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for both wet bed and dry bed. The moving shock can be detected correctly by the 

adaptive mesh criteria when the HLL flux approximation is employed at the interface 

of cell volume. 
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CHAPTER I

INTRODUCTION

Many real flow problems such as transport flows or shallow water flows, for exam-

ples, can be expressed in the form of conservation laws. These systems are usually

represented as hyperbolic partial differential equations. There are numerous nu-

merical methods, for instance, the finite difference method (FDM) [1], the finite

element method (FEM) [18], the finite volume method (FVM) [10, 16], or recently,

the discontinuous Galerkin method (DG) [13, 15] for solving these systems. By

the FDM, A. Harten and H. Tal-Ezer [1] presented a family of two-level five-point

implicit schemes to solve the one-dimensional systems of hyperbolic conservation

laws, which generalized the Crank-Nicholson scheme to the fourth order accuracy

in both space and time. For the finite element method, Z. Xu et. al [18] applied the

h-adaptive streamline diffusion finite element method with a small mesh-dependent

artificial viscosity to solve nonlinear hyperbolic conservation equations. By apply-

ing the finite volume method, G. Manzini [10] developed the cell-centered upwind

differences to solve the one-dimensional linear conservation laws with stiff reaction

source terms. More details of the FVM can be found in Leveque, [16].

Conservation laws is an important class of homogeneous hyperbolic equation.

The simplest case is when we have constant coefficients in one dimension, namely

a scalar problem, in this case the equation is called the advection equation. Advec-

tion equation is an example of equation in conservative form that has various kinds

of behaviors. For example, a weak solution can be in the form of a shock wave,

namely, a solution that has a sharp gradient. For the case of system of equations,

the shallow water equations are also in conservation forms which can be used to

model many problems in real world such as dam break, tsunami, flood, etc. These

equations can be derived from the conservation of mass and the conservation of

momentum. We will give details of conservation laws and derivation of the shallow
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water equations in Chapter II.

The finite element method can be used to solve these equations but the scheme

has some limitations. We require to use very large number of nodes (for higher

polynomial degrees or smaller mesh sizes) in order to obtain high accuracy solution,

causing to use very massive computational time. In addition, this method usually

does not preserve conservation property. However, the finite volume method is

represented in conservation form, but generally only provide just second order

of accuracy. Also increasing the order of approximation in each cell volume is

difficult. The Discontinuous Garlenkin (DG) method combining the FEM and

FVM concepts, is then introduced to solve such the problem. The approximate

solutions in any two cell volumes in the DG method need not to be equal at cell

interface. The accuracy of approximate solutions depend on type of basis in each

cell volume. Generally the polynomial basis is applied, so, the order of approximate

solution is depend directly on the order of polynomial basis. The approximation in

time derivative can be performed by the total variation diminishing Runge-Kutta

(TVD-RK) method. Adjustment of the usual DG method to the Runge-Kutta

discontinuous Galerkin (RKDG) method was first introduced by B. Cockburn,

C.W. Shu [2, 3]. This method is employed to enforce the stability and convergence

of numerical solution in time. The details of DG method for one dimensional

scalar conservation laws [13, 15] and shallow water equations [6, 15] are discussed

in Chapter III. The RKDG method has several advantages. It can be used to

handle complex geometries, and also adaptivity strategies are easily applied since

grid refinement can be done without taking into account the continuity condition

that is typically required by most conforming finite element methods. Moreover,

the degree of approximating polynomials can be adjusted locally, which allows an

efficient polynomial adaptivity in each cell volume with totally independenceaa

of its neighbors. Since we want to improve the accuracy of numerical solutions,

especially locally in the sharp gradient area in the computational domain, we

present two strategies that can overcome these issues, the adaptive polynomial

degree, [9], and the adaptive mesh, [11], described in Chapter IV. We apply these

two concepts and construct algorithms for the adaptive strategies employing two
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types of indicators, the error and gradient indicators, for detecting troubled cells

in the computational domain during time marching. For our preliminary work,

we employ this presented method for the one-dimensional advection equation to

observe the reliability and efficiency of the presented algorithms, and then apply

these strategies to solve the one-dimensional shallow water equations. Note that

for shallow water equations, we only apply adaptive mesh criteria. The numerical

results of the advection equation and the shallow water equations from various

techniques are presented in Chapter V. Finally, conclusions are given in Chapter

VI.



CHAPTER II

DERIVATION OF SHALLOW WATER EQUATIONS

The shallow water equations (SWE, also called Saint Venant equations) are con-

sidered as system of hyperbolic partial differential equations that describe the

flow below a pressure surface of a fluid. These equations are simplified from the

Navier–Stokes equations, in the case where the horizontal length scale is much

greater than the vertical length scale. In this thesis, we assumed that the flow is

strictly one-dimensional and can be derived from the basic principles of conser-

vation of mass and momentum. In this chapter, the conservation laws are first

presented, and the derivation of the shallow water equations are shown later.

2.1 Conservation Laws

In these thesis, we consider hyperbolic equation of conservation laws, represented

in the time dependent problem. In one dimensional case the equation takes the

form

∂

∂t
U (x, t) +

∂

∂x
F (U (x, t)) = 0, (2.1)

where U is an m-dimensional vector of conserved quantities (or state variables),

such as mass, momentum, or energy, in a fluid dynamic problem, F (U) is an

m-dimensional vector called the flux function.

To solve equation (2.1), some initial conditions and possibly boundary condi-

tions on a bounded domain must be specified. The simplest case is the pure initial

value problem, called the Cauchy problem, in which (2.1) holds for −∞ < x <∞
and t ≥ 0. We set the initial conditions as

U (x, 0) = U0 (x) , −∞ < x <∞.
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We also assumed the hyperbolic assumption on F (U), namely, for each value

of U the eigenvalues of the m × m Jocobain matrix F ′ (U) of the flux function

are real, and the matrix is diagolizable, i.e., there is a complete set of m linearly

independent eigenvectors.

The advection equation

∂u

∂t
+ c

∂u

∂x
= 0

is an example of equation in conservation form (2.1), this equation is a scalar

equation in which m = 1 where U = u (x, t) and F (U) = cu where c constant.

It is well-known that the solution from this equation has the same shape as the

initial condition, and it advects along the horizontal direction with speed c. For

example, if the initial condition has a shock (a singularity or discontinuity solution

at a point of x), then the resulting solution will have a shock advects with speed

c. Another system in conservation form is the shallow water equations

∂h

∂t
+
∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
q2

h
+
gh2

2

)
= 0.

The system is in conservation form in which m = 2, where

U =

 h

q

 , F (U) =

 q

q2/h+ gh2/2

 . (2.2)

The derivation of these equations are given below.

2.2 Derivation of shallow water equations

The SWE can be derived from the basic principles of conservation of mass and

momentum subject to the following assumptions:

1) The fluid is assumed to be incompressible and inviscid.

2) The fluid is nonturbulence flow.
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3) The pressure distribution is hydrostatic.

The derivation of the conservation of mass and momentum for open-chanel

flow can be obtained from a consideration of the one-dimensional control volume

as shown in the following figure.

Figure 2.1: One-dimensional control volume

2.3 Conservation of mass

The principle of conservation of mass states

The rate of mass

increase within the

control volume

= Mass flux entering

the control volume

- Mass flux leaving

the control volume

Assume that the fluid is incompressible (the density of fluid ρ is constant). We

denote the fliud depth and flow velocity in the x-direction by h (x, t) and u (x, t)

respectively.

The mass flux entering the control volume at (x, t) is

ρhu. (2.3)

The mass flux leaving the control volume at (x+ ∆x, t) is
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ρhu+ ∆x
∂

∂x
(ρhu) . (2.4)

Then, the net rate of mass flux entering the control volume is

ρhu−
[
ρhu+ ∆x

∂

∂x
(ρhu)

]
= −∆x

∂

∂x
(ρhu) . (2.5)

The rate of mass increase within the control volume is

∆x
∂

∂t
(ρh) . (2.6)

From (2.5) and (2.6) with the law of conservation of mass, the equation yields

∆x
∂

∂t
(ρh) = −∆x

∂

∂x
(ρhu) . (2.7)

Assuming that ρ is constant and dividing both sides of the equation by ρ∆x, we

obtain

∂h

∂t
= − ∂

∂x
(hu) , (2.8)

or

∂h

∂t
+

∂

∂x
(hu) = 0. (2.9)

Equation 2.9 is the conservation of mass equation in the one-dimensional shallow

water equations.

2.4 Conservation of momentum

The principle of conservation of momentum states that

The rate of change of

momentum in the control

volume

= The net rate of momentum

flux entering the control

volume

+ Sum of force

acting on the

control volume
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The rate of momentum entering the control volume at (x, t) is the product of

the mass flow rate and the velocity, i.e.,

ρu2h, (2.10)

and the momentum leaving the control volume at (x+ ∆x, t) is

ρu2h+ ∆x
∂

∂x

(
ρu2h

)
. (2.11)

Then, the net rate at which momentum enters the control volume is

ρu2h−
[
ρu2h+ ∆x

∂

∂x

(
ρu2h

)]
= −∆x

∂

∂x

(
ρu2h

)
. (2.12)

The forces acting on the control volume are as follows:

(1) The gravity force.

The body force due to the gravity is the weight of the fluid within the control

volume acting in the direction of x-axis,

Fg = ρgh∆xS0, (2.13)

where g is the acceleration due to gravity, and S0 = sin θ is the bed slope, which θ

is the angle between the bottom and the x-axis along the channel. For small bed

slope , sin θ ≈ θ.

(2) The hydrostatic pressure force.

The pressure force on vertical section of unit width and water depth h at (x, t) is

Fp|x =

∫ h

0

ρg (h− y) dy =
1

2
ρgh2. (2.14)

The pressure force on vertical section of unit width and water depth h at (x+ ∆x, t)

is

Fp|x+∆x =
1

2
ρgh2 + ∆x

∂

∂x

(
1

2
ρgh2

)
. (2.15)

The net of pressure force on two vertical side to the x-direction is
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1

2
ρgh2 −

[
1

2
ρgh2 + ∆x

∂

∂x

(
1

2
ρgh2

)]
= −∆x

2

∂

∂x

(
ρgh2

)
. (2.16)

(3) The frictional force.

The frictional force which is assumed to act on the bottom and the sides of the

channel is given by

Ff = ρgh∆xSf , (2.17)

where Sf is the friction slope. The term Sf can be estimated by an empirical

formulae, and in this work, we employed the Manning resistance law represented

by

Sf =
n2uh |uh|
h10/3

, (2.18)

where n is the Manning roughness coefficient.

The rate of change of the momentum in the control volume is

∆x
∂

∂t
(ρuh) . (2.19)

Combining (2.12), (2.13), (2.14), (2.17) and (2.19), with the law of conservation of

momentum, the equation yields

∆x
∂

∂t
(ρuh) = −∆x

∂

∂x

(
ρu2h

)
+ ghρ∆x (S0 − Sf )− g

2
∆x

∂ (ρh2)

∂x
. (2.20)

Assuming that ρ is constant and dividing both sides of the equation by ρ∆x, we

obtain

∂

∂t
(uh) = − ∂

∂x

(
u2h
)

+ gh (S0 − Sf )− g

2

∂h2

∂x
, (2.21)

and can be rewrited as

∂

∂t
(uh) +

∂

∂x

(
u2h+

gh2

2

)
= gh (S0 − Sf ) . (2.22)
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Since the quantity hu is often call the discharge q, measuring the flow rate of water

at a certain point in space, then (2.9) and (2.22) can be rewrited as

∂h

∂t
+
∂q

∂x
= 0, (2.23)

∂q

∂t
+

∂

∂x

(
q2

h
+
gh2

2

)
= gh (S0 − Sf ) , (2.24)

which give the shallow water equations.

The system in the conservation form (2.1) is obtained by setting source term

S (U) =

 0

gh (S0 − Sf )

 = 0, (2.25)

and

U =

 h

q

 , F (U) =

 q

q2/h+ gh2/2

 . (2.26)



CHAPTER III

NUMERICAL METHOD

In this chapter, we presented the Discontinuous Galerkin method for solving the

one-dimensional scalar conservation law and the shallow water equations.

3.1 The Discontinuous Galerkin (DG) scheme for the one-

dimensional scalar conservation law

The one-dimensional scalar conservation law is in the form

ut + f (u)x = 0, (3.1)

u (x, 0) = u0 (x) , (3.2)

where x ∈ (a, b) and t ∈ (0, T ), for some fixed T .

In this thesis, we considered the advection equation which is also in the conserva-

tion form, where f (u) = cu and c is a constant.

First we partition the domain (a, b) into K subintervals, and denoted the j-th

cell by Ij =
[
xj−1/2, xj+1/2

]
, j = 1, . . . K with the grid size ∆j = xj+ 1

2
− xj− 1

2
and

the cell center is xj =
(
xj+ 1

2
+ xj− 1

2

)
�2 , where xj+ 1

2
and xj− 1

2
are the left and

the right boundaries of the cell, respectively.

Approximating the solution u by uh in the finite dimensional space V N
h defined

by

V N
h =

{
v ∈ L1 (0, 1) : v|Ij ∈ PN (Ij) , j = 1, . . . K

}
, (3.3)

where PN (Ij) denotes the space of polynomials of degree at most N on Ij, and

L1 (0, 1) is the space of integrable functions on [0, 1]
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Multiplying (3.1) and (3.2) by a test function vh (x) ∈ PN (Ij) ⊂ V N
h |Ij and

using the integration by parts over Ij, we obtain (weak form),

∫
Ij

(∂tuh) vhdx−
∫
Ij

f (uh) ∂xvdx+ [f (uh) vh]j+ 1
2
− [f (uh) vh]j− 1

2
= 0 , (3.4)

∫
Ij

u (x, 0) v (x) dx =

∫
Ij

u0 (x) v (x) dx , j = 1, . . . , K . (3.5)

The flux function f can be approximated using numerical flux f̂ that depends

on the two values of uh at the interfaces xj± 1
2
by

f̂j+ 1
2

= f̂
(
uh|−j+ 1

2

, uh|+j+ 1
2

)
, f̂j− 1

2
= f̂

(
uh|−j− 1

2

, uh|+j− 1
2

)
. (3.6)

The notations uh|−j± 1
2

and uh|+j± 1
2

are the approximate solution from the left and

right of the boundaries j± 1
2
of the j-th cell, respectively. By choosing the Legendre

polynomials Pm, defined on [−1, 1] as the local basis functions, the approximate

solution uh can be written as

uh (x, t) |Ij =
N∑

m=0

umj (t)ϕm (x) , (3.7)

where umj (t) is the coefficient function of t, and ϕm (x) is the Legendre polynomial

defined by

ϕm (x) = Pm

(
2 (x− xj)

∆j

)
. (3.8)

As in the standard Galerkin method, we choose the test functions vh (x) to

be the same as the basis functions, i.e., vh (x) = {ϕl (x)}Nl=0. Some important

properties of the Legendre’s polynomial are

1∫
−1

Pm (ξ)Pl (ξ) dξ =
2

2l + 1
δml , (3.9)

where



13

ξ =
2 (x− xj)

∆j

, δml =

1, m = l

0, m 6= l
, (3.10)

and

Pl (−1) = (−1)l , Pl (1) = 1 . (3.11)

The weak forms (3.4) and (3.5) are then simplified to a semidiscrete ODE,

dulj (t)

dt
=

2l + 1

∆j

∫
Ij

f (uh) ∂xϕl (x) dx+
2l + 1

∆j

{
(−1)l f̂j− 1

2
− f̂j+ 1

2

}
, (3.12)

ulj (0) =
2l + 1

∆j

∫
Ij

u (x, 0)ϕl (x) dx, (3.13)

for j = 1, . . . , K and l = 1, . . . , N .

3.1.1 Convergence analysis of linear case

In the advection case f (u) = cu, we have the following theorems[2].

Theorem 3.1. Suppose that the initial condition u0 belong to Sobolev space HN+1 (0, 1).

Let e be the error u− uh. Then we have,

‖e (T )‖L2(0,1) ≤ C |u0|HN+1(0,1) (4x)N+1/2 ,

where C depend solely on N , |c|, and T .

If we assume that the initial condition is more regular, then we have the fol-

lowing result.

Theorem 3.2. Suppose that the initial condition u0 belong to Sobolev space HN+2 (0, 1).

Let e be the error u− uh. Then we have

‖e (T )‖L2(0,1) ≤ C |u0|HN+1(0,1) (4x)N+1 ,

where C depend solely on N , |c|, and T .
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Theorem 3.1 is a simplified version of a more general result proven by Johnson

and Pitkäranta in 1986 and Theorem 3.2 is a simplified version of a more general

result proven by Lesaint and Raviart in 1974. Proofs of Theorems 3.1 and 3.2 can

be found in [2].

The above theorems show that the DG scheme is (N + 1)th-order accurate

scheme, at least in the advection case, provided that the regularity assumption is

met as stated in the theorems. In addition, the same order of accuracy should still

hold in the nonlinear case when the exact solution is smooth enough, see details

in [2].

3.1.2 Numerical flux

The DG shceme is called monotone if the function f̂ (α, β) is Lipschitz continuous,

consistent and monotone, in the sense that,

(i) f̂ is locally Lipschitz and consistent with the flux f(u), i.e., f̂ (u, u) = f (u);

(ii) f̂ is nondecreasing in its first argument; and

(iii) f̂ is nonincreasing in its second argument.

In this thesis, we employ the local Lax-Friedrichs flux that satisfies the above

properties, represented by

f̂ (α, β) =
1

2
[f (α) + f (β)− C (β − α)] , (3.14)

where C = max
∣∣f ′ (s)∣∣ , min (α, β) ≤ s ≤ max (α, β).

3.1.3 Total Variation Diminishing Runge Kutta (TVD-RK)

After discretizing (3.1) and (3.2) in spatial space by the DG method, we obtain a

system of ODEs corresponding to (3.12) and (3.13). The system can be rewritten

in the form of

duh (t)

dt
= Lh (uh, t) , ∀t ∈ (0, T ) , (3.15)

with
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uh (x, 0) = u0h, (3.16)

where Lh (uh, t) represents the right hand side of equation (3.12).

The time discretization process is done by the high-order TVD Runge Kutta

method which was introduced previously by Chi-Wang Shu [1988]. Noted that

when polynomial degree N is used, a TVD version of Runge Kutta method at

least of order N + 1 must be employed in order to obtain solution accuracy as

stated in theorems 3.1 and 3.2.

Let {tn}Mn=0 are a partition of [0, T ] in M intervals, and ∆tn = tn+1 − tn, for
n = 0, . . . ,M − 1. The time marching algorithm can be summarized as follows.

1. Set u0
h = u0h,

2. For n = 0, ..,M − 1 compute un+1
h from unh as follows:

3. set d(0) = unh,

4. for i = 1, ..., k + 1 compute the intermediate functions:

d(i) =

{
i−1∑
s=0

(
αisd

(s) + βis4tnLh

(
d(s), t

))}
,

5. set un+1
h = d(k+1),

where αis and βis are parameters depend on the order of TVD-RK.

For example, the TVD-RK of orders 2 and 3 are given by

TVD-RK order 2

d(1) = unh + Lh (unh, t
n) , (3.17)

un+1
h = d(2) =

1

2

(
unh + d(1) +4tLh

(
d(1), tn +4t

))
, (3.18)
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TVD-RK order 3

d(1) = unh + ∆tLh (unh, t
n) , (3.19)

d(2) =
1

4

(
3unh + d(1) + ∆tLh

(
d(1), tn + ∆t

))
, (3.20)

un+1
h =

1

3

(
unh + 2d(2) + 2∆tLh

(
d(2), tn +

1

2
∆t

))
. (3.21)

By these setting, the TVD-RK has some useful stability properties. Details can

be seen in [2, 13].

3.1.4 The MUSCL slope limiter

When high-order polynomials are used for approximating the solution, numerical

method may produce some unphysical oscillations [2, 6, 13, 15, 16]. A slope lim-

iter concept can be applied on every computational cell to avoid these undesired

oscillations. For instance, in the case of piecewise linear appoximation, the slope

limiter of uh|Ij is denoted by ΛΠ1
h

(
uh|Ij

)

ΛΠ1
h

(
uh|Ij

)
= uj + (x− xj)m

(
ux,j,

uj+1 − uj
∆j

,
uj − uj−1

∆j

)
, (3.22)

for j = 1, . . . , K .

In (3.22) ūj is the mean value in the j-th cell, ux,j is the slope of solution in

the j-th cell, and m is the minmod function defined by

m (a1, a2, . . . an) =

sign (a1) min1≤i≤n |ai| , if sign (a1) = . . . = sign (an) ,

0, otherwise .
(3.23)
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This is the well-known slope limiter of the MUSCL schemes introduced by

vanLeer[4, 5].

In the case that the aprroximate solution is a polynomial degree N ≥ 2, that

is,

uh|Ij (x, t) =
N∑
l=0

ulj (t)ϕl (x) .

We defined what could be called the P 1-part of uh denoted by u1
h as

u1
h|Ij (x, t) =

1∑
l=0

ulj (t)ϕl (x) .

The slope limiter procedure in this case denoted by ΛΠN
h , is summarized as follows:

(1) Compute ũ−
j+ 1

2

and ũ+
j− 1

2

from

ũ−
j+ 1

2

= ūj +m
(
u−
j+ 1

2

− ūj, ūj − ūj−1, ūj+1 − ūj
)
, (3.24)

ũ+
j− 1

2

= ūj −m
(
ūj − u+

j− 1
2

, ūj − ūj−1, ūj+1 − ūj
)
. (3.25)

(2) If ũ−
j+ 1

2

= u−
j+ 1

2

and ũ+
j− 1

2

= u+
j− 1

2

set ΛΠN
h

(
uh|Ij

)
= uh|Ij .

(3) Otherwise, take uh|Ij equal to ΛΠ1
h

(
u1
h|Ij
)
.

3.2 Discontinuous Galerkin method for the one-dimensional

shallow water equations

Next, we introduced the RKDG method for solving the one-dimensional shallow

water equations in this form

∂U

∂t
+
∂F (U)

∂x
= S (U) , (3.26)

where x ∈ (0, L) and t ∈ (0, T ), with

U =

 h

q

 , F (U) =

 q

q2/h+ gh2/2

 (3.27)
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are the vector of conserve variables and the flux vector in the x direction, respec-

tively, t is the time, h is the water depth, u is the flow velocity in the x-direction,

q = uh is the discharge, and g is the acceleration due to gravity.

The right hand side of the system (3.26) represents the source term, given by

S (U) =

 0

gh (S0 − Sf )

 , (3.28)

which contains the effect of the bed slope S0, and the bed friction Sf . The term

Sf can be estimated by an empirical formulae as

Sf =
n2q |q|
h10/3

, (3.29)

where n is the Manning roughness coefficient.

In this thesis, we neglect the effect of source term, so S (U) = 0. We then

investigate the efficiency of the DG method for solving the shallow water equations

without source term treatment.

Similar to the one-dimensional scalar conservation case, we first partition the

domain (0, L) intoK subintervals, and denoted the j-th cell by Ij =
[
xj−1/2, xj+1/2

]
, j = 1, . . . K, with the grid size ∆j = xj+ 1

2
− xj− 1

2
, and the cell center xj =(

xj+ 1
2

+ xj− 1
2

)
�2 , xj+ 1

2
and xj− 1

2
are the left and right boundaries of the con-

sidering cell respectively.

Again, approximating the solution U by Uh =

 hh

qh

 in the finite dimensional

space, V N
h × V N

h .

Multiplying (3.26) by a test function vh (x) ∈ PN (Ij) and using the integration

by parts over Ij, we obtain a weak form,

∫
Ij

(∂tUh) vhdx−
∫
Ij

F (Uh) ∂xvhdx+[F (Uh) vh]j+ 1
2
−[F (Uh) vh]j− 1

2
=

∫
Ij

S (Uh) vhdx .

(3.30)

The flux function F can be approximated using numerical flux F̂ that depends

on the two values of Uh at the interfaces xj± 1
2
by
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F̂j+ 1
2

= F̂
(
Uh|−j+ 1

2

, Uh|+j+ 1
2

)
, F̂j− 1

2
= F̂

(
Uh|−j− 1

2

, Uh|+j− 1
2

)
, (3.31)

where Uh|−j± 1
2

and Uh|+j± 1
2

are the approximate solution from the left and right of

the boundaries j ± 1
2
of the j-th cell, respectively.

By choosing the Legendre polynomials Pm as the local basis functions, the

approximate solution Uh can be written as

Uh (x, t) =
N∑

m=0

Um
j (t)ϕm (x) , (3.32)

where Um
j (t) is the coefficient function of t, and ϕm (x) is the Legendre polynomial

which is defined as before.

The weak forms (3.30) are then simplified to

(
1

2l+1

) dU l
j(t)

dt
− 1

∆j

∫
Ij
F (Uh)ϕ

′

l (x) dx+ 1
∆j

{
F̂ (Uh)j+ 1

2
− (−1)l F̂ (Uh)j− 1

2

}
=

1

∆j

∫
Ij

S (Uh)ϕl (x) dx, (3.33)

where j = 1, . . . , K.

3.2.1 Numerical flux

The DG scheme is monotone if F̂ (UL, UR) is a Lipschitz, consistent and monotone

flux in the sense as state in the one-dimensional scalar conservation case. For

the shallow water equations, Toro [7, 8] presented a suitable HLL(Harten-Lax-van

Leer)-type flux [6, 7, 8, 15] based on the work by Harten et. al.[1],

F̂HLL (UL, UR) =


FL if 0 ≤ SL;

F ∗ if SL ≤ 0 ≤ SR;

FR if 0 ≥ SR,

(3.34)

where FL = F (UL), FR = F (UR) , and F ∗ is given by

F ∗ =
SRFL − SLFR + SLSR (UR − UL)

SR − SL

. (3.35)
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The wave speeds are chosen under the assumption of two-rarefaction waves in the

star region,

SL = min
(
uL −

√
ghL, u

∗ −
√
gh∗
)
, (3.36)

SR = min
(
uR +

√
ghR, u

∗ +
√
gh∗
)
, (3.37)

with

√
gh∗ =

1

2

(√
ghL +

√
ghR

)
− 1

4
(uR − uL) , (3.38)

u∗ =
1

2
(uL + uR) +

√
ghL −

√
ghR. (3.39)

The expressions for the wave speeds are obtained by assuming the wet bed

condition, i.e. positive flow depth h on both sides of the computational domain.

For the dry bed case the wave speeds are approximated by

SL = uL −
√
ghL, (3.40)

and

SR = uL + 2
√
ghL. (3.41)

3.2.2 The TVD-RK time discretization and slope limiter for

the SWE

Once the system has been discretized in the spatial space using the DG method,

the system can be integrated forward in time by the TVD-RK method as described

in section 3.1.3. As described earlier, the non-physical oscillations resulting from

the space discretizations can be avoid by using the MUSCL slope limiter on every

computational cell during time marching process performed.



CHAPTER IV

ADAPTIVE METHOD

In general, the accuracy of the approximate solution can be improved by increasing

the degrees of polynomials of local basis functions in each cell or refine grid cells

with smaller mesh size in the computational domain. But for efficiency of the

computation, it should be adapted only for troubled cells area where the solutions

have large error, sharp gradients, or discontinuities.

In this chapter, we presented two types of adaptive algorithms, adaptive poly-

nomial and adaptive mesh. The adaptive polynomial is successfully applied for

solving the case of initially smooth data by increasing order of polynomial basis

while the adaptive mesh can be used to handle the case of high gradients or dis-

continuities. To detect which cell needed to be applied the adaptive criteria, we

need some indicators to detect those troubled cells. In this thesis, we employed two

type of indicators which are error indicator (assuming we know the exact solution)

and gradient indicator.

4.1 Indicators

The values of the indicators for the j-th cell at time tn, denoted by εnj , are defined

as follows:

(1) Error indicator

εnj =

√√√√∑ng

(
qnexact − qnapprox

)2

ng

, (4.1)

where qnexact is the exact solution, qnapprox is an approximate solution, and ng is

the number of nodes on the j-th cell at time tn. This indicator is the root mean

square error (RMS error) in the j-th cell. Note that to compute the error indicator
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εnj , we need to know the exact solution of the problem.

(2) Gradient indicator

εnj,1 =

∣∣∣qnapprox|j+ 1
2
− qn0approx|j

∣∣∣
∆j/2

, (4.2)

εnj,2 =

∣∣∣qnapprox|j− 1
2
− qn0approx|j

∣∣∣
∆j/2

, (4.3)

where qnapprox|j− 1
2
and qnapprox|j+ 1

2
are approximate solutions for j-th cell at the left

and right boundaries respectively, and qn0approx|j is approximate solution at the

center of the j-th cell.

For general problems that the exact solution are not known, the gradient indi-

cator can be applied instead of using the error indicator. In our adaptive technique,

indicator is the most important quantity for detecting troubled cells, and gradient

indicator would be a practical choice that is often used for conservation laws or

SWE, see [9].

4.2 Adaptive polynomial for RKDG method (p-adaptive)

Algorithm for the adaptive polynomial

Given:

A control number for increasing the degree of polynomial, θ1.

A control number for decreasing the degree of polynomial, θ2.

The initial degree of polynomial, mindeg.

The maximum degree of polynomial, maxdeg.

The final time, T .

A partition of time domain [0, T ], {tn}Nn=0

Initial condition, u0 at time step t0.

The number of cells, K.
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The algorithm is summarized below:

Step 1.

1. Given a uniform partition of the domain.

2. Compute approximate solution u1 at time step t1.

3. For each cell j = 1, 2, ..., K,

• set the initial degree of polynomial deg0
j = mindeg.

Step 2. Define the degree of polynomial in the j-th cell at time tn by degnj ,

1. Compute the indicator εnj .

2. Set maxε = max1≤j≤K
{
εnj
}
. For each cell j = 1, 2, ..., K,

• error indicator case: If εnj > θ1maxε, mark this j-th cell as a troubled

cell.

• gradient indicator case: If εnj,1 > θ1maxε or εnj,2 > θ1maxε, mark this

j-th cell as a trouble cell

3. Increase the degree of polynomial of the mark cell.

• If degn−1
j = maxdeg, do nothing.

• If degn−1
j < maxdeg, set the new degree in that troubled cell as degn−1

j |new =

degn−1
j + 1.

4. For the current troubled cell at time tn, n ≥ 1

• error indicator case: If εnj < θ2maxε, release this troubled cell as a usual

cell.

• gradient indicator case: If εnj,1 < θ2maxε and εnj,2 < θ2maxε release this

troubled cell as a usual cell.
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5. Decrease the degree of polynomial of usual cells.

• If the degn−1
j = mindeg, do nothing.

• If degn−1
j > mindeg, set the new degree as degn−1

j |new = degn−1
j − 1.

In this step, we now have a new degree of polynomial for each cell at time tn−1.

Step 3. Using L2-projection, project the temporal coefficients
{
ulj (tn−1)

}degn−1
j

l=0
to

the new set of
{
ulj (tn−1)

}degn−1
j

l=0
|new.

Step 4. Evolve numerical solutions of all cells from tn−1 to tn.

Step 5. If n < N , repeat the whole steps by going back to step 2.

4.3 Adaptive mesh for RKDG method (h-adaptive)

Since for shock or discontinuous solution, the high-order of polynomial approxima-

tion cannot improve the accuracy of numerical solution, the adaptive mesh criteria

can be employed to increase the accuracy of solution for this case.

Algorithm for adaptive mesh

Given:

A control number used to divide troubled cell into two smaller cells, θ1.

A control number for merging untroubled cell into one cell, θ2.

The degree of polynomial, N .

The maximum level of mesh partition, maxlev.

The final time, T .

A partition of time domain [0, T ], {tn}Nn=0

Initial condition, u0 at time step t0.

The initial number of cell K.
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The algorithm is summarized below:

Step 1.

1. Given a uniform partition of the domain.

2. Compute approximate solution u1 at time step t1.

3. For each cell j = 1, 2, ..., K,

• set the initial mesh level of every cell as lev0
j = 0..

Step 2. Define the mesh partition at time tn and the mesh level for the j-th cell

by {ln} and levnj , respectively.

1. Compute the indicator εnj .

2. Set maxε = max1≤j≤K
{
εnj
}
. For each cell j = 1, 2, ..., K,

• error indicator case: If εnj > θ1maxε, mark this j-the cell as a troubled

cell.

• gradient indicator case: If εnj,1 > θ1maxε or εnj,2 > θ1maxε, mark this

j-th cell as a trouble cell

3. Divide mark cells into two sub-cells.

• If the levn−1
j = maxlev, do nothing.

• If levn−1
j < maxlev, set new level as levn−1

j |new = levn−1
j + 1, and divide

it into two sub-cells.

4. For the current troubled cell at time tn, n ≥ 1

• error indicator case: If εnj < θ2maxε, release this troubled cell as a usual

cell.

• gradient indicator case: If εnj,1 < θ2maxε and εnj,2 < θ2maxε release this

troubled cell as a usual cell.



26

5. merge two usual cells into one cell.

• If levn−1
j = 0, do nothing.

• If levn−1
j > 0, set the new level to be levn−1

j |new = levn−1
j − 1 and merge

those two sub-cells into one cell (merge cells that come from the same

primary cell).

This step provides the new mesh level for each cell at time tn−1.

Step 3. Using L2-projection, project the temporal coefficients
{
ulj (tn−1)

}N
l=0

from the mesh partition{ln−1} to the new mesh partition {ln−1} |new.

Step 4. Evolve numerical solutions for every cells from tn−1 to tn.

Step 5. If n < N , repeat the whole steps by going back to step 2.



CHAPTER V

NUMERICAL RESULTS AND DISCUSSIONS

The numerical results obtained by the adaptive Discontinuous Galerkin method

for solving the advection equation and the shallow water equations are presented

in this chapter.

5.1 Advection Equation

In this section, we will show some numerical results using the RKDG method

(use as comparison), and the adaptive RKDG methods for both p-adaptive and

h-adaptive. In these two adaptive cases, we applied two indicators as described in

Chapter IV to detect the troubled cells in the computational domain.

The advection equation is

ut + cux = 0, (a,b)× (0, T ) , (5.1)

where c is a constant. The initial condition is

u (x, 0) = u0 (x) . (5.2)

The exact solution of this equation is

u (x, t) = u0 (x− ct) . (5.3)

The solution profile u (x, t) is simply propagated by speed c with unchanged

shape from initial data. Details for solving this equation can be seen in [13, 16, 17].
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5.1.1 RKDGmethod without adaptive criteria for advection

equation

First, we consider the pure advection equation with initially smooth condition as

a model problem,

ut + 3ux = 0, (-10,10)× (0, 1) , (5.4)

u (x, 0) = e−(x−3)2 . (5.5)

In this case the exact solution is

u (x, t) = e−(x−3t−3)2 . (5.6)

The comparison between the exact solution and the approximate solution from

the RKDG method is shown in Figure 5.1. It is shown that the aprroximate

solution is in good agreement with the exact solution. Here we set the polynomial

degree N = 2 and the number of cells K = 160

Figure 5.1: The comparison between the exact solution and the approximate so-

lution obtained by the RKDG method at the final time T = 1 when N = 2 and

K = 160.
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The numerical results obtained by the RKDG method using polynomial degrees

N of 1, 2 and 3, with the number of cells K = 20, 40, 80, and 160 are shown in

Table 5.1.

N/K 20 40 80 160 rate of

convergent

1 5.4550×10−2 1.3197×10−2 2.7139×10−3 5.9797×10−4 2.2

2 7.7356 ×10−3 1.1201×10−3 1.4749×10−4 1.8700×10−5 2.9

3 6.9540×10−4 9.0615×10−5 6.2292×10−6 3.9710×10−7 3.6

Table 5.1: The RMS errors and rate of cenvergences when using the RKDG method

for N = 1, 2, and 3, and using K = 20, 40, 80, and 160.

The results in Table 5.1 show that the solutions obtained from the higher

degree of polynomial are more accurate than using the lower degree of polynomial.

For a fixed degree of polynomial, the accuracy of numerical solutions increase as

the number of cell increases. These results are in expected and correspond with

the theoretical results as provided in Theorem 3.2. The rates of convergence for

the polynomial degree one, two and three are approximately in order of 2, 3 and

4 respectively. The log-log plot shown in Figure 5.2 also reveal these rates of

convergence in term of the slope of straight line.

Figure 5.2: The log-log between the RMS errors and cell sizes for fix N = 1, 2, and

3
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Next, we consider the pure advection equation with discontinuous initial con-

dition

ut + 3ux = 0, (-10,10)× (0, 1) (5.7)

u (x, 0) =

2, if x > 2,

1, if x < 2 .
(5.8)

The exact solution is

u (x, t) =

2, if x ≥ 2 + 3t,

1, if x < 2 + 3t
(5.9)

The profile of numerical solution obtained by the RKDGmethod with the linear

polynomial basis and the number of cells K = 160 is shown in Figure 5.3. It is

found that the numerical solution is in good agreement with the exact solution.

The speed of sharp-front or shock interface has been detected correctly by this

method but there are some areas on the top and the bottom of shock that the

method provides smear behavior.
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Figure 5.3: The comparison between the exact solution and the approximate solu-

tion at the final time T = 1 when N = 1 and K = 160.

The RMS errors for various number of polynomial degrees and the number of

cells are shown in Table 5.2. For fixed degree of polynomial basis in the calculations,

it is found that numerical error decreases as the number of cells increases but it is

in the same order of 10−2 which is not agree with the results in Theorem 3.1 and

Theorem 3.2 because the solution is not smooth enough in this case.

The numerical observations from this case are different from the case of smooth

initial data since when we try to increase the order of polynomial basis, it cannot

improve accuracy of the numerical solution. Thus, for high gradient profile, the

accuracy of numerical solution can be improved only by increasing resolutions or

the number of cells. Increment of polynomial basis order does not provide high

accuracy solution for discontinuous case. But increasing the number of cells to get

high accuracy solution is directly resulting to large computation time. This issue

motivates us to apply the adaptive mesh criteria to increase resolution espectially

near the shock area that adaptive polynomial method should not improve accuracy

in this case.



32

N/K 20 40 80 160

1 0.1017 0.0844 0.0691 0.0562

2 0.1040 0.0766 0.0559 0.0398

3 0.1045 0.0805 0.0600 0.0436

Table 5.2: The RMS errors for RKDG method using N = 1, 2, and 3 and K = 20,

40, 80, and 160.

5.1.2 Adaptive polynomial RKDGmethod for advection equa-

tion

In the case of smooth initial condition, we found that using high order of polynomial

basis provides more accurate numerical results than using lower order basis. From

this finding, we then apply the adaptive polynomial RKDG method for solving

the advection equation with initially smooth condition to save the computational

time.

We consider the pure advection equation with the same initially smooth con-

ditions (5.4) and (5.5) which has the exact solution (5.6). We then show some

numerical results by varying the values of θ1 and θ2, and consider different initial

degree of polynomial, maximum degree of polynomial, and the number of cells.

We denote PN as the numerical solutions obtained from the RKDG method

without adaptive criteria with polynomial degree N , and P l/P h as the numerical

results obtained from the adaptive polynomial RKDG with initial degree l and the

maximum degree h.
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Case1 Error indicator

Figure 5.4: The comparison of the exact solution and the numerical solution at

the final time T = 1 using error indicator.

We show the accuracy of numerical solutions by the adaptive polynomial RKDG

method using error indicator in Figure 5.4, where the initial degree is 1 and the

maximum degree is 3. Here, θ1 and θ2 are 0.025 and 0.01 respectively. We can see

that the numerical solution (circle) is in good agreement with the exact solution

(solid line) including around the peak area.

Figure 5.5: The x − t plot shows adaptive polynomial method from degree 1 to

degree 3.
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The degrees of polynomial for each cell in the time domain is shown in Figure

5.5. For each time, the error indicator can detect the troubled cells which are

moving with the same speed as of the solution profile. The troubled cells are in

the high gradient areas. The color bar shows the values of degrees of polynomial.

The polynomial degree increases from one to three for the troubled cells. Also, we

can see that the troubled cells are released to usual cells as the solution moves to

the right, polynomial degree decreases from three to one. The polynomial degrees

in each cell of Figure 5.4 is shown by Figure 5.5 at T = 1. Cells for 2 ≤ x ≤ 10

have been adapted by increasing degrees of polynomial.

(θ1, θ2) = (0.1, 0.05) (θ1, θ2) = (0.025, 0.01) (θ1, θ2) = (0.01, 0)

P 1 1.6468e-003 1.6468e-003 1.6468e-003

P 2 7.6041e-005 7.6041e-005 7.6041e-005

P 3 2.5861e-006 2.5861e-006 2.5861e-006

P 1/P 2 1.3456e-004 8.9834e-005 8.3948e-005

P 1/P 3 2.8599e-004 2.8096e-005 9.8543e-006

P 2/P 3 1.6238e-005 2.8713e-006 2.7624e-006

Table 5.3: The RMS errors using error indicator with K = 100 cells and for some

values of θ1 and θ2.

From Table 5.3, when the values of θ1 and θ2 are fixed and without adaptive

polynomial criteria, the results obtained by the higher degrees are more accurate

than results calculated using the lower degrees of polynomial as expected to the

results from theory. The RMS error of P 2 is comparable with P 1/P 2. They are

in the same order, however the P 2 method gives more slightly accurate results.

Likewise, the results from the P 3 and the P 2/P 3 methods are comparable. The P 3

method provides slightly better results. The RMS errors of P 1/P 3 are less than

P 1 but are in the same order of P 3 when using small values of θ1 and θ2. These

results show that the computational cells have been adapted from degree one to

degree three until the numerical solution has the RMS error in the same order as

the maximum degree of polynomial applied. Numerial results by other adaptive
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degrees of polynomial can be concluded similarly.

Figure 5.6: The relasionship between log(RMS error) and log(K) for various values

of θ1 and θ2 when mindeg=1 and maxdeg = 3, error indicator is applied. Number

of cells are K = 50, 100, and 200.

In Figure 5.6, in case of without adaptive polynomial criteria, the RMS errors

decrease as the number of cells increase. The rate of convergence is approximately

of O(N + 1) where N is the degree of polynomial. When we apply the adaptive

method, the RMS error decrease as the values of θ1 and θ2 decrease because many

cells have been detected as trouble cells when θ1 and θ2 decrease.

Case2 Gradient indicator

The numerical results obtained by the adaptive polynomial with gradient indicator

are shown in this section. The objective is to show the efficiency of this indicator

and compare to that results by the error indicator.
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Figure 5.7: The comparison of the exact solution with the numerical solution at

the final time T = 1, using gradient indicator.

The accuracy of numerical results obtained by the adaptive polynomial with the

gradient indicator method is shown in Figure 5.7. The profile is in good agreement

with the exact solution except around the peak area. However, if we want to

improve the solution accuracy in this area, we have to set the values of θ1 and θ2

to be sufficiently small in order to detect more troubled cells near the peak because

the gradient is quite small in this area.

Figure 5.8: The x− t plot shows adaptive polynomial cells from degree 1 to degree

3.

The degree of polynomial for each cell in the time domain is shown Figure 5.8.
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It is shown that the gradient indicator can detect trouble-cell zone similar to the

case of the error indicator except some cells around the peak area.

(θ1, θ2) = (0.1, 0.05) (θ1, θ2) = (0.025, 0.01) (θ1, θ2) = (0.01, 0)

P 1 1.6468e-003 1.6468e-003 1.6468e-003

P 2 7.6041e-005 7.6041e-005 7.6041e-005

P 3 2.5861e-006 2.5861e-006 2.5861e-006

P 1/P 2 3.1666e-004 1.1455e-004 9.0263e-005

P 1/P 3 3.5018e-004 8.1399e-005 3.4526e-005

P 2/P 3 1.0345e-005 4.2764e-006 3.1197e-006

Table 5.4: The RMS errors when using the gradient indicator with K = 100 cells

for some values of θ1 and θ2.

The RMS errors using the adaptive polynomial with gradient indicator for

various values of θ1 and θ2 are shown in Table 5.4. The conclusions are similiar to

those of using error indicator. That is, the adaptive polynomial method provides

more accurate results than the method without using adaptive criteria.

Figure 5.9: The relasionship between log(RMS error) and log(K) for various values

of θ1 and θ2 when mindeg = 1 and maxdeg = 3, gradient indicator is applied.

Number of cells are K = 50, 100, and 200.

The relasionship between log(RMS error) and log(K) is shown in Figure 5.9.
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The RMS errors decrease as the number of cells increase. The rate of convergence

of numerical solution in the case of without using adaptive method is of O(N + 1)

as expected. When we apply the adaptive polynomial method, the RMS error

decreases as the values of θ1 and θ2 decrease because many cells have been detected

as troubled cells when θ1 and θ2 are sufficiently small.

5.1.3 Adaptive mesh RKDG method for advection equation

For discontinuous initial condition as shown in section 5.1, the numerical accuracy

is not effected by increasing order of polynomial. But accuracy can be improved

by increasing the number of cells. Hence, adaptive mesh refinement is suitable for

this type of solution.

We consider the pure advection equation with initially discontinuous conditions

(5.7) and (5.8). The exact solution is in (5.9).

Some numerical results are shown by using adaptive mesh method when fixing

the degree of polynomial. We have varied four different values of maxlev from

1 to 4 in the adaptive mesh algorithm. Thus, maxlev = 4 corresponds to the

smallest divided cell from the primary cell which maxlev = 0 is set at the initial

computation.
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Case1 Error indicator

Figure 5.10: The comparisons between the exact solution (dot line) and the nu-

merical solution (solid line) at the final time T = 1, using error indicator in the

adaptive mesh method for four cases ofmaxlev: maxlev = 1 (top-left),maxlev = 2

(top-right), maxlev = 3 (bottom left), and maxlev = 4 (bottom-right).

In Figure 5.10, We have set θ1 and θ2 as (θ1, θ2) = (0.025, 0.01). It is shown at

T = 1 that the sharp-front can be captured accurately when setting maxlev = 4

because more cells have been detected as troubled cells and these cell are divided

in to smaller sub-cells. The smallest mesh spacing occurs at maxlev = 4.

When we use polynomial degree 1 as a basis function, the results of various

values of θ1 and θ2 are shown in Table 5.5. The notation PN
maxlev refers to the

results of using polynomial degree N as a basis with maxlev in the adaptive mesh

method. We can see that for fixing degree of polynomial, the RMS error decreases

as the maxlev increases. The results in Table 5.5 are plotted in Figure 5.11.
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(θ1, θ2) = (0.1, 0.05) (θ1, θ2) = (0.025, 0.01) (θ1, θ2) = (0.01, 0)

P 1 0.0647 0.0647 0.0647

P 1
1 0.0524 0.0524 0.0524

P 1
2 0.0435 0.0441 0.0442

P 1
3 0.0381 0.0393 0.0395

P 1
4 0.0362 0.0378 0.0381

Table 5.5: The RMS error when using error indicator with K=100, N=1 for some

values of θ1 and θ2.

Figure 5.11: The relasionship between RMS error and (θ1, θ2) when using N = 1

as basis function. Error indicator is applied where K = 100.

It can be seen from Figure 5.11 that the most accurate results can be obtained

using maxlev = 4. The RMS error decreases as maxlev increases. The errors are

not directly effected by the values of θ1 and θ2 because the troubled cells appear

only around the shock area and the number of troubled cells are not different for

each pair of θ1 and θ2.

The results by the adaptive mesh method with error indicator when fixing de-

gree of polynomial N = 2 are shown in Table 5.6 and Figure 5.12. The conclusions

are similar to those the case of using polynomial degree N = 1.
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(θ1, θ2) = (0.1, 0.05) (θ1, θ2) = (0.025, 0.01) (θ1, θ2) = (0.01, 0)

P 2 0.0492 0.0492 0.0492

P 2
1 0.0399 0.0384 0.0404

P 2
2 0.0294 0.0294 0.0310

P 2
3 0.0231 0.0227 0.0233

P 2
4 0.0191 0.0204 0.0204

Table 5.6: The RMS error when using error indicator with K=100, N=2 for some

values of θ1 and θ2.

Figure 5.12: The relasionship between RMS error and (θ1, θ2) when using N = 2

as basis function. Error indicator is applied where K = 100.
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Case2 Gradient indicator

Figure 5.13: The comparisons between the exact solution (dot line) and the nu-

merical solution (solid line) at the final time T = 1, using gradient indicator in the

adaptive mesh method for four cases ofmaxlev: maxlev = 1 (top-left),maxlev = 2

(top-right), maxlev = 3 (bottom left), and maxlev = 4 (bottom-right).

It can be seen from Figure 5.13 that the results and the area of troubled cells

from gradient indicators are similar to the error indicators. The sharp front is well

captured as maxlev increased.
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(θ1, θ2) = (0.1, 0.05) (θ1, θ2) = (0.025, 0.01) (θ1, θ2) = (0.01, 0)

P 1 0.0647 0.0647 0.0647

P 1
1 0.0523 0.0524 0.0524

P 1
2 0.0426 0.0435 0.0439

P 1
3 0.0375 0.0368 0.0385

P 1
4 0.0658 0.0300 0.0353

Table 5.7: The RMS error when using gradient indicator with K=100, N=1 for

some values of θ1 and θ2.

It can be seen from Table 5.7 that the most accurate result can be obtained by

using maxlev=4, and the RMS errors are not directly effected by the values of θ1

and θ2. However, for case of (θ1, θ2) = (0.1, 0.05), these values are relatively large

so that the trouble cells cannot be detected correctly like in the case of (θ1, θ2) =

(0.025, 0.01). The (x − t) plot showing the adaptive mesh area is presented in

Figure 5.14. The troubled cell zone for the case of (θ1, θ2) = (0.1, 0.05) is smaller

when comparing with the case of (θ1, θ2) = (0.025, 0.01).
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Figure 5.14: The adaptive area for N = 1, K = 100, (θ1, θ2) = (0.1, 0.05) (top)

and (θ1, θ2) = (0.025, 0.01)(bottom) with gradient indicator.

(θ1, θ2) = (0.1, 0.05) (θ1, θ2) = (0.025, 0.01) (θ1, θ2) = (0.01, 0)

P 2 0.0492 0.0492 0.0492

P 2
1 0.0415 0.0419 0.0411

P 2
2 0.0351 0.0319 0.0307

P 2
3 0.0388 0.0258 0.0231

P 2
4 0.0549 0.0245 0.0199

Table 5.8: The RMS error when using gradient indicator with K = 100 cells,

polynomial degree N = 2 for some values of θ1 and θ2.

The results by the adaptive mesh method with gradient indicator when fixing
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polynomial degree 2 are shown in Table 5.8. The conclusions are similar to those

the case of using degree 1. We can obtain the highest accurate results if we use

sufficient small values of θ1, θ2, and maxlev = 4.

5.2 Shallow Water Equations

In this section, we show some numerical results using the RKDG method and the

adaptive mesh RKDG methods for solving the shallow water equations. For adap-

tive cases, we used two indicators to detect the troubled cells in the computational

domain as applied before in the advection equation. In this thesis, we restrict our

attentions to the shallow water equations with no source term, i.e., S (U) = 0.

Let the initial condition be

h (x, 0) =

hL, if x < 0,

hR, if x > 0.
(5.10)

For wet bed problem, hR > 0 and for dry bed problem, hR = 0. The fluid is

assumed initially at rest or equaivalently the initial velocity is zero.

When we set hL = 1 and hR = 0, the exact solution for the dry bed case can

be expressed as

h (x, t) =


1, if x ≤ t,

1
9

(
2− x

t

)
2, if − t ≤ x ≤ 2t

0, if 2t ≤ x.

, (5.11)

If we set hL = 1, hR = a where 0 < a < 1, the exact solution for the wet bed

case is,
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h (x, t) =



1, if x ≤ −1,

1
9

(
2− x

t

)
2, if − t ≤ x ≤ (u2 − h2) t,

h2, if (u2 − h2) t ≤ x ≤ V t,

a, if V t ≤ x.

(5.12)

where h2, u2 and V can be found numerically by the Newton’s method when the

value of a is specified.

a h2 u2 V

0.9 0.94933 0.05132 0.98763

0.8 0.89715 0.10564 0.97555

0.7 0.84309 0.16360 0.96394

0.6 0.78661 0.22618 0.95340

Table 5.9: Some values of h2, u2 and V when a is given.

In this thesis, we choose a = 0.6 for the wet bed case. More detail derivations

of these exact solution can be found in [12] and [14].

5.2.1 RKDGmethod without adaptive mesh criteria for shal-

low water equation

Wet bed case

First, consider the wet bed problem with initial condition

h (x, t) =

1, if x < 0,

0.6, if x > 0.
(5.13)

The initial velocity is zero.
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The solution accuracy by the RKDG method for the wet bed case is shown in

Figure 5.15. The approximate solution is in good agreement with the exact solu-

tion in the smooth region but smearing near the shock and the rarefaction area.

Figure 5.15: The comparison between the exact solution and the numerical solution

at final time T = 1 using N = 1 and K = 200 for the wet bed case.

Some numerical results for polynomial degrees N = 1 and N = 2, with K =

50, 100, and 200 are shown in Table 5.10.

N K = 50 K = 100 K = 200

1 0.0230 0.0145 0.0088

2 0.0184 0.0137 0.0091

Table 5.10: The RMS errors using N = 1 and N = 2 with K = 50, 100, and 200

for the wet bed case.

It can be seen from table 5.10 that the RMS errors decrease as K increase.

However, increasing the degree of polynomial basis cannot improve solution accu-

racy. It is also confirmed that we have to increase numerical resolution instead of

increasing degree of polynomial when we are dealing with moving shock.
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Dry bed case

For the dry bed problem, we consider the initial condition given by

h (x, t) =

1 if x ≤ 0,

0 if x > 0.
(5.14)

The initial velocity is zero.

The free surface profiles for the dry bed case is shown in Figure 5.16. The

numerical solution is in good agreement with the exact solution including the

rarefaction area, −1 ≤ x ≤ 2.

Figure 5.16: The comparison between the exact solution and the numerical solution

at the final time T = 1 using N = 1 and K = 100 for wet bed case.

Some numerical results when using polynomial degrees N = 1 and N = 2, with

the number of cell K = 50, 100, and 200 are shown in Table 5.11.

N K = 25 K = 50 K = 100

1 0.0289 0.0288 0.0154

2 0.0489 0.0208 0.0115

Table 5.11: The RMS error using N = 1 and N = 2 with K = 25, 50, and 100 for

the dry bed case.
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The numerical results are similar to the case of wet bed case. It can be seen

from Table 5.11 that the RMS errors decrease as K increase. However, increasing

the degree of polynomial basis cannot improve solution accuracy. It is also con-

firmed that we have to increase numerical resolution instead of increasing degree

of polynomial.

5.2.2 Adaptive mesh RKDG method for the shallow water

equation

We consider the shallow water equations in two cases, wet bed and dry bed prob-

lems. Since the initial condition of both wet bed and dry bed are discontinuous,

we can see from Table 5.10, Table 5.11 and the previous results that the results

obtained from higher degree of polynomial are not necessary accurate than using

lower degree of polynomial. However the accuracy of the numerical solutions can

be improved by increasing the number of cells. Hence, this suggest us to employ

the adaptive mesh criteria for the case of initially discontinuous condition.

Some numerical results are shown below by using the adaptive mesh method

when degree of polynomial is fixed. We have varied maxlev from 1 to 2 in the

adaptive mesh algorithm. Thus, maxlev = 2 corresponds to the smallest divided

cell from the primary cell which maxlev = 0 is set at the initial computation.

Wet bed case

We consider the wet bed case with initial condition (5.13) which is the same con-

dition previously performed by the RKDG method.
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Case1 Error indicator

Figure 5.17: The comparisons between the exact solution (solid line) and the

approximate solution (dot line) for the wet bed at the final time T = 1, using error

indicator in the adaptive mesh method for two cases of maxlev: maxlev = 1 (top)

and maxlev = 2 (bottom).

In Figure 5.17, we set N = 1, K = 100, and (θ1, θ2) = (0.005, 0.0025). It is

shown at T = 1 that the sharp front and rarefaction can be captured accurately

when setting maxlev = 2 because many cells have been detected as troubled cells

and divided to be smaller sub-cells in the high gradient zone. The smallest mesh

spacing occurs at maxlev = 2.
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Figure 5.18: The adaptive area for N = 1, K = 100, (θ1, θ2) = (0.005, 0.0025) for

maxlev = 1 (top) and maxlev = 2 (bottom) using error indicator.

The level of mesh for each cell in the time domain is shown Figure 5.18. It is

shown that, for each time, the error indicator can detect troubled cells which are

moving with the solution profile. The troubled cells are lie in the sharp-front and

rarefaction areas. The color bar shows the values of mesh level in each time.

When we use polynomial degree 1 or 2 as a basis function, the numerical results

for various maxlev comparing with the RKDG method without adaptive mesh

criteria are shown in Table 5.12. It can be seen that for a fixed degree of polynomial,

the RMS error decreases as the maxlev increases.
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maxlev K=50 K=100 K=200

P 1 0.0230 0.0145 0.0088

P 1
1 0.0145 0.0088 0.0060

P 1
2 0.0111 0.0075 0.0053

maxlev K=50 K=100 K=200

P 2 0.0184 0.0137 0.0091

P 2
1 0.0137 0.0089 0.0058

P 2
2 0.0093 0.0060 0.0043

Table 5.12: The RMS error using N = 1 and N = 2 with K = 50, 100, and 200

and (θ1, θ2) = (0.005, 0.0025) for the wet bed case, error indicator is applied.

Case2 Gradient indicator

Figure 5.19: The comparisons between the exact solution(solid line) and the nu-

merical solution(dot line) for the wet bed problem at the final time T = 1, us-

ing the gradient indicator in the adaptive mesh method for two cases of maxlev:

maxlev = 1 (top) and maxlev = 2 (bottom).
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Figure 5.20: The adaptive area for N = 1, K = 100, and (θ1, θ2) = (0.005, 0.0025)

for maxlev = 1 (top) and maxlev = 2 (bottom), when the gradient indicator is

applied.

It can be seen from Figure 5.19 that the gradient indicator can detect the area

of troubled cells, similar to that has been done by the error indicator. The level

of mesh for each cell in the time domain is shown in Figure 5.20. The results

are similar to those results obtained by the error indicator. The sharp-front and

the rarefaction area are well captured when maxlev is increased. When we use

polynomial degree 1 and 2 as a basis function, the results of various maxlev,

comparing with the RKDG method without adaptive mesh criteria are shown in

Table 5.13. These numerical results are similar to those the case of using the error

indicator, i.e., the RMS errors decrase as the maxlev increase.
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max level K=50 K=100 K=200

P 1 0.0230 0.0145 0.0088

P 1
1 0.0145 0.0088 0.0060

P 1
2 0.0111 0.0075 0.0053

max level K=50 K=100 K=200

P 2 0.0184 0.0137 0.0091

P 2
1 0.0121 0.0085 0.0074

P 2
2 0.0100 0.0061 0.0043

Table 5.13: The RMS error using N = 1 and N = 2 with K = 50, 100, and 200

(θ1, θ2) = (0.005, 0.0025) for the wet bed problem, gradient indicator is applied.

Dry bed case

We consider the dry bed case with initial condition (5.14) which is the same con-

dition previously performed by the RKDG method.



55

Case1 Error indicator

Figure 5.21: The comparisons between the exact solution (solid line) and the

approximate solution (dot line) for the dry bed problem at the final time T =

1, using error indicator in the adaptive mesh method for two cases of maxlev:

maxlev = 1 (top) and maxlev = 2 (bottom).

In Figure 5.21, we set N = 2, K = 50, and (θ1, θ2) = (0.005, 0.0025). It is

shown at T = 1 that the rarefaction can be captured accurately when setting

maxlev = 2 because many cells have been detected as troubled cells and are

refined to smaller sub-cells in the high gradient zone. The smallest mesh spacing

occurs at maxlev = 2.

The level of mesh for each cell in the time domain is shown Figure 5.22. It is
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shown that, at each time, the error indicator can detect troubled cells which are

moving with the solution profile. The troubled cells are lie in the rarefaction areas.

The color bar shows the values of mesh level in each time.

Figure 5.22: The adaptive area for N = 1, K = 100, and (θ1, θ2) = (0.005, 0.0025)

for maxlev = 1 (top) and maxlev = 2 (bottom) for error indicator.

When we use polynomial degrees 1 or 2 as a basis function, the numerical

results for various maxlev, comparing with the RKDG method without adaptive

mesh criteria, are shown in Table 5.14. Similar to wet bed case, It can be seen that

for a fixed degree of polynomial, the RMS errors decrease as the maxlev increase.
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maxlev K=25 K=50 K=100

P 1 0.0289 0.0288 0.0154

P 1
1 0.0287 0.0154 0.0082

P 1
2 0.0265 0.0139 0.0071

maxlev K=25 K=50 K=100

P 2 0.0489 0.0208 0.0115

P 2
1 0.0208 0.0111 0.0061

P 2
2 0.0151 0.0082 0.0043

Table 5.14: The RMS error using N = 1 and N = 2 with K = 25, 50, and 100 and

(θ1, θ2) = (0.005, 0.0025) for the dry bed case, error indicator is applied.
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Case2 Gradient indicator

Figure 5.23: The comparisons between the exact solution (solid line) and the

numerical solution (dot line) for dry bed problem at the final time T = 1, using

gradient indicator in the adaptive mesh method for two cases ofmaxlev: maxlev =

1 (top) and maxlev = 2 (bottom).
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Figure 5.24: The adaptive area for N = 1, K = 100, and (θ1, θ2) = (0.005, 0.0025)

for maxlev = 1 (top) and maxlev = 2 (bottom) with the gradient indicator is

applied.

It can be seen from Figure 5.23 that the gradient indicator can detect the area of

troubled cells similar to that has been done by the error indicator. The level of

mesh for each cell in the time domain is shown in Figure 5.24. The results are

similar to those results obtained by the error indicator. The rarefaction area are

well captured when maxlev is increased. And when we use polynomial degrees

1 and 2 as a basis function, the results of various maxlev, comparing with the

RKDG method without adaptive mesh criteria are shown in Figure 5.15. These

numerical results are similar to those the case of using the error indicator, i.e., the

RMS errors decrease as the maxlev increase.
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maxlev K=25 K=50 K=100

P 1 0.0289 0.0288 0.0154

P 1
1 0.0287 0.0154 0.0082

P 1
2 0.0265 0.0139 0.0071

maxlev K=25 K=50 K=100

P 2 0.0489 0.0208 0.0115

P 2
1 0.0208 0.0111 0.0061

P 2
2 0.0151 0.0082 0.0043

Table 5.15: The RMS error using N = 1 and N = 2 with K = 25, 50, and 100,

(θ1, θ2) = (0.005, 0.0025) for the dry bed problem, gradient indicator is applied.
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CONCLUSIONS

In this thesis, we have presented the adaptive RKDG method for solving the one-

dimensional advection equation and the shallow water equations. For the advection

equation, we consider both the smooth initial condition and the discontinuous

initial condition. For shallow water equations, we consider two problems which are

the wet bed and dry bed problems with discontinuous initial condition.

There are two types of adaptive algorithms presented in this thesis, the adaptive

polynomial for solving the smooth initial condition and the adaptive mesh for

solving the discontinuous initial condition. We also present two types of indicators

which are the error and gradient indicators. The indicators are used to detect

troubled cells in the computational domain before applying the adaptive criteria.

The adaptive polynomial is appropriate for increasing the accuracy of numerical

solutions in the case of the smooth solutions. Our presented approach can increase

automatically the degree of polynomial basis for troubled cells, and revesely it can

decrease automatically the degree of polynomial if that cells are usual. The highest

accuracy can be obtained if the maximum degree is used. However, increasing

order of polynomial basis cannot improve accuracy for sharp-front solution, the

adaptive mesh refinement is needed in this case. Then, we apply only adaptive

mesh criteria for solving the shallow water equations. The numerical results by the

adaptive mesh method for the advection equation and the shallow water equations

are shown. It is found that the solution accuracy increases as the maximum level

increases. For these two criteria, the values of θ1 and θ2 are depended on desired

order of accuracy. Our presented adaptive mesh method are successfully applied

to capture some shock interfaces, rarefaction and high gradient areas in our model

problems.
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