Case 1-2-2)

Statistical Dataset Inverse-distance average pressure
parameters type (psia)

Training 1,798.89

Maximum Validating 1,857.74

Testing 1,533.35

Training 690.99

Minimum Validating 663.15

Testing 669.20

Training 1,181.31

Mean Validating 1,219.51

Testing A 1,148.48

Trainng 931.72

1st Quartile \alidating 879.81

Lesting \ 859.91

Trdining/ -~ 1,221.89

Median Validating 1,247.85

Jesiing < 1,155.25

Training 1,338.24

3rd Quartile Valiflating: 24 1,527.48

Testing:; 1,433.24

Training £ 301.00

SD Validating =71, 412.13

- 319.22

Testing

.......
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5.4.1.3.2 Model Training

The ANN model was trained with various network configurations based on a
trial and error basis. There are 20 models that were run in this case. Each model was
trained many times to obtain the lowest MSE possible. The network configurations

and their MSE of validating set are summarized in Table 5.7.

Table 5.7: Model configuration for Case 1-2-2

Model | Number of neurons
i i Learnimng rate-1""Momentum MSE
No | Hidden Hidden
Layer1 | Layer?2

1 5 0 0.1 0.1 1,241,372
2 5 0 0.5 0.1 1,280,630
3 5 Q a0, 1 0.5 1,303,887
4 5 0 0.5 0.5 1,270,706
5 10 0 0.1 0.1 1,548,582
6 10 0 0.5 0.1 2,239,006
7 10 0) 0.1 0.5 1,944,546
8 10 0 0.5 0.5 1,848,544
9 20 0 =2 0.1 3,469,081
10 20 0 0.5 0.1 5,672,744
11 20 0 0.1 0.5 2,950,202
12 20 0 0.5 0.5 3,808,074
13 5 5 0.1 0.1 857,552
14 5 5 0.5 0.1 561,859
15 5 5 0.1 0.5 1,438,182
16 5 5 0.5 0.5 1,565,883
17 10 10 01 0.1 2,282,179
18 10 10 0.5 0.1 2,104,654
19 10 10 0.1 0.5 1,917,763
20 10 10 0.5 0.5 1,888,612

From a total 20 model configurations, two models with the lowest and next to
lowest MSE (model 13 and 14) which has the MSE of 857,552 and 561,859,
respectively, are chosen. Model 13 consists of 2 hidden layers with 5 neurons in each
layer. The learning rate and momentum of 0.1 were used. Similar to model 13, model
14 consists of 2 hidden layers with 5 neurons in each layer. However, the learning rate
and momentum were set to be 0.5 and 0.1, respectively. The performance curves of

model 13 and 14 are shown in Figures 5.40 and 5.41, respectively. Model 13 was
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trained until epoch 33 but the weight and bias were updated until epoch 18 only
because the MSE of validating set started to increase in this epoch. The training was
continued for 15 more epochs for validation check. The lowest MSE of model 13 is
857,552. For model 14, the training was performed until epoch 24. However, the
weight and bias were not updated after epoch 9 due to the same reason for model 13.
The lowest MSE of model 14 is 561,859 in epoch 9.

Train
Validation

i Bk s e 122
AN TUNRINGIAE
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Best Validation Performance is 5618596813 at epoch 9
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Figure 5.41: Performance curyeof model 14 (Case 1-2-2)

Next, both models that prodice the-"l..b‘vy‘e_‘st MSE are further checked to ensure
the accuracy of prediction. The outputs predfciéd by the ANN are compared with the
target outputs of the training and validatingléé_t-'is_ by cress/plotting them. Figures 5.42
and 5.43 represent theé cross plots for the training and validating sets for model 13,
respectively, while Figures 5.44 and 5.45 represent the cross plots for the training and
validating sets for model 14, respectively. From the graph, the line Y = X refers to
correct prediction, 1.e.;-each paint'on the 45-degree linge Is \where predicted output is
matched with the target output. So the closer the data points are located near the Y = X
line, the, higher-theyaceuracy=of:prediction: We~can determine~thesaccuracy of the
prediction Using regression coefficient of determination'(R?) as a criterion. R? equal to
1 represents a perfect fit to the Y = X line. ANN will predict accurate output when R?

is close to 1.

From Figures 5.42 to 5.45, we can see that the ANN can predict accurate
output for both training and validating sets for both model 13 and 14. Model 13 gives
R? of training and validating sets equal to 0.9379 and 0.9776, respectively, and model
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14 gives R? of the training and validating sets equal to 0.9365 and 0.9852,
respectively as well.
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Figure 5.43: Cross plot of predicted vs actual initial gas rates of validating sets of

model 13 (Case 1-2-2)
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model 14 (Case 1-2-2)
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5.4.1.3.3 Model Testing Results and Discussion

In order to ensure the accuracy of ANN prediction when faced with unseen
data sets, model 13 and 14 which yield the lowest MSE were then tested for accuracy
by using testing data sets. After testing the ANN with testing sets, the outputs
predicted by ANN are then compared with the target outputs by cross plotting them.
Figures 5.46 and 5.47 represent the cross plots for model 13 and 14, respectively.
From the graphs, R? of model 13 and 14 are equal to 0.8921 and 0.9078, respectively.

This means that both-model 13:,. and-14.geod performance of predicting the
initial gas production rate..However, the coefficient of determination for model 14 is
higher. Therefore, the best performance model whieh produces the most accurate
predicted output is model 14 Consequéntly, this model will be used to predict the
initial gas production rate for Avéll nurrTber 101 which is drilled 1 year after well

number 100. '5 4
abd -:Jf-g_
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Figure 5.46: Cross plot of predicted vs actual initial gas rates of testing sets of
model 13 (Case 1-2-2)
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5.4.1.4 Case 1-3

In this case study, we use parameters which can refer to pressure at the
predicting well location instead. These parameters are permeability, porosities around
the well which are obtained by using Geostatistics, drill date, and the number of
surrounding wells. The porosities around the well are divided into 3 rings. The first
ring covers an area of 100 x 100 ft at the center. The boundary of the second ring is
located at 500 ft from the center in the x-and y-directions while the boundary of the
third ring is 700 ft away from the center. Figure 548 illustrates the schematic diagram
of ANN in this case.

Input layer _Hidden layer Output layer
6 inputs / o 1 output
- Permeability }\ A - Initial gas rate
- 1st ring porosity L \\ -
- 2nd ring porosity FE\\ \ Y\
- 3rd ring porosity o __% ‘
- Drill date K J AR A
- Number of surrounding & .\ \

- “\/..\
wells / X LA
,-_E\ Y v
=
\

VX

Figure'5.48: Schematic-diagram of ANN for Case'1-3
5.4.1.4.1 Data Preprocessing

Similar to the previous case, a total of 75 data sets taken from well number 26
to 100 were divided into three main sets namely, training, validating, and testing sets
with ratio of 4:1:1 (51:12:12 data sets). The wells in each data set are still the same as
the ones in the previous case study. Input parameters from all data sets are plotted to

observe the distribution. Since the distribution of permeabilities are the same as in the
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previous case study, only the distributions of average porosity for each ring, drill date,
and number of surrounding wells are then plotted. The histograms are shown in
Figures 5.49 to 5.63 and their statistics are summarized in Table 5.8. From the result,
we found that the histograms and statistics of the 3 data sets represent similar

distributions.
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Figure 5.50: Histogram of 1% ring porosity for validating sets
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3.5

Frequency

Figure 5.63: Hist

Table 5.8: Summary of s

,,‘

Fall dat& Sets (Case 1-3)

v ECT , Number of
Statistical f ringe” Z%g % ring | Drill | surrounding

Dataset | porosity | porosity: | porosity | date wells

parameters type (%7.: (%) . (%) (day)

Training ~ 2700 | 2700| .. 26.42| 990.00 7
Maximum | Validating 27.00 25.88 _2#38 1,000.00 7
Testing 26.00 | 2475 2425| 960.00 8
Training 13.00 14.54 15.75| 260.00 1
Minimum | Validating 14.00 13.33 1458 | 280.00 2
Testing ¢ |.. 16.00 16.21 15.75 | 300.00 1
Training . 02067 [3/1 20069 & | 7205704 629.80 3.51
Mean | Validating [ ¢ 12167 21.06 | 20198 |[¢ 634.17 4.42
Testing 20.42 20.65 20.23 | 626.67 4.08
~ oo Araining, oy 1800 | | 228751 018464, 47500 2
1st Quartile, | Validating || 1775 || 17.10 |0 [ 1740 [ 417.5D 3.75
. Testing 17.75 19.45 19.07 422.50 2
Training 20.00 20.88 21.08| 620.00 4
Median | Validating 22.00 23.38 22.69 | 600.00 4
Testing 20.50 21.06 19.75| 655.00 4
Training 24.00 22.48 22.40 | 795.00 5
3rd Quartile | Validating 26.00 24.25 23.34 | 870.00 5.25
Testing 22.00 21.58 22.00| 790.00 5.25
Training 3.81 2.83 2.70 209.72 1.62
SD Validating 4.40 4.36 3.87 | 260.16 1.68
Testing 3.18 2.23 241 | 227.85 2.23
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5.4.1.4.2 Model Training

The ANN model was trained with various network configurations based on a
trial and error basis. There are 20 models that were run in this case. Each model was
trained many times to obtain the lowest MSE possible. The network configurations

and their MSE of validating set are summarized in Table 5.9.

Table 5.9: Model configuration for Case 1-3

Model | Number of neurons
_ _ Learning rate! _Mementum MSE
No | Hidden Hidden
Layer1 | Layer?2

1 5 0 0.1 0.1 386,566
2 5 0 0.5 0.1 494,701
3 5 0 0.1 0.5 319,218
4 5 0 905 0.5 315,566
5 10 Q 0.1 0.1 589,673
6 10 0 0.5 0.1 673,924
7 10 0 0.1 0.5 453,403
8 10 0 0.5 0.5 634,285
9 20 0 041 0.1 867,483
10 20 0 0.5/ 0.1 1,289,344
11 20 0 0.1 0.5 948,323
12 20 0 05 0.5 1,047,584
13 5 5 0.1 0.1 759244
14 5 5 0.5 0.1 820502
15 5 5 0.1 0.5 430542
16 5 5 0.5 0.5 600533
17 10 10 041 0.1 1,232,456
18 10 10 0.5 0.1 984,637
19 10 10 0.1 0.5 948,335
20 10 10 0.5 0.5 1,023,572

From a total 20 model configurations, two models with the lowest and next to
lowest MSE (model 3 and 4) which has the MSE of 319,218 and 315,566,
respectively, are chosen. Model 3 consists of only one hidden layers with 5 neurons.
The learning rate and momentum of 0.1 and 0.5 were used. Similar to model 3, model
4 consists of only one hidden layers with 5 neurons. However, the learning rate and
momentum were set to be 0.5. The performance curves of model 3 and 4 are shown in

Figures 5.64 and 5.65, respectively. Model 3 was trained until epoch 21 but the
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weight and bias were updated until epoch 6 only because the MSE of validating set
started to increase in this epoch. The training was continued for 15 more epochs for
validation check. The lowest MSE of model 3 is 319,218. For model 4, the training
was performed until epoch 21. However, the weight and bias were not updated after
epoch 6 due to the same reason for model 3. The lowest MSE of model 4 is 315,566
in epoch 6.
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Best Validation Performance is 315566.1521 at epoch 6
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Figure 5.65¢ Performance éurve of model 4 (Case 1-3)

Next, both models that produce the 1OWest MSE are further checked to ensure
the accuracy of prediction. The outputs pred1cted by the ANN are compared with the
target outputs of the-training and validating sets by erossplotting them. Figures 5.66
and 5.67 represent the cross plots for the training and validating sets for model 3,
respectively, while Figtires 5.68 and 5.69 represent the cross plots for the training and
validating sets for model 4, respectively. From the graph, the line Y = X refers to
correct prediction,fi.e.;"eachpointion the 45-degree [line iSywhere predicted output is
matched with the target output. So the closer the data points are located near the Y = X
line, the, higher.the, accuracy-of-prediction. We.-can determine-the,accuracy of the
prediction using regression coéfficiént'of determination'(R?) as a'criterion. R? equal to
1 represents a perfect fit to the Y = X line. ANN will predict accurate output when R?

is close to 1.

From Figures 5.66 to 5.69, we can see that the ANN can predict accurate
output for both training and validating sets for both model 3 and 4. Model 3 gives R?
of training and validating sets equal to 0.9590 and 0.9920, respectively, and model 4
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gives R? of the training and validating sets equal to 0.8909 and 0.9922, respectively as

well.
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Figure 5.67: Cross plot of predicted vs actual initial gas rates of validating sets of
model 3 (Case 1-3)
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5.4.1.4.3 Model Testing Results and Discussion

In order to ensure the accuracy of ANN prediction when faced with unseen
data sets, model 3 and 4 which yield the lowest MSE were then tested for accuracy by
using testing data sets. After testing the ANN with testing sets, the outputs predicted
by ANN are then compared with the target outputs by cross plotting them. Figures
5.70 and 5.71 represent the cross plots for model 3 and 4, respectively. From the
graphs, R? of model 3 and 4 are equal to 0.9240.and 0.8909, respectively.

This means that both-model 3 arjp 4 good-performance of predicting the initial
gas production rate. Howewver, the coefficient of determination for model 3 is higher.
Therefore, the best perfermance model which produces the most accurate predicted
output is model 3. Copsé{gently, this ljhodel will be used to predict the initial gas

production rate for well)m’xmber 101"A\Lvhic'f_h:':is drilled 1 year after well number 100.
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Figure 5.70: Cross plot of predicted vs actual initial gas rates of testing sets of
model 3 (Case 1-3)
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5.4.1.5 Performance of ANN Prediction

After several case studies with different input parameters were performed, we
use each best performance model to predict the initial gas rate of the new well
planned to be drill (well number 101) which is drilled 1 year after well number 100.

Table 5.10 summarize the best performance model for each case study.

Table 5.10: Summary of best performance model for each case.

RZ
Case No. | Model No. Traiing sets V/alidating sets Testing sets
1-1 16 1 0.9999 0.9998
1-2-1 1 0.9154 0.9614 0.8368
1-2-2 14 0,9365 0.9852 0.9078
1-3 3 0,590 0.9920 0.9240

First of all, candidate’ locations for well number 101 must be specificd. As
described earlier, we plan to drill well number 101 in the 2™ round of drilling. And
the well must be located at least 1,500 ft away from other wells and at least 750 ft
away from any boundary to aveid boundary effect. After randomly placing a well in
the remaining area of the field,-only 19 locations can be used as candidate locations
for well number 101. Then, the three ANN models were.used to predict the initial

flow rate for the candidate well locations.

In order to evaluate the accuracy of ANN prediction, we need to determine the
initial flow rate “of ‘the “well’ drilled at" the 19 candidate locations. This was
accomplished uSing ECLIPSE reservoir simulator. Well number 101 was added to the
reservoir, simulatiomand started o, preduce (1 year-aften wellnumber; 200 was drilled.

Nineteen separate simulation runs were needed for 19 candidate well Tocations.

Finally, the outputs predicted by the ANN are compared with the target
outputs taken from reservoir simulation by cross plotting them to each other. Figure
5.72,5.73,5.74, and 5.75, represent the graph for Case 1-1, Case 1-2-1, 1-2-2, and 1-3,

respectively.
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From Figures 5.72-5.75, each ANN model of all case studies does not present
accurate prediction as we expected. Several points are located near the Y=X line,
representing good prediction. However, many points are located far away from this
line (some points even have negative values). Predictions of negative flow rates occur
when the actual flow rates are small (less than 1,000 Mscf/d for Case 1-1, Case 1-2-1,
and Case 1-2-2).

From the study of Hettiarachehi et.al X", they found a problem when using the
ANN to predict the relationship between rainfali'and streamflow. A problem arises in
extrapolation, i.e., the prediction is not accurate when the training set does not contain
the maximum or minimum possible input and outputwvalues. Therefore, if we use the
trained ANN to predicirthe gutput that i§ out of range or using the input which is out

of range, the predictionds inaccurate.

In this study, the #ype of reservair_,_is closed boundary depletion drive gas
reservoir. Both the pressuie and gas p'r!o_duction rate continues to decrease as a
function of time. The pregsuré at well number 101 which is drilled 1 year afterward
may be lower than the minimufm value._;jf,_ijnput in training sets. Therefore, the
prediction is based on extrapolation; causing ir{accurate prediction. With this reason,
the ANN model that'uses pressure as an inb.u't_“ﬁéfameter (Case 1-1, 1-2-1, 1-2-2) will
show a good prediction only when the pressure at that location is not much lower than

the minimum pressure in the training data set.

From 4.gases, Case. 1-1.is.the best predictive. model _for this study. But as
described earlier that the pressure'at the location to be'drilled is not known prior to
drilling. Therefore, the trained ANN of Case 1-l=cannot be usedias a tool to predict
the initial gas production rate. After comparing all.remaining cases, Case 1-3 presents
the most" inaccurate model. So, we will choose the best prediction model between
Case 1-2-1 and Case 1-2-2. Figures 5.76 and 5.77 show the cross plot (only positive

value) for Case 1-2-1 and Case 1-2-2, respectively.
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From the Figures 5.76 and 5.77, R? of Case 1-2-1 and Case 1-2-2 are equal to
0.7368 and 0.4777, respectively. Therefore, the best performance model which
produces the most accurate predicted output is Case 1-2-1.

In order to ensure this concept, we will try to predict the initial gas production
rate at the time shorter than 1 year to see how accurate the prediction is. Figure 5.78
shows a prediction performance of Case 1-2-1 when used to predict the performance

of well number 101 at different tir{ \1”” the next infill well: 1 year, 6 months, 3
months, and 1 month on the s i"‘qz 1, // ,
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locations (Case 1-2-1) for different drill date

From Figure 5.78, the result is most accurate when using a trained ANN to
predict the gas rate at 1 month after drilling well number 100. The worst case happens
at 1 year. This is because the later the drill date is, the more the pressure decreases.
The case of 1 month is the case with the shortest time. So, the pressure is not much
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lower than the minimum value used in the training. Consequently, the ANN gives the

highest accuracy when used to predict the initial gas rate.

Although, the prediction of ANN does not give us accurate result for all well
locations, we only need one location to infill which is the location that gives the
highest gas production rate. This location is associated with high pressure. Therefore,
we can use the ANN to roughly estimate the gas rate for this location.

At this point, we are able ’w)l gas productions at candidate well
locations as illustrated in Fi 4
T———
0, ——
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Z ‘:‘f ' % N ..

Figure 5.79: Candidate well locations on porosity distribution map

In order to determine the best location to drill well number 101, the predicted
initial gas rate obtained from each ANN model is ranked and tabulated as shown in
Table 5.11
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Table 5.11: Order of candidate location from a higher to lower initial gas rate

Candidate location for well number 101

Order Reality Case 1-1 Case 1-2-1 | Case 1-2-2 | Case 1-3
1 location 9 location 9 location 1 location 1 | location 11
2 location 13 location 1 location 9 location 9 | location 17
3 location 1 location 13 | location 13 | location 13 | location 7
4 location 5 location 5 location 19 location 5 location 5
5 location 17 | location 19 location 5 location 19 | location 1
6 location 7 location 17 | location 17 | location 17 | location 19
7 location 19 location 7 location 7 location 11 | location 16
8 location 11| location 114" location 16 location 7 location 6
9 location 16| location 16 | leeation 11 | location 16 | location 18
10 location 8 location 6 location 18 | location 18 | location 9
11 location 6 lecCation 4 location 4 location 4 | location 13
12 location 4 location 18 location'6 location 6 location 2
13 location«18 location 8 location 2 location 2 location 4
14 location 14 location 2 | location 8 location 8 | location 14
15 location'12/| location 12. | location 14 | location 14 | location 8
16 location 2" | location 14 | location 12 | location 12 | location 12
17 location 3 location 3.4 | location 3 location 3 location 3
18 location 15 | location 15 | location 15 | location 15 | location 15
19 location 10 | location 10 | location 10 | location 10 | location 10

e

In reality, location 9 is the one that vields.the highest initial gas production

rate and the top 3 candidate locations to infill a well are well number 9, 13, and 1,

respectively. Case 1-1-which uses the actual pressure as input parameter can predict

the same group of top 8 locations as in reality with the right best location at location 9.

Case 1-2-1 and-1-2-2 which uses arithmetic-and, inverse-distance average pressure as

input parameter can‘alse’prédict the-right group of-top 3 locations as in reality except

that the best location predicted by these cases aredacation 1 whichuis the third order in

reality.“Case 1-3 which does not, use any pressure as input parameter cannot predict

the right location. Top 3 locations of this case are location 11, 17, and 7 which are the

8™ 5" and 6" order in reality, respectively. Because location 1 is predicted by both

Case 1-2-1 and 1-2-2 while location 11 is predicted by only Case 1-3. Therefore,

location 1 will be used as the best location to infill well even in fact this location is

not the best location.
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Table 5.12: Summary of error in initial gas rate predicted for location 1.

Case Initial gas rate (Mscf/d) Error (%)
Reality 3337.93 -
1-2-1 5215.98 56.26
1-2-2 4517.90 35.35
1-3 4397.76 31.75
Table 5.12 summarises f prediction when using each model to
predict initial gas production | ' ion 1. From Table 5.12, the initial
gas rate obtained from eac quite hﬁomparing with the actual value

from reality case. Eve we achieve the objective of

being able to determi n for » \\ afill well even if it is not the

very best.

AU INENTNEINS
RINNIUUNIININY
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5.4.2 Cumulative Gas Production Prediction

The purpose of this case study is to predict a 1 year cumulative gas production
after drilling the well. The input parameters of ANN will be the same as the ones used
to predict the initial gas production rate which are permeability and pressure at the
drill date of the predicting well. However, after the wells were drilled, the pressure at
that location will continue to decrease. Therefore, if we want to predict the cumulative
gas production, we need to include paramegers that affect the changing of pressure

after wells are drilled as input of ANN.

Since porosity argund-the predicting well directly affects the amount of gas in

place, it affects the change in pressure and needs to be included as an input parameter.

This section is"divided into 4 case studies similar to Section 5.4.1. Case 2-1
has 2 input parameters'as in Case 1=1 and the average porosity of each ring of the
three rings. The next set/0f case studies us)eé average pressure from surrounding wells
instead. There are 2 average methods that ére"'l) arithmetic average (Case 2-2-1) and
2) inverse-distance average (Case 2-2-2). Tﬁé‘llast case (Case 2-3) uses porosity, drill

date, and the number of surrounding wetls as a proxy of pressure at well location.

In each case study, the ANN is trained with training and validating sets by
varying network configurations that are the number of<hidden nodes, number of
hidden layers, learning.rate, and momentum on a trial and error basis. Only 2 models
with give the lowest and mext to lowest errar of validating sets are used to test the
accuracy with testing set. After that the only ‘one madel with lowest error of the
testing set will e chosen to be the best performance model for, each case study.
Finallyy best performance model will be used to predict the 1-year cumulative gas
production of the well number 101 which is scheduled to be drilled one year after well
number 100.
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5.4.2.1 Case 2-1

In this case, the network consists of 5 input parameters. The first 2 input are
the same as in Case 1-1 which are permeability and initial pressure at the drill date.
To represent the effect of decline of initial pressure after starting the production,
average porosity of 1%, 2" and 3" rings are included as inputs. The number of hidden
layers and number of neurons in each hidden layer are varied base on trial and error
basis to get the best performance to predict the output which is 1-year cumulative gas

production. Figure 5.80 illustrates the schematic diagram of ANN in this case.

Input layer Hidden layer Output layer
5 inputs 7 1 output
- Permeability - 1 year cumulative

=

)
-Pressure S NN gas production
- 1st ring porosity y R

- 2nd ring porosity ' 2% /? =\
- 3rd ring porosity ‘'S¢ '8

A \ ‘\/I :
- [ /g %4

Figure 5:8@xSchematic diagram of ANN for Case 2-1
5.4.2.1.1 Data Preprocessing

Similar to the previous case; atetal of 75 data sets taken from well number 26
to 100 were divided into three main sets namely, training, validating, and testing sets
with ratio of 4:1:1 (51:12:12 data sets). The wells in each data set are still the same as
the ones in the previous case study. All input parameters from all data sets are plotted
to observe the distributions which are the same as those in Case 1-1.
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5.4.2.1.2 Model Training

The ANN model was trained with various network configurations based on a
trial and error basis. There are 20 models that were run in this case. Each model was
trained many times to obtain the lowest MSE possible. The network configurations

and their MSE of validating set are summarized in Table 5.13.

Table 5.13: Model configuration for Case 2-1

Model | Number of neurons
i i Learning rate | Momentum MSE
No | Hidden Hidden
Layer1 | Layer2

1 5 0 0.1 0.1 13,649,834,695
2 5 0 0.5 0.1 13,778,152,454
3 5 0 S0\ 0.5 13,649,834,695
4 5 Q 0.5 0.5 13,778,152,454
5 10 0 0.1 0.1 20,478,539,230
6 10 0 0.5 0.1 23,036,574,398
7 10 0 0.1 0.5 19,365,278,493
8 10 0 L5 0.5 21,035,647,362
9 20 0 0.1 0.1 25,478,453,672
10 20 0 0.5 0.1 22,304,384,304
11 20 0 O 0.5 26,478,394,045
12 20 0 0.5 0.5 24,857,494,455
13 5 5 0.1 0.1 14,699,731,417
14 5 R 0.5 0.1 22,175,493,419
15 5 5 0.1 0.5 17,108,192,582
16 5 5 0.5 0.5 20,101,001,784
17 10 10 0.0 0L, 21,349,589,473
18 10 10 0.5 0.1 24,789,304,463
19 10 10 0.1 0.5 26,433,748,953
20 10 10 0.5 0:5 27,634,735,484

From a total 20 model configurations, two models with the lowest and next to
lowest MSE (model 1 and 2) which has the MSE of 13,649,834,695 and
13,778,152,454, respectively, are chosen. Model 1 consists of only one hidden layers
with 5 neurons. The learning rate and momentum of 0.1 were used. Similar to model 1,
model 2 consists of only one hidden layers with 5 neurons. However, the learning rate
and momentum were set to be 0.5 and 0.1, respectively. The performance curves of
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model 1 and 2 are shown in Figures 5.81 and 5.82, respectively. Model 1 was trained
until epoch 31 but the weight and bias were updated until epoch 16 only because the
MSE of validating set started to increase in this epoch. The training was continued for
15 more epochs for validation check. The lowest MSE of model 1 is 13,649,834,695.
For model 2, the training was performed until epoch 143. However, the weight and
bias were not updated after epoch 128 due to the same reason for model 1. The lowest
MSE of model 2 is 13,778,152,454 in epoch 128.
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Figure 5.81: Performance curve of.model 1 (Case 2-1)
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Best Validation Performance is 13778152454 6685 at epoch 128
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Figure 5.82: Performance ch\(e of model 2 (Case 2-1)

Next, both models that produce the{'o,‘vyje‘st MSE are further checked to ensure
the accuracy of prediction. The outputs pred'rctéd by the ANN are compared with the
target outputs of the-training and validating sets by cross/plotting them. Figures 5.83
and 5.84 represent the €ross piots for the training and wvalidating sets for model 1,
respectively, while Figures 5.85 and 5.86 represent the cross plots for the training and
validating sets for model 2, respectively. From the graph, the line Y = X refers to
correct prediction, i.e.;-eachipaint'on ‘the 45-degree line isjwhere predicted output is
matched with the target output. So the closer the data points are located near the Y = X
line, the, higher+the, aceuracy-of-predictions We-can, determine~thesaccuracy of the
prediction using regression coefficient'of determination'(R?) as acriterion. R? equal to
1 represents a perfect fit to the Y = X line. ANN will predict accurate output when R?

is close to 1.

From Figures 5.83 to 5.86, we can see that the ANN can predict accurate
output for both training and validating sets for both model 1 and 2. Model 1 gives R?
of training and validating sets equal to 0.9928 and 0.9966, respectively, and model 2
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gives R? of the training and validating sets equal to 0.9921 and 0.9965, respectively as

well.
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5.4.2.1.3 Model Testing Results and Discussion

In order to ensure the accuracy of ANN prediction when faced with unseen
data sets, model 1 and 2 which yield the lowest MSE were then tested for accuracy by
using testing data sets. After testing the ANN with testing sets, the outputs predicted
by ANN are then compared with the target outputs by cross plotting them. Figures
5.87 and 5.88 represent the cross plots for model 1 and 2, respectively. From the
graphs, R? of model 1 and 2 are equal to 0.9§1/§ ind 0.9863, respectively.

This means that both-model 1 arlg 2 good'_berformance of predicting the 1 year
cumulative gas production«However, the coefficient of determination for model 2 is
higher. Therefore, the [:?éfformamf model whieh produces the most accurate
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Figure 5.87: Cross plot of predicted vs actual 1 year cumulative gas of testing sets of
model 1 (Case 2-1)
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5.4.2.2 Case 2-2-1

As described in Case 1-2-1, we do not know the pressure at the predicting well
locations in real situations. So, this case study will use the average pressure of the
surrounding wells instead. These pressures were taken from surrounding wells
location at the time when drilling the predicting well. Figure 5.89 illustrates the
schematic diagram of ANN in this case. The average pressure used in this study is the

same as used in Case 1-2-1.

Input layer yHidden'layer Output layer
5inputs 1 output
- Permeability - 1-year cumulative

- Arithmetic
average pressure
(from well surrounded)
- 1st ring porosity
- 2nd ring porosity
- 3rd ring porosity

gas production

Figure 5:89: Schematic diagram of ANN-for Case 2-2-1

5.4.2.2.1 Data Preprocessing

Similar to the previous case, a total of 75 data sets taken from well number 26
to 100, weredivided,into three-main; sets namely,-training; validating; and testing sets
with ratio of 4:1:1°(51:12:12 data sets). The wells 1n each-data ‘set are-still the same as
the ones in the previous case study. All input parameters from all data sets are plotted

to observe the distributions which are the same as those in Case 1-2-1.



110

5.4.2.2.2 Model Training

The ANN model was trained with various network configurations based on a
trial and error basis. There are 20 models that were run in this case. Each model was
trained many times to obtain the lowest MSE possible. The network configurations

and their MSE of validating set are summarized in Table 5.14.

Table 5.14: Model configuration for Case 2-2-1

Model | Number of neurons
i i Learning rate | Momentum MSE
No | Hidden Hidden
Layer1 | Layer2

1 5 0 0.1 0.1 79,471,345,810
2 5 0 0.5 0.1 138,090,469,358
3 5 0 S0\ 0.5 103,478,498,463
4 5 Q 0.5 0.5 98,473,678,436
5 10 0 0.1 0.1 154,892,615,335
6 10 0 0.5 0.1 147,689,823,465
7 10 0 0.1 0.5 165,489,345,243
8 10 0 L5 0.5 142,453,645,891
9 20 0 0.1 0.1 165,243,152,345
10 20 0 0.5 0.1 174,532,652,435
11 20 0 O 0.5 164,273,524,543
12 20 0 0.5 0.5 182,638,845,637
13 5 5 0.1 0.1 97,706,258,262
14 5 R 0.5 0.1 89,627,857,993
15 5 5 0.1 0.5 105,985,209,239
16 5 5 0,5 0.5 108,884,086,527
17 10 10 0.0 0L, 120,457,389,946
18 10 10 0.5 0.1 135,462,878,463
19 10 10 0.1 0.5 126,745,367,843
20 10 10 0.5 0:5 145,678,845,231

From a total 20 model configurations, two models with the lowest and next to
lowest MSE (model 1 and 14) which has the MSE of 79,471,345,810 and
89,627,857,993, respectively, are chosen. Model 1 consists of only one hidden layers
with 5 neurons. The learning rate and momentum of 0.1 were used. But model 14
consists of 2 hidden layers with 5 neurons in each layer. However, the learning rate
and momentum were set to be 0.5 and 0.1, respectively. The performance curves of
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model 1 and 14 are shown in Figures 5.90 and 5.91, respectively. Model 1 was trained
until epoch 20 but the weight and bias were updated until epoch 5 only because the
MSE of validating set started to increase in this epoch. The training was continued for
15 more epochs for validation check. The lowest MSE of model 1 is 79,471,345,810.
For model 14, the training was performed until epoch 25. However, the weight and
bias were not updated after epoch 10 due to the same reason for model 1. The lowest
MSE of model 14 is 89,627,857,993 in epoch 10.
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Figure 5.90: Performance curve of.model 1 (Case 2:2-1)



112

Best Validation Performance is 89627857993.4179 at epoch 10
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Figure 5:91: Performance cu,ry.e_..of model 14 (Case 2-2-1)

Next, both models that preduce the"lf'o‘west MSE are further checked to ensure
the accuracy of prediction. The outputs predrcted by the ANN are compared with the
target outputs of thetraining and valldatlng sets by crosssplotting them. Figures 5.92
and 5.93 represent the cross plots for the training and walidating sets for model 1,
respectively, while Figures 5.94 and 5.95 represent the cross plots for the training and
validating sets for model 14, respectively. From the graph, the line Y = X refers to
correct prediction, i.e.; each paint'on the 45-degree line ‘Is\where predicted output is
matched with the target output. So the closer the data points are located near the Y = X
line, the, higher+thesaceuracy-of-prediction; We-~can determine~theyaccuracy of the
prediction Using regression coefficient'of determination'(R?) as a-criterion. R? equal to
1 represents a perfect fit to the Y = X line. ANN will predict accurate output when R?
is close to 1.

From Figures 5.92 to 5.95, we can see that the ANN can predict accurate
output for both training and validating sets for both model 1 and 14. Model 1 gives R?
of training and validating sets equal to 0.8989 and 0.9781, respectively, and model 14
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gives R? of the training and validating sets equal to 0.9753 and 0.9785, respectively as

well.
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5.4.2.2.3 Model Testing Results and Discussion

In order to ensure the accuracy of ANN prediction when faced with unseen
data sets, model 1 and 14 which yield the lowest MSE were then tested for accuracy
by using testing data sets. After testing the ANN with testing sets, the outputs
predicted by ANN are then compared with the target outputs by cross plotting them.
Figures 5.96 and 5.97 represent the cross plots for model 1 and 14, respectively. From
the graphs, R? of model 1 and 14 are equal tq;0}7976 and 0.9100, respectively.

This means that both-model 1 _3nd 14 g(i(;d performance of predicting the 1
year cumulative gas produciion. However, the coefficient of determination for model
14 is higher. Therefore,.th‘é"b‘ t perfor nce model which produces the most accurate
predicted output is modell/‘ngonsequn;Sitly, this model will be used to predict 1-year
cumulative gas produ%ﬁr_l wellljur'?lli':er 101 which is drilled 1 year after well

number 100. //". e %
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Figure 5.96: Cross plot of predicted vs actual 1 year cumulative gas of testing sets of
model 1 (Case 2-2-1)
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5.4.2.3 Case 2-2-2

This case study is the same as Case 2-2-1 except that the average pressure used
in this study is inverse-distance average pressure. The calculation method has been
discussed in Case 1-2-2 already. Figure 5.98 illustrates the schematic diagram of
ANN in this case. The inverse-distance average pressure used in this study has the

same values as the ones used in Case 1-2-2.

Input layer Hiddendlayer Output layer
5 inputs 1 output
- Permeability - 1-year cumulative

- Inverse-distance gas production

average pressure
(from well surrounded)
- 1st ring porosity
- 2nd ring porosity
- 3rd ring porosity

Figure-5.98. Schematic.diagram-ocf ANNCase 2-2-2

5.4.2.3.1 Data Preprocessing

Similar to the previous'case, a total-of 75 data‘sets-taken from well number 26
to 100 were divided into three main sets namely, training, validating, and testing sets
with ratio 0f-4.2:1(51:42:12 data-sets): Thewells-in gach-data,set-are, still the same as
the ones_in‘the previous case study."All input parameters from‘ali data sets are plotted

to observe the distributions which are the same as those in Case 1-2-2.
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5.4.2.3.2 Model Training

The ANN model was trained with various network configurations based on a
trial and error basis. There are 20 models that were run in this case. Each model was
trained many times to obtain the lowest MSE possible. The network configurations

and their MSE of validating set are summarized in Table 5.15.

Table 5.15: Model configuration for Case 2-2-2

Model | Number of neurons
i i Learning rate | Momentum MSE
No | Hidden Hidden
Layer1 | Layer2

1 5 0 0.1 0.1 105,600,788,958
2 5 0 0.5 0.1 98,779,908,580
3 5 0 S0\ 0.5 96,571,558,355
4 5 Q 0.5 0.5 76,423,259,510
5 10 0 0.1 0.1 136,945,416,557
6 10 0 0.5 0.1 146,578,263,874
7 10 0 0.1 0.5 135,774,836,389
8 10 0 L5 0.5 145,637,284,363
9 20 0 0.1 0.1 164,353,784,563
10 20 0 0.5 0.1 173,454,746,374
11 20 0 O 0.5 153,536,273,843
12 20 0 0.5 0.5 165,348,463,539
13 5 5 0.1 0.1 90,151,568,528
14 5 R 0.5 0.1 98,258,858,400
15 5 5 0.1 0.5 106,519,131,340
16 5 5 0.5 0.5 127,671,193,955
17 10 10 0.0 0L, 136,453,674,653
18 10 10 0.5 0.1 125,467,395,272
19 10 10 0.1 0.5 123,674,836,383
20 10 10 0.5 0:5 136,745,362,736

From a total 20 model configurations, two models with the lowest and next to
lowest MSE (model 4 and 13) which has the MSE of 76,423,259,510 and
90,151,568,528, respectively, are chosen. Model 4 consists of only one hidden layers
with 5 neurons. The learning rate and momentum of 0.5 were used. But model 13
consists of 2 hidden layers with 5 neurons in each layer. However, the learning rate
and momentum were set to be 0.1. The performance curves of model 4 and 13 are
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shown in Figures 5.99 and 5.100, respectively. Model 4 was trained until epoch 21 but
the weight and bias were updated until epoch 6 only because the MSE of validating
set started to increase in this epoch. The training was continued for 15 more epochs
for validation check. The lowest MSE of model 4 is 76,423,259,510. For model 13,
the training was performed until epoch 22. However, the weight and bias were not
updated after epoch 7 due to the same reason for model 4. The lowest MSE of model
13is 90,151,568,528 in epoch 7.
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Figure 5.99: Performance curve of:model 4 (Case 2:2-2)
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Best Validation Performance is 90151568528 9054 at epoch 7
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Figure 5.100sPerformance cu’rve-of model 13 (Case 2-2-2)

Next, both models that produce the Iowest MSE are further checked to ensure
the accuracy of prediction. The outputs predrcted by the ANN are compared with the
target outputs of the training and validating sets by cross plotting them. Figures 5.101
and 5.102 represent the cross plots for the training and validating sets for model 4,
respectively, while Figures 5.103 and 5.104 represent the cross plots for the training
and validating sets for model 13, respectively, From the graph, the line Y = X refers to
correct prediction, 1.e.,-each paint'on the 45-degree line is where predicted output is
matched with the target output. So the closer the data points are located near the Y = X
line, they highertheyaccuracy-of:prediction: We can determine theraccuracy of the
prediction using regression coefficient of determination (R?) as a critéfion. R? equal to
1 represents a perfect fit to the Y = X line. ANN will predict accurate output when R?

is close to 1.

From Figures 5.101 to 5.104, we can see that the ANN can predict accurate
output for both training and validating sets for both model 4 and 13. Model 4 gives R?
of training and validating sets equal to 0.9455 and 0.9801, respectively, and model 13
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gives R? of the training and validating sets equal to 0.9785 and 0.9775, respectively as

well.
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5.4.2.3.3 Model Testing Results and Discussion

In order to ensure the accuracy of ANN prediction when faced with unseen
data sets, model 4 and 13 which yield the lowest MSE were then tested for accuracy
by using testing data sets. After testing the ANN with testing sets, the outputs
predicted by ANN are then compared with the target outputs by cross plotting them.
Figures 5.105 and 5.106 represent the cross plots for model 4 and 13, respectively.
From the graphs, R? of model 4 and 13 are egugl to 0.8826 and 0.9524, respectively.

This means that both-model 4 gpd 3 go'b:j performance of predicting the 1-
year cumulative gas produciton. However, the coefficient of determination for model
13 is higher. Therefore,.th‘é"b‘ t perfor nce model which produces the most accurate
predicted output is modell/‘ngonsequn;Sitly, this model will be used to predict 1-year
cumulative gas produc)t',%;fm: wellljur'?lli':er 101 which is drilled 1 year after well

number 100. //" f V8 M
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Figure 5.105: Cross plot of predicted vs actual 1 year cumulative gas of testing sets of
model 4 (Case 2-2-2)
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5.4.2.4 Case 2-3

In this case study, we use parameters which can refer to pressure at the
predicting well location instead. These parameters are porosities of three different
rings obtained by Geostatistics, drill date, and the number of surrounding wells. The
porosities around the well are divided into 3 rings. The first ring covers an area of 100
x 100 ft at the center. The boundary of the second ring is located at 500 ft from the
center in the x-and y-directions while the /beundary of the third ring is 700 ft away

from the center. Figure 5.107 illustrates the schematic diagram of ANN in this case.

Input layer Hidden layer Output layer
6 inputs 1 output
- Permeability - 1-year cumulative
- 1st ring porosity gas production
- 2nd ring porosity
- 3rd ring porosity
- Drill date
- Number of surrounding
wells

Figure 5.107: Schematic diagram of ANN for Case 2-3

5.4.24.1'Data Preprocessing

Similar to the previous case, a total of 75 data sets taken from well number 26
to 100 were divided into three main sets namely, training, validating, and testing sets
with ratio of 4:1:1 (51:12:12 data sets). The wells in each data set are still the same as
the ones in the previous case study. All input parameters from all data sets are plotted

to observe the distributions which are the same as those in Case 1-3.
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5.4.2.4.2 Model Training

The ANN model was trained with various network configurations based on a
trial and error basis. There are 20 models that were run in this case. Each model was
trained many times to obtain the lowest MSE possible. The network configurations

and their MSE of validating set are summarized in Table 5.16.

Table 5.16: Model configuration for Case 2-3

Model | Number of neurons
i i Learning rate | Momentum MSE
No | Hidden Hidden
Layer1 | Layer2

1 5 0 0.1 0.1 32,028,257,296
2 5 0 0.5 0.1 24,933,493,346
3 5 0 S0\ 0.5 30,035,281,420
4 5 Q 0.5 0.5 39,114,195,592
5 10 0 0.1 0.1 40,453,647,436
6 10 0 0.5 0.1 41,234,353,647
7 10 0 0.1 0.5 42,647,463,648
8 10 0 L5 0.5 39,454,363,738
9 20 0 0.1 0.1 42,356,474,874
10 20 0 0.5 0.1 41,267,483,738
11 20 0 O 0.5 50,674,849,476
12 20 0 0.5 0.5 49,837,345,637
13 5 5 0.1 0.1 51,414,438,904
14 5 R 0.5 0.1 38,253,881,774
15 5 5 0.1 0.5 27,416,977,226
16 5 5 0,5 0.5 50,884,150,400
17 10 10 0.0 0L, 52,678,493,467
18 10 10 0.5 0.1 51,324,647,657
19 10 10 0.1 0.5 52,345,363,467
20 10 10 0.5 0:5 50,896,356,738

From a total 20 model configurations, two models with the lowest and next to
lowest MSE (model 2 and 15) which has the MSE of 24,933,493,346 and
27,416,977,226, respectively, are chosen. Model 2 consists of only one hidden layers
with 5 neurons. The learning rate and momentum of 0.5 and 0.1, respectively, were
used. But model 15 consists of 2 hidden layers with 5 neurons in each layer. However,
the learning rate and momentum were set to be 0.1 and 0.5, respectively. The
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performance curves of model 2 and 15 are shown in Figures 5.108 and 5.109,
respectively. Model 2 was trained until epoch 19 but the weight and bias were
updated until epoch 4 only because the MSE of validating set started to increase in
this epoch. The training was continued for 15 more epochs for validation check. The
lowest MSE of model 2 is 24,933,493,346. For model 15, the training was performed
until epoch 20. However, the weight and bias were not updated after epoch 5 due to
the same reason for model 2. The lowest MSE of model 15 is 27,416,977,226 in
epoch 5.
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Figure 5.108: Performance curve of model 2 (Case'2-3)
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Best Validation Performance is 27416977226 6664 at epoch 5
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Figure 57109: Performance cu_rve of model 15 (Case 2-3)

Next, both models that produce the-'i}dwgst MSE are further checked to ensure
the accuracy of prediction. The ouipuis preQch!éd by the ANN are compared with the
target outputs of the training and validating set§ _by cross plotting them. Figures 5.110
and 5.111 represent the cross plots for the training and validating sets for model 2
respectively, while Figures 5.112 and 5.113 represent the cross plots for the training
and validating sets for model 15, respectively, From the graph, the line Y = X refers to
correct prediction, i.e.;-each point'on the 45-degree line Is\where predicted output is
matched with the target output. So the closer the data points are located near the Y = X
line, the, higher-theyaceuracy-of-prediction: We-can determine~thesaccuracy of the
prediction Using regression coefficient of determination'(R?) as a'criterion. R? equal to
1 represents a perfect fit to the Y = X line. ANN will predict accurate output when R?

is close to 1.

From Figures 5.110 to 5.113, we can see that the ANN can predict accurate
output for both training and validating sets for both model 2 and 15. Model 2 gives R?
of training and validating sets equal to 0.9549 and 0.9940, respectively, and model 15
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gives R? of the training and validating sets equal to 0.9731 and 0.9936, respectively as

well.
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5.4.2.4.3 Model Testing Results and Discussion

In order to ensure the accuracy of ANN prediction when faced with unseen
data sets, model 2 and 15 which yield the lowest MSE were then tested for accuracy
by using testing data sets. After testing the ANN with testing sets, the outputs
predicted by ANN are then compared with the target outputs by cross plotting them.
Figures 5.114 and 5.115 represent the cross plots for model 2 and 15, respectively.
From the graphs, R? of model 2 and 15 are egugl to 0.9654 and 0.9750, respectively.

This means that both-model 2 _3nd 15 g(i(;d performance of predicting the 1
year cumulative gas produciion. However, the coefficient of determination for model
15 is higher. Therefore,.th‘é"b‘ t perfor nce model which produces the most accurate
predicted output is modell/‘ngonsequn;Sitly, this model will be used to predict 1-year
cumulative gas produc)t',zm: wellljur'?lli':er 101 which is drilled 1 year after well
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5.4.2.5 Performance of ANN Prediction

After several case studies with different input parameters were performed, we
use each best performance model to predict the 1 year cumulative gas production of
the new well planned to be drill (well number 101) which is drilled 1 year after well

number 100. Table 5.17 summarize the best performance model for each case study.

Table 5.17: Summarized of best performance model for each case.

RZ
Case No. | Model No. Traiing sets V/alidating sets Testing sets
2-1 2 0.9921 0.9965 0.9863
2-2-1 14 0.9758 0.9785 0.9100
2-2-2 13 09785 \ 0.9775 0.9524
2-3 15 0,573t 0.9936 0.9750

The group of candidate focations to drill well number 101 is the same
locations as described earlier in Case 1. After the predictions have been performed,
the outputs predicted by the ANN.are compared with the target output taken from
reservoir simulation by cross pletting therri_’,;fh’l"gures 5.116, 5.117, 5.118, and 5.119
represent the results for Case 2-1,2-2-1, 2-2i2;.énd 2-3, respectively.

In Figures 5116 to 5.119, several points are located near the Y=X line,
representing good prediction. However, many points are located far away from this
line (some points even have negative values). Predictions of negative flow rates occur
when the actual cumulative gas productions,are small (less than 100 MMscf for Case
2-1, around 300'MMscf for Case 2-2-1, and 200 MMscf for Case 2-2-2).
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From the study of Hettiarachchi et.al ™", they found a problem when using the
ANN to predict the relationship between rainfall and streamflow. A problem arises in
extrapolation, i.e., the prediction is not accurate when the training set does not contain
the maximum or minimum possible input and output values. Therefore, if we use the
trained ANN to predict the output that is out of range or using the input which is out

of range, the prediction is inaccurate.

In this study, the type of resenvoir is closed boundary depletion drive gas
reservoir. Both the pressure and cumulative gassproduction continues to decrease as a
function of time. The pressure at well aumber 101 which is drilled 1 year afterward
may be lower than thesminimum value of input n training sets. Therefore, the
prediction is based on-extrapolation, caqsing Inaccurate prediction. With this reason,
the ANN model that uses pressure as an ‘.in_‘put parameter (Case 2-1, 2-2-1, 2-2-2) will
show a good prediction.enlywhen the pre;séure at that location is not much lower than

the minimum pressure in the training data set.

From 4 cases, Case 2-1'is the best predictive model for this study. But as
described earlier that the pressuré at the Iagéti!gn to be drilled is not known prior to
drilling. Therefore, the trained ANN of Case 21 cannot be used as a tool to predict
the 1-year cumulative, gas produ‘ction. Afte.rl EBFﬁparing all remaining cases, Case 2-3
presents the most indecurate model. So, we will choosé the best prediction model
between Case 2-2-1 and Case 2-2-2. Figures 5.120 and 5.121 show the cross plot

(only positive value) for Case 2-2-1 and Cagse 2-2-2, respectively.
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From Figures 5.120 and 5.121, R? of Case 2-2-1 and Case 2-2-2 are equal to
0.5228 and 0.6664, respectively. Therefore, the best performance model which

produces the most accurate predicted output is Case 2-2-2.

Although, the prediction of ANN does not give us accurate result for all well

locations, we only need one location to infill which is the location that gives the

highest 1 year cumulative gas production. This location is associated with high

pressure. Therefore, we can use the ANN to.roughly estimate the 1 year cumulative

gas production for this location.

At this point, we are able to predict 1 year cumulative gas productions at

candidate well locations as.lusiraied in Figure 5.79.

In order to determine the pest location to drill well number 101, the predicted

1 year cumulative gasprogduction obtaihéd from each. ANN model is ranked and

tabulated as shown in Table 5.18.

Table 5.18: Order of candidate location frohﬁ a higher to lower 1 year cumulative gas

production =
Order _ Candidate location-for well number 101
Reality Case 2-1 Case 2-2-1/|  Case 2-2-2 Case 2-3
1 locatton 9 location 9 location 9 location 9 location 5
2 location 13 | location 13 location 1 location 1 | location 17
3 location 1 location'1 location 13 | location 17 | location 4
4 location.5 location 7 location 17 location 5 location 1
5 location 1/~ | slocation A1~ location,49 location 7 | location 11
6 location 7 location 17 location 5 location 13 | location 18
7 location 19 location 5 location 16 | location 16 | location 19
8 location 8 location 19 location 4 _| location .19 | location 9
9 loCation 16 location 8 location 18+ location11 | location 13
10 location 11 | location 16 location 7 location 8 location 2
11 location 6 location 4 location 6 location 6 location 7
12 location 12 location 6 location 2 location 12 | location 8
13 location 14 | location 18 | location 11 location 2 location 6
14 location 18 location 2 location 8 location 10 | location 16
15 location 4 location 12 | location 14 | location 18 | location 3
16 location 2 location 3 location 3 location 14 | location 14
17 location 3 location 14 | location 15 location 4 | location 15
18 location 15 | location 15 | location 15 | location 15 | location 15
19 location 10 | location 10 | location 10 location 3 | location 10
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In reality, location 9 is the one that yields the highest 1 year cumulative gas
production and the top 3 candidate locations to infill a well are location 9, 13, and 1,
respectively. Case 2-1 and 2-2-1 which use the actual and arithmetic average pressure
as input parameter can predict the same group of top 3 locations as in reality with the
right best location at location 9. Case 2-2-2 which uses inverse-distance average
pressure as input parameter can also predict the right best location as in reality but
different in group of top 3 locations. Case 2-3 which does not use any pressure as
input parameter cannot predict the right location. Top 3 locations of this case are
location 5, 17, and 4 which are the 4", 5% “and 15" order in reality, respectively.
Because location 9 is predicted by both Case 2-2-1 and 2-2-2 while location 5 is
predicted by only Case 2-3«Therefore, location 9 will be used as the best location to

infill the well that matched'wiih the bestlocation in reality.

Table 5.19: Summary of error in 1 yea;lrjcumulative gas production predicted for

location 9.
Case 1 year cumulative gas production (MMscf) Error (%)
Reality 811730 -
2-2-1 834.95-4/ 2.94
2-2-2 780.4T = -3.78
2-3 285.08 = -64.85

Table 5.19 summarises the error of prediction when using each model to
predict 1 year cumulative gas production of candidate location 9. From Table 5.19,
the 1 year cumulative'gas production: obtained from"Case 2-2-1 is quite high when
comparing withithe reality case. In the other hand, the value is quite low when using
Case 2<2-2:and2-3Even:theugh-the errar imay be highpwe-achieve the objective of
being able to determine very good location for the next infitl.
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5.4.3 Location for Infill Well Number 101

From Section 5.4.1 and 5.4.2 which use ANN to predict the initial gas
production rate and 1 year cumulative gas production, respectively, we obtain a

location to infill the well number 101 for each case as follows:

Table 5.20: Summary of best candidate well location for each case

Case Predicted outpui Best well location
: ifi i location 1
Reality Initial gas productien-raie ocation o
: 1 year cumulative gas production location 9
Reality X 1R location 9

From Table 5.20,based a different predicted output, different best well
location is obtained. As described in Section 5.1 about output of ANN, initial gas
production rate indicates /short' term performance. while 1 year cumulative gas
production indicates long term performan"c_e. Normally, gas companies always prefer
long term performance rather than short tel*['n"berformance. Consequently, we should
drill the infill well at candidate location 9 vx)h?ch is predicted by ANN model that uses
1 year cumulative gas production as the Gujtﬁ:)ut. Finally, we can choose the best

location for an infill well:



CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The purpose of this study is to use Artificial Neural Network (ANN) as a tool
to predict the gas production of infill wells. The predicted results will be used to
determine the best location for a new well./The data sets used to train the network
were prepared from a reservoir simulation, generated by reservoir and fluid properties
referred from a gas field in Gulf of Thailand. There are 5 main steps needed to be
performed. First, specify input.and output parameters for ANN by reviewing related
literature and theories and obtain data [for these parameters. Second, partition and
rearrange the data sets torensure that the training, validating, and testing sets have
similar distribution. Fhird; develop an ANN maodel with various kinds of network
configuration. Fourth, choose 2 best modél_s to test with the testing set. Fifth, use the
best performance model t@ predict the perfo_;rrﬁance of an infill well. The conclusions

from these model developments are summarized, as follows:

1) For a closed boundary: depletion drive gas reservoir, the main factors which
directly affect the prediction of initial gas production rate and cumulative gas

production are pressure.and permeability at the predicting well location.

2) Although the pressure at the predicting well location may be unknown prior
to drilling but we can use arithmetic average and inverse-distance average pressure of
surrounding wells, porosity, drill date, and the number of surrounding wells as input.
The resultishows accurate predietion when tested withthe testing,data sets and when
used to predict the'initial gas rates and cumulative gas production atfocations where

the pressure is not much lower than the pressure used in the training data sets.

3) A problem arises when using the ANN to predict the output based on
extrapolation. Since the pressure continues to decrease as a function of time, the
pressure at the infill location is smaller than the ones used in the training, validating,
and testing processes. This causes error in the prediction of initial gas rate and

cumulative gas production.
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6.2 Recommendations

The recommendations for future work are summarized as follow:

1) This study focused on many fixed parameters such as well configuration,
layer thickness etc. Therefore, the study may be extended to include variations in
these parameters in order to obtain data sets which are more representative of an

actual field as much as possible.

2) Closed boundary depletion drive gas reservoir seems to have problem with
extrapolation due to the-deecline in reservoir-pressure along with time. Therefore,
using this methodology in_the other type of reservoir which has smaller change in
pressure such as water diVe 0as reservoir may provide better results due to less

extrapolation problenn.

3) The larger the number of input parameters, the larger the number of training
data sets. The ANN cannot predict good results if it"lacks a sufficient number of

training data sets. This must pe taken-into €onsideration when training an ANN.

b i A
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APPENDIX A

“MATLAB” source code for ANN development

W0 =] N on s L B

L R o O T T T T T B R o T T I S R S S R S R =
o e T = = TR B o Y S T S V. T S B o T 1. Y O VR % T S

$Input & Target Output
input=[]:
carget=[]:

3Construct a network f
net = newff |(input, t© f‘ },'trainlm') ;
net.inputweights 1 H
net.biases{1}.1
net = initin=st
net.divideFon

[trainV,valV,tes i I : \\ \\\ d1v1deblcckt1nput 4,1,0):
[trainT,valT ’ LR v 1 (wvallnd, testInd) ;

net.trainFa
net.trainParam
5Criteria to
net.trainFaram.
net.trainParam.
net.trainParam. mu
net.trainFaram.
3Partitioning ra g, and testing sets
net.dividi;-i.

net.dividePatamsvalratio
net.divideP 1Y

|
$3tart to trm\ a network

net,tr]=train(net, input, targst
f P =)

zi;Trﬂu:ﬂQVIEmiWEﬂﬂi

AN AINIURIINAE



APPENDIX B

Details of 100 wells taken from réservoir simulation model

Coordinate input parameters Output parameters
Well Prormal Pistance Dyt | Doy | D3 | Startdrill | Surrounding Initial gas lyear
No X Y k Pactual average I rigll gy |\ ring date well Qty rate cumulative
(mD) (psia) | (psia) (psia) (%) /1) (%) | (%) (day) (wells) (Mscf/d) (MMscf)
1] 98| 163 3.58 | 1753.65 0 0 W §:47:88 N117.63 10 0 14113.04 4347.82
2| 71| 46 5.80 | 1901.59 0 0 18| 18.96.4 1842 20 0 18864.63 6034.71
3| 184 | 179 | 15.17 | 1985.39 0 0 204 20.674 21.88 30 0 24601.32 7948.75
4 40| 170 1.37 | 1544.64 0 0 15 | 141771,15.88 40 0 6540.95 1936.11
5| 149 | 170 | 24.54 | 1716.52 0 0 21 {:18/63.420i21 50 0 22093.86 6988.91
6| 155 | 133 | 439.74 | 2146.46 0 0 27 |, 26.25:¢25.79 60 0 31061.39 10025.64
7| 145| 21| 271.83 | 2124.47 0 0 26'1°24.33 124,54 70 0 30623.43 9999.64
8| 136 | 90 3.58 | 1722.47 0 0 17:1-17.08' | 17.29 80 0 13780.60 3859.96
9| 22| 127 | 39.69 | 2110.45 0 0 22024 T3 s 90 0 28896.55 9379.45
10| 100 | 93| 15.17 | 1961.01 0 0| 2020.25{20.04 100 0 24251.21 7522.94
11| 178 | 73| 39.69 | 1921.22 0 0 22 | 19.33 | 18.75 110 0 26059.06 7918.61
12 | 111 | 125 5.80 | 1857.18 0 0 18 | 18.88 | 19.75 120 0 18302.05 5533.10
13| 111 | 48 9.38 | 1959.00 0 0 19 | 21.13 | 21.54 130 0 22218.46 6923.75
14| 25| 57| 39.69 | 1992.29 0 0 22 1 20.96 | 19.96 140 0 27123.39 8224.26
15| 25| 89| 39.69 | 2086.40 0 0 22 | 24.58 | 25.08 150 0 28534.72 8897.69
16| 21| 19| 64.21 | 2090.35 0 0 23 4 23:38 |-23:83 160 0 29251.34 9038.58
17| 58| 105 | 271.83 | 2039.54 0 0 26 ["23.00 | .21.38 170 0 29327.96 8852.42
18 | 186 | 147 | 271.83 | 2018.64 0 0 26 | 24.13 | 24.92 180 0 29006.43 8774.05
19| 142 | 52 3.58 | 1799.70 0 0 17 149.71 | 19.79 190 0 14639.85 4309.13
20| 52| 16| 39.69 | 2034.80 0 0 22 24.00% 2388 200 0 27759.31 8416.61
21| 178 | 29| 39.69 | 1782.11 0 0 22 1118.83 | 19.17 210 0 23979.26 7063.76
22 | 62| 139 5.80 | 1741.49 0 0 18 | 17.88 | 17.58 220 0 16850.36 4447.67
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Coordinate

Input parameters

Output parameters

Well Prormal Paistance | Past | Pond | Dais 4 Start drill | Surrounding Initial gas lyear
No X Y k Pactual average average ~ g -~ date well Qty rate cumulative
(mD) (psia) (psia) (psia) (%) ¢ (%) | (%) (day) (wells) (Mscf/d) (MMscf)
23| 83| 15| 15.17 | 1894.32 0 0 201 21.25 | 21.88 230 0 23293.31 6886.72
24 | 186 | 113 | 64.21 | 1889.27 0 0 D2#102,50 {022:02 240 0 26204.47 7579.51
25| 113 | 17| 39.69 | 1933.63 0 0 220 2E 6% \3:142 250 0 26240.75 7895.70
26 | 158 | 99 1.37 | 1513.80 | 1587.56 | 1565.40 15 [ 15.38 | 16.04 260 2 6308.64 1502.47
27| 75| 116 9.38 | 1817.56 | 1736.49 | 1749.17 TAI21.568: | 2L 147 270 3 20286.91 5644.03
28 | 177 | 131 | 271.83 | 1858.05 | 1857.74 | 1856.83 26 )| 23:387 23.25 280 3 26545.14 7736.50
29| 42| 114 | 15.17 | 1732.06 | 1798.89 | 1813.66 20') 21,17 20.63 290 4 20980.79 6050.16
30| 77| 157 3.568 | 1811.70 | 1518.72 | 1518.40 W 1"24r:33919.58 300 2 14773.53 4156.48
31| 139 | 113 5.80 | 1593.67 | 1541.88 | 1533.19 18 |.18.17 {718.17 310 3 14950.38 3946.66
32| 182 | 56| 15.17 | 1635.20 | 1630.08 | 1630.08 20 ['19.42 1'19.04 320 1 19581.50 5226.94
33| 177 | 90| 439.74 | 1787.66 | 1557.53 | 1553.34 272446 23,96 330 3 25564.72 7280.05
34| 80| 88| 2454 1696.90 | 1705.59 | 1698.21 2420, 15352281 340 2 21797.88 5991.87
35| 147 | 192 | 271.83 | 1781.77 | 1420.21 | 1420.21 26r22.461-22:63 350 1 25376.95 7248.13
36| 43| 76| 64.21 |1769.44 | 1721.10 | 1726.85 | 231 23.42 | 23.21 | 360 2 24390.87 7045.00
37| 116 | 173 2.21 | 1513.05 | 1445.90 | 1445.90 16 | 16.50 | 16.79 370 1 8715.76 2103.71
38| 110 | 72 5.80 | 1577.03 | 1517.80 | 153444 18 1 18.75 | 18.21 380 3 14731.58 3528.58
39| 132 | 150 2.21 | 1538.82 | 1493.22 | 1488.90 16 | 18.88 | 18.13 390 4 8966.72 2210.24
40| 71| 72 9.38 | 1534.22 | 1533.35 | 1538.43 19 | 19.71 | 18.92 400 2 16377.69 4184.42
41| 40| 50 3.58 | 1364.58 | 1615.40 | 1604.91 17 | 16.50 | 17.33 410 2 9696.27 2327.42
42| 60| 124 5.80 | 1323.76 | 1498.17 | 1490.15 18 | 17.42 | 17142 420 4 11486.92 2633.32
43| 95| 65 5.80 | 1552.76 | 1472.31 |{1467.10 18 [:21.00 | 19.88 430 5 14412.38 3476.80
44 | 154 79 3.58 | 1182.76 | 1343.02 133176 17 |<14.83 | 14.58 440 4 7609.77 1557.71
45| 120 | 192 5.80 | 1511.85 | 1324.96 | 1324.96 18 | 17.79 | 17.75 450 1 13882.77 3183.98
46 14 | 175 1.37 | 1612.33+| 1280.36 |-1280.36 15+ 18:00 |;19.58 460 1 7055.65 1874.25
47 | 54| 187 0.85 | 1581.34% 1274.64 [ 1274.64 14 145,47 | 16.33 470 1 4707.06 1188.51
48 | 70| 185 2.21 | 1476.92 {11530.05 | 1530.05 16 | 15.75 | 16.38 480 1 8366.80 2024.06
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Coordinate

Input parameters

Output parameters

Well Prormal Paistance | Past | Dong | Darg 4 Startdrill | Surrounding Initial gas lyear
No X Y k Pactual average average -5, g -~ date well Qty rate cumulative
(mD) (psia) (psia) (psia) (%) (%) | o) (day) (wells) (Mscf/d) (MMscf)
49| 25| 36| 168.04 | 1589.27 | 1405.53 | 1415.04 251 24.75 | 24.25 490 3 22273.64 6195.89
50| 91| 186 3.568 | 1542.99 | 1313.40 | 1319.40 T alA:7,0B {1 L725 500 3 11706.68 2857.58
51| 89| 50| 64.21 | 1464.49 | 1331.67 | 134045 28171 W83 510 5 19759.82 5108.48
52 | 103 | 32| 39.69 | 1522.23 | 1446.27 | 1448 42 22 |1 24.83 | 24.79 520 4 20060.59 5271.67
53| 83| 132 9.38 | 1252.84 | 1262.27 | 1263.49 19'1/1,7.92.| 19.71 530 4 12481.98 3030.90
54 | 46| 147 | 64.21 | 1365.89 | 1248.01 | 1231.04 23| 197137 1875 540 4 18261.02 4280.57
55| 165 | 51 2.21 | 1282.27 | 1237.71 | 1285.46 16| 17.13 || 16.88 550 4 6557.72 1332.03
56 | 130 | 16 | 39.69 | 1452.91 | 1447.22 | 1448.04 22 |'24:504.24.67 560 2 19010.64 4841.67
57 | 145 | 36 | 439.74 | 1443.10 | 1336.34 | 1343.26 27 |.24.46°1°24.58 570 4 20274.15 5232.52
58 | 166 | 178 | 24.54 | 1328.20 | 1215.09 | 1206.53 21 [23.63 1 23.46 580 3 16304.98 4222.07
59| 160 | 35 5.80 | 1236.37 | 1249.65 | 1260.08 18,0 48.71 | 7.92 590 6 10379.35 2180.78
60 | 27| 190 | 271.83 | 1685.69 | 1312.25 | 1324.44 2Ba420,04. 52538 600 2 23908.06 6042.83
61 | 184 9 9.38 | 1378.12 | 1162.61 | 1163.22 19-+21.21 2275 610 2 14214.28 3105.09
62 | 106 | 143 3.58 | 1280.86 | 1143.41 | 1146.89 | 171 20.29 | 20.25 | 620 4 8737.45 2019.22
63 8| 97| 15.17| 1323.99 | 1340.15 | 1340.15 20 | 23.33 | 23.46 680 1 15069.58 3621.90
64| 193 | 26| 15.17 | 1276.91 | 1193.62 | 1182:79 201 21.13 1 20.83 640 2 14385.34 3179.19
65| 134 | 167 | 168.04 | 1172.97 | 1081.42 | 1067.22 25 | 19.75 | 20.42 650 5 15875.10 3855.64
66 18 | 142 | 39.69 | 1352.88 | 1328.65 | 1328.65 2212183 |21.79 660 1 17499.83 4277.82
67| 40| 129 | 39.69 | 1222.93 | 1116.88 | 1114.66 22 | 21.13 | 19.63 670 7 15534.35 3591.65
68| 59| 167 0.85 | 1184.64 | 1152.69 | 1156.21 14 | 13.33 | 1467 680 5 2563.83 509.71
69 10| 39|103.87 | 1224.11 | 1185.43 |11191.16 24 1:23.79| | 23.46 690 3 16436.92 4086.82
70 | 116 | 93| 15.17 | 1045.10 | 994.87 |"998:71 20 [-19.13'| 18.71 700 4 10968.08 2205.65
71| 68| 24 |103.87 | 1181.27 | 1078.18 | 1085.93 24 | 23.83 | 23.96 710 4 15777.42 3899.14
72| 170 | 158 | 15.17 | 1041.48+ 1032.03 |-1033.63 20+ 22:29 [y21.71 720 5 10912.42 2515.35
73| 130 | 130 | 64.21 | 1086.04% 1033.09 |,1025.35 23.1.21.54 | 20.79 730 5 13948.05 3300.78
74| 193 | 71 |168.04 | 995.97 {1 963.63 | 950.84 25| 21.04 | 21.13 740 3 13094.65 3072.73
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Coordinate

Input parameters

Output parameters

Well Prormal Paistance | Past | Dong | Darg 4 Startdrill | Surrounding Initial gas lyear
No X Y k Pactual average average -5, g -~ date well Qty rate cumulative
(mD) (psia) (psia) (psia) (%) (%) | o) (day) (wells) (Mscf/d) (MMscf)

75| 61| 89| 39.69 | 1028.10 | 1001.64 | 1002.92 2212092 | 21.79 750 5 12521.13 2839.91
76 11| 192 | 168.04 | 1352.31 | 1221.89 | 1223.71 Po02,0D {122:52 760 2 18638.13 4247.86
77| 130 | 69 2.21 | 1026.25 | 874.67 | 876:54 1OFIE. 1Y W42 770 6 4201.88 792.22
78 | 121 | 110 5.80 | 924.03 | 903.43| 901.38 187 18 79 |"BA58 780 6 6333.93 1131.20
79| 22| 159 3.58 | 1132.19 | 990.87 | 1008.34 1¢120.83: | 20.63 790 4 7032.28 1379.33
80| 84| 30 3,58 | 911.65| 933.96 | 935.71 17 )| 21087 2217 800 5 4659.69 858.04
81| 130 | 31 |103.87 | 954.07 | 923.20 | 928.76 24 | 23.67 | 24.38 810 6 12214.97 2885.97
82| 43| 92| 39.69| 964.02 | 92551 | 92896 22 |'23.38%,23.04 820 5 11531.65 2352.60
83| 26| 104 | 439.74 | 995.64 | 929.48 | 931.46 27 |.27.00°1726.42 830 6 13314.05 2918.36
84| 100 | 108 | 64.21 | 877.78| 813.18 | 812.98 23 (*21.00 |°'19.88 840 7 10693.65 2301.33
85| 163 | 20 3.58 | 730.55| 815.64 | 808.43 17.046.21 F15.75 850 5 2696.37 422.81
86 10 | 112 | 439.74 | 924.96 | 909.22 | 908.49 241752883 860 4 12192.26 2627.13
87| 26| 73| 2454 | 823.08| 833.12| 836.49 2t-20.671-21:83 870 6 8560.46 1516.23
88| 55| 47 |168.04| 839.08 | 780.85| 773.09 | 2512029 |21.42 | 880 4 10616.74 1977.39
89| 185 | 163 | 168.04 | 785.21 | 808.67 | 807.34 25| 20.88 | 21.08 890 4 9734.81 2094.43
90 | 157 | 114 | 439.74 | 859.38 | 791.61 | @ 784:Hf+ 271 25.88 | 25.38 900 6 11151.58 2541.14
91| 152 | 152 | 2454 | 724.28 | 760.04 | "754.24 21 | 18.67 | 19.13 910 8 6955.64 1254.97
92 10| 81| 39.69| 747.08| 75457 | 753.84 22 | 21.46 | 21.08 920 5 8008.23 1359.88
93| 36| 11 9.38 | 719.22 | 803.87 | 803.08 19 | 19.25 | 19.71 930 3 5003.50 786.62
94| 40| 33|271.83| 787.06| 725.71| 72667 26 | 24.50 | 22171 940 7 9912.53 1985.29
95 8| 60]168.04 | 758.90| 710.57 | 706.22 25 |:22.67| [ 22.21 950 5 9267.45 1644.71
96| 193 | 86| 39.69| 704.13 | 669.20 |"671:99 22 |-22.33'| 22.92 960 3 7284.34 1385.10
97| 98| 10| 15.17| 693.40 | 691.15| 689.99 20 | 22.88 | 23.08 970 4 5631.59 1027.21
98 | 192 | 129 | 439.74 | 717.78+ 690,99 |-690.88 21+ 26:25 [126.04 980 3 8765.67 1881.67
99 | 114 | 158 0.52 | 793.16% 719.80 |,725.00 18, 1.144.54 | 15.75 990 5 593.61 112.91
100 | 126 | 50| 64.21| 676.13 |} 663.15| 662.21 23| 23.71 | 22.33 1000 7 7275.37 1509.41
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APPENDIX C

Details of 19 candidate wells of well number-10i-and result from all cases of ANN

Predicted Output

el Coordinate Target Output Case 1-1 | .+Cased2-1 || |Case 1-2-2 | Case 1-3 | Case 2-1 | Case 2-2-1 | Case 2-2-2 | Case 2-3
No Initial lyear Initial Initial gas Initial gas i lyear lyear lyear lyear
101 X Y gas cumulative gas rate s aldle gas cumulative | cumulative | cumulative | cumulative

rate rate X rate
(Mscfid) (MMscf) (Mscf/d) (Mscfid) (Mscfid) (Mscfid) (MMscf) (MMscf) (MMscf) (MMscf)

Alt1 166 193 3337.93 655.22 4033.45 5215.98 4517.90 4397.76 551.25 833.68 764.57 633.50

Alt 2 172 | 113 885.09 128.41 931.00 461.19/| 11360.72 | . 3107.38 99.33 279.21 -130.37 202.95

Alt 3 158 65 726.94 119.79 -589.00 -244113 -1497.70 192.68 39.51 -435.93 -703.35 -525.26

Alt 4 54 61 1159.88 133.41 1589.35 886.34 2040.51 1196.46 287.77 363.65 -367.35 660.77

Alt5 86 102 2688.44 532.56 3190.72 274322 '§_4_?8.06 4464.25 377.30 501.06 573.56 1231.68

Alt6 192 42 1592.64 286.43 1793.25 653325 @f&fB 3409.22 249.41 309.83 48.46 -283.72

Alt7 181 193 2340.95 424.82 2754.21 170160 2840.06 4473.68 511.14 311.35 530.57 117.27

Alt 8 91 | 147 | 1738.66 349.97 | 1299.77 32774 587.34 | 1279.38 291.90 -111.75 59.38 -244.33

Alt9 84 171 | 4304.76 811.10 4457.71 4566.72 4248.34 3216.16 749.23 834.95 780.46 285.08

Alt 10 32 144 210.13 39.30 | -212462 -3565.01 -2556.93 48.56 -335.52 -786.85 -147.38 -1079.20
Alt 11 69 8 1815.59 291.66 2191710 1172.30 2873.28 4659.74 465.92 254.86 284.89 603.32
Alt 12 62 | 153 984.59 214.28 150.39 -2082.59 -1302.59 233.04 96.13 -597.48 17.89 -845.05
Alt 13 106 187 3675.97 676.46 3913.02 3554.43 3507.41 3214.99 678.11 729.78 523.47 241.62
Alt 14 97 125 984.60 194.05 45.61 -950:97 =292.89 346.41 20.83 -296.36 -245.38 -764.44
Alt 15 95 79 464.27 77.011 | -1220.98 -2566.08 -1569.64 170.03 -90.96 -572.02 -497.38 -807.27
Alt 16 8 159 1808.56 329.33 2045.58 1501.73 2107.40 3412.40 287.79 367.30 424.74 -308.02
Alt 17 8| 126 | 2445.37 456.20 | 3001.85 2389.47 3225.60=f 4498.04 417.25 690.43 579.57 723.50
Alt 18 54 30 1097.70 148.24 1518.82 391.79 2076.30 3358:11 223.99 360.71 -203.34 557.54
Alt 19 57 75 2203.56 380.51 3149.52 2923.66 3310.16 430941 326:01 569.30 290.48 526.31
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