RESULTS

1. Determination of The Crystallinity by X-Ray Diffractometer.

The X-Ray diffraction parten of crystalline powder of diazepam in the absence of diluentswas presented in Figure 5. The dominant peak intensity appggred at $9.5^{\circ}, 11.0^{\circ}, 13.6^{\circ}, 17.5^{\circ}, 18.9^{\circ}$, $22.8^{\circ}, 24.4^{\circ}, 26.6^{\circ}$ and 29.79° in the term of 2θ angle.
1.1 Diazepam-Manuifol Mixture

Mannitol produced-ivs owns chanacteristic X-Ray diffraction pattern as shown to Figure 6. The dominant peak intensity appeared at $10.5^{\circ}, 11.5^{\circ}, 14.6^{\circ}, 16.8^{\circ}, 18.9^{\circ}, 20.5^{\circ}, 2 \xi 2^{\circ}, 21.7^{\circ}, 23.4^{\circ}, 26.0^{\circ}$, 28.3° and 29.5° in the term of 2θ angle. The X-Ray diffraction
 8, demonstrated the superposition of the patterns of diazepam and mannitor. 98ach component cobntributed its/owh patterryith an intensity proportional to the amount presented in the mixture. The diazepam diffraction peak could be clearly seen at $9.5^{\circ}, 17.5^{\circ}$ and 22.8° in the term of 2θ angle of the diffraction pattern of the mixture.

Figure: 5

X-Ray diffraction patterns
of diazepam
A: dlazepan crystals
B: mill for 10 hours
C: mill for 20 hours

Eigure: 7

X-Ray diffraction patterns
of
A: dibasic calcium phosphate
B: mifrocrystalline cellulose

Figure: k

X-Ray difiraction patterns
of the mixtures of
diazepam in mannitol at
the ratio of $1: 20$ prepared
by
A: simple blending methed
D: solvent deposition method
b) Solvent Deposition Method

X-Ray diffraction pattern of $1: 20$ ratio of diazepam in mannitol mixture prepared by solvent deposition method was shown in Figure 8. It consisted of the superposition of the patterns of diazepam and mannitol- the radiation diffracted by diazepam crystals (the diazepam peaks) and mannith cyystals (the mannitol peaks). The diazepam peaks could be observed markly at $9.5^{\circ}, 17.5^{\circ}$, and 22.8° in the term of 2θ angle of the diffraction pattern of the mixtures c) Bay1 Milling Method

In case of grinding the $1: 20$ ratio of diazepam in mannitol mixture, the X-Ray differactionsattern of the mixtures were determined at the 10 hour and 20 hour $32 \operatorname{cin} 40 \mathrm{~g}$ as shown in Figure 9. After 10 hour grinding the diazepampeaks could be observed at 9.5° in the term of 2θ angle, After 20 hours grinding the diazepam peaks were disappeared in the diffraction pattern of the fixtures.

1.1.2) 1:10 Diazepam-Mannitol Mixture.

P9 9 a) simpie Brending Method \approx

9
The X-Ray diffraction pattern of $1: 10$ ratiobf diazepam in mannitol mixtume prepared byo shmp bletding method was shown in Figure 10. The X-Ray diffraction pattern of the mixtures showed the superposition of the diffration pattern of diazepam and mannitol. The diazepam diffraction peaks increased in intensity comparing to $1: 20$ ratio of diazepam in mannitol mixture prepared by the same method.

Figure: 10

X-Ray difiraction patterns
of the mixtures of
diazepam in mannitol at
the ratio of $1: 10$ prepared
by
A: siaple blending method
B: solvent deposition method

The diazepam diffraction peaks could be clearly seen at $9.5^{\circ}, 11.0^{\circ}$, 17.5° and 22.8° in the term of 2θ angle of the diffraction pattern of the mixture.

b) Solvent Deposition Method

The X-Ray diffraction pattern of $1: 10$ ratio of diazepam in mannitol mixture prepared by solyert deposition method was similar to the X-Ray diffraction pattern of 1,20 natio of diazepam in mannitol mixture prepared by the seming method, but the peaks intensity of diazepam at $9.5^{\circ}, 17.5^{\circ}$ and 22.8° In the term of 2θ angle markly increased as shown in Figurg $90: 3$

c) BallimilJang Method

In case of grinding the 1 sio ratio of diazepam in mannitol mixture, the X-Ray diffragtorpattern of the mixtures was determined at the 10 hour, 20 hour $\operatorname{sid} / 30$ hatregrinding. After 10 hour grinding the diazepam diffraction peaks coutebe observed at 9.5°, 17.5° and 22.8° im the term of 2θ angle of the diffraction pattern of the mixtures. After 20 hour grinding the diazepam diffraction peaks
 diffraction peaks were disappeared. The diazepam diffraction peaks were decreased कि phensit\% with the frckeging gindigh time and were
disappeared after 30 hour grinding as shown in Figure 11 .

1.1.3 1:5 Diazepam-Mannitol Mixture
 a) Simple Blending Method

The X-Ray diffraction pattern of the 1:5 ratio of diazepam in mannitol mixture prepared by simple blending method showed the superposition of the pattern) df diazepam and mannitol. The diazepam diffraction peaks increased in ineonsity comparing to $1: 10$ ratio of diazepam in mannitol mixture prepared by the same method. The diazepam diffraction peaks $\quad 0 \quad 41 d$ be observed markly at $9.5^{\circ}, 11.0^{\circ}$, 17.5° and 22.8° in the berm of 2θ angle of the diffraction pattern of the mixtures as shown in figite 12 .
b) Solvenf Deposition Method

The X-Ray difftactionspatern of 1:5 ratio of diazepam in mannitol mixture prepared by solvent deposition method was similar to the X -Ray diffraction pattern of 1:10 ratio of diazepam in mannitol mixtures prepared/by the same method, but the geaks intensity of diazepam at $9.5^{\circ}, 11.0^{\circ}, 17.5^{\circ}$ and 22.8° in the term of 2θ angle markly increased as shown Figure $12 /$

The x-Ray diffraction pattern of $1: 5$ ratio of diazepam in mannitol mixture was determined at 20 hour, 40 hour and 60 hour grinding. After 20 hour and 40 hour grinding the diazepam diffraction peaks at $9.5^{\circ}, 11.0^{\circ}, 17.5^{\circ}$ and 22.8° in the term of 2θ angle were remained in the diffraction pattern of the mixtures. After 60 hour

Figure: 12

X-Ray diffraction patterns
of the mixtures of
diazepam in mannitol at
the ratio $1: 5$ prepared
by
A: simple blending method
B: solvent deposition method
grinding, the diazepam diffraction peaks at 9.5° and 17.5° in the term of 2θ angle were remained in the diffraction pattern of the mixtures. It is likely that the crystalline portions of diazepam were remained in the ground mixtures as shown in Figure 13.

1.2 Diazepam-Sucrose Mixture
 1.2.1 1,20 Diazepantsuerose Mixture

a) Simple Blending Method

The characteristic $X-$ Ray diffraction pattern of sucrose was presented in Figure 6. The diffraction peak intensity appeared obviously, at $8.4^{\circ}, 11.8^{\circ}, 12.8^{\circ}, 13.2^{\circ}, 15.6^{\circ}, 16.4^{\circ}, 16.8^{\circ}, 18.9^{\circ}$, $19.6^{\circ}, 20.4^{\circ}, 20.8^{\circ} 22.0^{\circ}, 22^{\circ}{ }^{\circ}$ and 24.9° in the term of 2θ angle. The X-Ray diffraction pattemissiafil:20 ratio of diazepam in sucrose mixture showed the superposttion of the patterns of diazepam and sucrose. Each components contributed its own pattern with an intensity proportional to the amount present in the mixtures. The diazepam diffraction peaks gquld be observed at $9.5^{\circ}, 11.0^{\circ}$, in the term of 2θ angle of the difffaction pattern-bf the mixture as shown in Figure 14.

ข

The X-Ray diffraction pattern of $1: 20$ ratio of diazepam in sucrose mixture prepared by solvent deposition method was shown in Figure 13. It consisted of the superposition of the patterns of diazepam and sucrose - the radiation diffracted by diazepam crystals

Figure: 14

X-Ray difiraction patterns
of the mixtures of
diazepan In sucrose at
the rat lo of 1:20 prepared
by
A: simple blending method
B: solvent deposition method
(the diazepam peaks) and sucrose crystals (the sucrose peaks). The diazepam peaks could be observed markly at $9.5^{\circ}, 11.0^{\circ}$ in term of 2θ angle of the diffraction pattern of the mixture as shown in Figure 14 .
c) Ball Milling Method

The X-Ray diffraction pattorn of $1: 20$ ratio of diazepam in sucrose mixture was determined at 10 hour and 20 hour grinding. After 10 hour grinding the ffazepan diffraction peaks were still remained at 9.5° in the corm of 2θ angle After 20 hour grinding the diazepam diffraction peaks were disappered in the diffraction pattern of the mixtures as shovisifn Figure 15.

1.2.2 1:10 Didazepafi-Sucrose Mixture

a) Simple/Btending Method

The X-Ray Aiffraction pattern of $1: 10$ setio of diazepam in sucrose mixture prepared by simple blending method showed the superposition of the diffraction pattern of diazepam and sucrose. The increasing as diazepam diffraction peaks intersity comparing to 1:20 ratio of diazepam in sucrose mixtufes prepared By the same method, was observed at $09.5 \circ 110 \% 19.60^{\circ} \mathrm{in}$ verm bfd2 2 angle lollthe diffraction pattern of the mixture as shown in Figure 16.
b) Solvent Deposition Method

The X-Ray diffraction pattern of $1: 10$ ratio of diazepam in
sucrose mixture prepared by solvent deposition method was similar to

Figure: 15
X-Kay diffraction patterns
of the mixtures of
drazepam in fucrose at
the ratio of 1:20 prepared
by ball-tailling eethod
A: mill for 10 hours
B: mill for 20 hours

Figure: 16

X-Ray diffraction patterns
of the mixtures of
diazepam in sucrose
at the ratio of $1: 10$ prepared
by
A: simple blending method
E: solvent deposition method
the X-Ray diffraction pattern of $1: 20$ ratio of diazepam in sucrose mixture prepared by the same method, but the peaks intensity of diazepam at 9.5° and 11.0° in the term of 20 angle slightly increased. The diazepam diffraction peak at 13.6° in the term of 2θ angle was also observed as shown in Figure 16.

c) Ball Milling Mochod

The X-Ray diffraction pattern of the $1: 10$ ratio of diazepam in sucrose mixture was determined after 10 hour, 20 hour, and 30 hour grinding. The diazepam diffraction peaks could be observed at 9.5°, 11.0° in the term of 20 angle after 10 hour and 20 hour grinding. After 30 hour grinding the 价iazepam diffraction peaks were disappeared. According to grinding progeş, the diazepam diffraction peaks were decreased in intensity whendele grinding time increased and disappeared after 30 hour grinding as shown in Figure 17.

1.2 .3

The ox-Ray diffrac: Ron Patzein of the $1: 5$ ratio of diazepam in sucrose mixture prepared by simple blending method showed the

 superpostion of thé pattern of chazepangandsuctose. . The diazepam diffraction peaks increased intensity comparing to $1: 10$ ratio of diazepam in sucrose mixture prepared by the same method. The diazepam diffraction peaks could be observed at $9.5^{\circ}, 11.0^{\circ}$ and 13.6° in the term of 2θ angle of the diffraction pattern of the mixtures as shown in Figure 18.

Figure: 18

X-Pay diffraction patterns
of the mixtures of
dazepam in sucrose at
the rat 10 of $1: 5$ prepared
by
A: singile hitending: method
B: solvent deposition anethod

b) Solvent Deposition Method

The X-Ray diffraction pattern of $1: 5$ ratio of diazepam in sucrose mixture prepared by solvent deposition method was similar to the X-Ray diffraction pattern of $1: 10$ ratio of diazepam in sucrose mixture prepared by the same method, but the peaks intensity of diazepam at 9.5° and 11.0° in the tenm of 2θ angle markly increased as shown in Figure 18.
c) Ball Milling Method

The X-Ray diffractionspattern of $1: 5$ ratio of diazepam in sucrose mixture was deternilied at 20 hour, 40 hour and 60 hour grinding. The diazepam diffydetion peaks at $9.5^{\circ}, 11.0^{\circ}$ and 13.6° in the term of 2θ angle wereferained in the diffraction pattern of the mixtures after 60 hourgithding as shown in Figure 19. It was seemed to be that the crystalifine portions of diazepam were remained in the ground mixpures.
1.3 Diazepam- Dibasic calcium phosphate

P1.3. P :28/口iazepm- Dibasic galcium phosphate Mixture ฯ
a) Simple Blending Method

9 Dibasic calcium phosphate produced its own characteristic
X-Ray diffraction pattern as presented in Figure 7. The dominant peaks intensity appeared at $11.6^{\circ}, 21.0^{\circ}, 29.3^{\circ}, 30.5^{\circ}, 31.3^{\circ}, 34.2^{\circ}$ and 34.4° in the term of 2θ angle. The X-Ray diffraction pattern of 1:20 ratio of diazepam in Dibasic calcium phosphate mixture showed

the superposition of the patterns of diazepam and dibasic calcium phosphate. Each components contributed its own pattern with an intensity proportional to the amount present in the mixtures. The diazepam diffraction peaks could be observed at 9.5° and 18.9° in the term of 2θ angle of the diffraction pattern of the mixtures as shown in Figure 20.
b) Solvent Deposition Method

X-Ray diffraction pattern of 1:20 catio of diazepam in dibasic calcium phosphate inixture prepared by solvent deposition method was shown in Figure 20, Tt consisted of the superposition of the diazepam diffraction peaks and dibasiccealcium phosphate diffraction peaks. The diazepam diffraction peaks could be observed obviously at 9.5° and 18.9° in term of 2θ angle $\frac{0}{}$ the diffraction pattern of the mixtures as shown in Figure 20.

c) Ball Milling Method

Effect of grinding on crystallinity of diazepam in diazepam dibasic calcfun phosphatenmextafe was defermfned after 10 hour and 15 hour grinding. After 10 hour grinding, the diazepam diffraction
 of the diffraction pattern of the mixtures. After 15 hour grinding the diazepam diffraction peaks could not be observed in the diffraction pattern of the mixtures as shown in Figure 21.

Figure: 20
X-Ray diffraction patterns
of the mixtures of
diazepam in dhasic
calcium phosphate at
the ratio of 1:20 prepared
by
A: slaple blending method
B: solvent deposition method

Figure: 21

X-Ray diffraction patterns
of the mixtures of
diazepaa in dibasic
calcium phosphate at
the ratio of $1: 20$ propared
by ball-milling method
A: mill for 10 hours
8: mill for 15 hours

1.3.2 1:10 Diazepam - Dibasic calium phosphate Mixture

a) Simple Blending Method

The X-Ray diffraction pattern of $1: 10$ ratio of diazepam in dibasic calcium phosphate mixture prepared by simple blending method was observed. The X-Ray diffraction pattern of the mixtures showed the superposition of the diffractfor pattern of diazepam and dibasic calcium phosphate. The diazepatn diffxaction peaks appeared at 9.5° and 18.9° in the teran of $26 /$ angle of the diffraction pattern of the mixtures as shown in Figure/ 22 .

Solvent Deposition Method

The X-Ray diffracyiōapattern of 1:10 ratio of diazepam in dibasic calcium phosphatefficture prepared by solvent deposition method was similar to the X-Ray diffraction pattern of $1: 20$ ratio of diazepam in dibasic calcium phosphate mixture prepared by the same method. The diatepam diffraction peaks appeaped at 9.5° and 18.9° in term of 2θ angie of the diffraction pattern of the mixtures as

of diazepam-dibasic calcium phosphate mixture was determined after 10 hour, 20 hour and 30 hour grinding. After 10 hour grinding, the diazepam diffraction peaks could be observed at 9.5° and 18.9° in term of 2θ angle of the diffraction pattern of the mixtures. After 20 hour grinding the diazepam diffraction peaks decreased in their

Figure: 22
X-Ray diffraction patterns
of the mixtures of
diazepam in dibasic
calclum phosphate at
the ratio of 1:10 prepared
by
A: slmple blending method
B: solvent deposition method
intensities. After 30 hour grinding the diazepam diffraction peaks were disappeared. The diazepam diffraction peaks were decreased in intensity with the increasing of grinding time and were disappeared after 30 hour grinding as shown in Figure 23.
1.3.3 1:5 Diazepam - Dibasic calcium phosphate Mixture a) Simple Buanding Method

The X-Ray diffraction pattern of the $1: 5$ ratio of diazepam in dibasic calcium phosphats/fixture prepared by simple blending method showed the superpasifion of the diffraction pattern of diazepam and dibasic calciual phosphate. The diazepam diffraction peaks increased in intensfty companting to $1: 10$ ratio of diazepam in dibasic calcium phosphate mixture's prepared by the same method. The diazepam diffraction peak could beobserved mackly at 9.5° and 18.9° in the term of 2θ angle of the difixaction pattern of the mixtures as shown in Figure 24.

b) Solvent Deposition Method

The ox-Ray diffract foh patted ef T: कractio of diazepam in dibasic calclum phosphate mixture prepared by solvent deposisiton methon wita simint to the X-Ray9gifiraction platectsedf $1: 10$ ratio of diazepam in dibasic calcium phosphate mixtures prepared by the same method, but the peak intensity of diazepam at 9.5° and 18.9° in the term of 2θ angle markly increased as shown in Figure 24.

Figure: 24
X-Ray diffraction patterns
of the mixtures of
diazepam in dibasic
calcium phosphate at
the ratio of $1: 5$ prepared
by
A: simple blending method
B: solvent deposition nethod
c) Ball Milling Method

The X-Ray diffraction pattern of $1: 5$ ratio of diazepam in dibasic calcium phosphate mixture was determined at 20 hour, 40 hour and 60 hour grinding. The diazepam diffraction peaks at 9.5° and 18.9° in the term of 2θ angle were remained in the diffraction pattern of the mixtures as shown in Eig4ye 25, It was seemed to be that the crystalline portions of deazepam were remained in the ground mixtures.
1.4 Diazepain-Mievocrystalline cellulose Mixture
1.4. $1: 20$ Diazepam - Microcrystalline cellulose Mixture
a) SimpleBlending Method

The X-Ray diffraction pattera of microcrystalline cellulose is presented in Figure 7. It consisted of diffraction pattern of crystalline portion of microcrystalling.ge 11.10 end the diffuse background due to amorphous portion of microcrystalline cellysose. The X-Ray diffraction pattern of $1: 20$ catio of diazepam in microcrystalline cellulose mixture showed the superposition of the patterns of diazepam and microcrystalline cellulose. The diazepamp Aiffkeftign9peak|coufo be observed at 18.9° in the term of 2θ angle of the diffraction pattern of the mixtures as

b) Solvent Deposition Method

The X-Ray diffraction of $1: 20$ ratio of diazepam in microcrystalline cellulose mixture prepared by solvent deposition method was presented in Figure 26. It consisted of diffraction patterns of

Figure: 25

X-Ray diffraction patterns of the mixtures of
diazepan in dibasic
calcium phosphate at
the ratio of $1: 5$ prepared
by ball-milling method
A: nill for 20 hours
B: mill for 40 hours
C: mill for 60 hours

Figure: 26

X-Kay diffraction patterns
of the mixtures of
diazepam in
microcrystallifne cellulose at ,
the ratio of $1: 20$ prepared
by
A: simple blending method
B: solvent deposition method
diazepam, diffraction patterns of crystalline portion of microcrystalline cellulose and the diffuse background due to amorphous portions of microcrystalline cellulose. The diazepam diffraction peak appeared at 18.9° in the term of 2θ angle of the diffraction pattern of the mixtures as shown in Figure 26 .

c) Ball Miffing Method

The X-Ray diffraction pattern of $1: 20$ ratio of diazepam in microcrystalline celluloseffixture was determined at 10 hour, 20 hour grinding. After 10 hour grinding, the diazepam diffraction peak decreased in inceusity, but scill remained at 18.9° in term of 2θ angle of the diffractiop pattern of the mixtures. After 20 hour grinding the diazepam peaks wete disappeared in the diffraction pattern of the mixtures has shown in Figure 27.
1.4.2 1:10 Diazepan-Microcrystalline cellulose Mixture
a) Simple Blending Method

The X-Ray diffraction pattern of $1: 10$ ratio of diazepam in microcrystapine eellulosemixture preparedf by simple blending method was shown in Figure 28. It consisted of diffraction patterns of diazepam, diFfaction patterns of crystaffue pormorgf microcrystalline cellulose and the diffuse background due to amorphous partions of microcrystalline cellulose. The diazepam diffraction peaks appeared at $9.5^{\circ}, 11.0^{\circ}, 13.6^{\circ}$ and 18.9° in the term of 2θ angle of the diffraction pattern of the mixtures as shown in Figure 28.

Figure: 26
X-Ray diffraction patterns
of the mixtures of
diazepas in
niferocrystalline cellulose at
the rat lo of 1:10 prepared
by
A: simple blending method
B: solvent deposftion method

b) Solvent Deposition Method

The X-Ray diffraction pattern of $1: 10$ ratio of diazepam in microcrystalline cellulose mixture prepared by solvent deposition method was similar to the X-Ray diffraction pattern of $1: 20$ ratio of diazepam in microcrystalline gellulose mixtures prepared by the same method. The diazepam diffracejon peaks appears at $9.5^{\circ}, 11.0^{\circ}$, $13.6^{\circ}, 18.9^{\circ}$ and 26.6° in the term of 2θ angle of the diffraction pattern of the mixtures as shown in Fifure 28.
c) Bail Milling Method

The change of crystalinity of diazepam in $1: 10$ ratio of diazepam - microcrystalline celviose mixture was determined after 10 hour, 20 hour and 30 houndistinding. After 10 hour grinding the diazepam diffraction peaks could be observed at $11.0^{\circ}, 13.6^{\circ}$ and 18.9° in the term of 2θ angle of the diffraction pattern of the mixtures. After 20 hour grinding the diazepam diffraction peaks appeared at 13.6° and 18.9° in the term off 2θ angle of the diffraction pattern of the mixtures and decreased in their tensities. After 30 hour grinding the diazepa中 diffagkion peaks?were disappeared as shown ©

a) Simple Blending Method

The X-Ray diffraction pattern of 1:5 ratio of diazepam in microcrystalline cellulose mixture prepared by simple blending method

Figure: 29
X-Ray diffraction patterns
of the mixtures of
diazeqax in
microcrystalline cellulose at
the ratio of $1: 10$ prepared
by
A: mil1 for 10 hours
B: mill for 20 hours
C: bill for 30 hours
was similar to the X-Ray diffraction pattern of $1: 10$ ratio of diazepam in microcrystalline cellulose mixture prepared by the same method, but the peaks intensity of diazepam at $9.5^{\circ}, 11.0^{\circ}$ 13.6° and 18.9° slightly increased and the diazepam diffraction peaks at $24.4^{\circ}, 26.6^{\circ}$ and 29.7° in the term of 2θ angle markly appeared as shown in Figure 30 .
b) Solvent Depostition Method

The X-Ray diffractiof patcern of $1: 5$ ratio of diazepam in microcrystalline cellulose pixture prepared by solvent deposition method was similas the X -Ray diffraction pattern of $1: 10$ ratio of diazepam in microcrystalline cellulose mixture prepared by the same method, but the peak intensity of diazepam at $9.5^{\circ}, 11.0^{\circ}, 13.6^{\circ}$, 18.9° and 26.6° slightly ficreasec and the diazepam diffraction peak at 29.7° in the term of 20 angle/appeared as shown in Figure 30.

c) Ball Milling Method

The change of crystallinity of diazepam in $1: 5$ ratio of diazepam in mictoceystanine cenclose mixure was determined after 20 hour, 40 holur and 60 hour grinding. After 60 hour grinding, the diazepan 9ffruapion peaks at $9.59911 .09,91306^{\circ}$ and 18.9° in the term of 92θ angle were remained in the diffraction pattern of the mixtures as shown in Figure 31. It was likely that the crystalline portions of diazepam were remained in the ground mixtures.

Figure: 30

X-Ray diffraction patterns
of the mixtures of
diazepan in
mifrocrystalline cellulose at
the ratio of $1: 5$ prepared
by
At siaple blending method
P: solvent deposition mecthal

2. Determination of The Specific Surface Area of the Diluents by Fisher Sub-Sieve Sizer

The specific surface area of four diluents; mannitol, sucrose, dibasic calcium phosphate and microcrystalline cellulose were determined by Fisher Sub-Sieve Sizer which operating on the air-peameability principle. The results were supperined in table 15.
3. Properties of Diazepam Capsules
3.1 Weight Variatat of Diazepam Capsules

The average weight and standard deviation of diazepam capsules were shown in table 17. Each 59 mula of diazepam capsules possessed the weight variation in theifinie of USP standard (64).

3.2 Disintegrationatime of Diazepam Capsules

The disintegration time of diazepan capsules in O.1.N. HCI maintained at $3 \pi 2^{\circ}$ as the immersion fluid gere shown in table 18. The disintegration time of each formulations was the mean value of 6 determinations 0 There was slighty difference in the disintegration time of eachoformulation. The average disintegration time of all

3.3 Percent Labeled Amount of Diazepam Capsules.

The percent labeled amount of diazepam capsules in each formulation were shown in table 19. The percent labeled amount of each formulations was the mean value of 2 determinations.

Table: 15
The Specific surface area of fouf dhluents;
mannitol, sucrose, dibasic calelum phosphate (CaHPO_{4})
and microcrystalline celluigse (Avicel)

INC 1983.
b taken from, A]frea N . Martin, 9 James cswarbfick, Arthar cammarate

$d_{\text {taken }}$ from Avice1 ${ }^{R} \quad$ pH, FMC corporation and Asahi Chemical Co., Ltd
Technical data , page 4.

Table: 16

True density of dibasic calcium phosphate
Experimental Data

Table: 17 Average weight of Diazepam Capsules.

Table: 18 Disintegration time of Diazepam Capsules.

Formula No.	Disintegration time $(\min) \pm \text { S.D. }$	Formula No.	Disintegration time (min)
0	2.67 ± 0.10	25	2.00 ± 0.04
1	3.33 ± 0.04	26	2.17 ± 0.13
2	2.41 ± 0.18	27	2.19 ± 0.14
3	3.18 ± 0.07	,	1.67 ± 0.10
4	2.08 ± 0.06	-	1.86 ± 0.16
5	2.12 ± 0.16	30	1.50 ± 0.12
6	2.58		2.12 ± 0.18
7	3.1		3.12 ± 0.20
8	1.90		2.80 ± 0.18
9	2.00		1.96 ± 0.21
10	2.50 ± 0.0		2.16 ± 0.18
11	$2.67 \pm 0.11366 .6$	36	3.10 ± 0.09
12	1.50 ± 0.21.	3	1.98 ± 0.03
13	2.20 ± 0.31	38	2.10 ± 0.26
14	$2.50+0.19$	39	2.56 ± 0.12
15	3.12 ± 0.16	40	3.09 ± 0.03
16		24/ 21	? 2.11 ± 0.09
17	3.10 ± 0.06		3.01 ± 0.11
18	$26.919+0.166$	9/43	281 ± 0.26
19	3.10 ± 0.11	44	3.10 ± 0.06
20	2.10 ± 0.07	45	2.84 ± 0.24
21	1.96 ± 0.19	46	1.60 ± 0.12
22	2.17 ± 0.31	47	2.16 ± 0.19
23	3.11 ± 0.14	48	3.20 ± 0.13
24	2.60 ± 0.08		

Table: 19 Percent labeled Amount of Diazepam Capsules.

3.4 Dissolution Time of Diazepam Capsules

The dissolution time of diazepam capsules that used as a comparative parameter in the differentiation of diazepam capsule formulations in this study was the time required for 85% of diazepam to dissolve and read from the dissolution profiles. The results were shown in table 20-45
3.4.1 The Effects of Dispersion Methods on The Dissolution Time of Diazepan Capsules.

The effects of three-dispersion methods: simple blending, solvent deposition and ba21 filling were studied.

Formula 0,1 to 8 , $47.20,24$ to 40 , were prepared by simple blending method Sformula 13 to 16,29 to 32 and 45 to 48 were prepared by solvat deposition method. Formula 9 to 12,25 to 28 and 41 to 44 were prepared by $k a 11$ milising method.

The dissolution profiles of all formulations were presented

According to the diazepam capsule formula, using mannitol as diluent/in preparing the $1: 20$ Fatio of difzepam-diuent mixtures, there was distinct difference in the dissolution profiles of diazepam capsule formula $0,1,5,9,13$ prepared by different dispersion method as shown in Figure 32. The dissolution time of the diazepam capsule formula was ranked as follow 0>1) 13>5>9. Formula 0 was the control formula, prepared in the absence of mannitol. Formula

Figure: 32 Eissolution Profiles of Diazepam Capsules, Formula 0,

Key.
—. Formula 0, control
-*- Formula 1, unmilled, simple blending

- Formula 13 , solvent deposition
- Formula 5, milled, simple blending
—— Formula 9, ball milling
$1,5,13,9$ the diazepam-mannitol mixtures were prepared by simple blending method of unmilled diazepam, simple blending method of milled diazepam, solvent deposition method of diazepam and ballmilling method of diazepam in 20 -fold of mannitol, respectively. It was found that ball-milling method gave the shorter dissolution time than solvent deposition fethod and simple blending method. According to simple blending metnod, simple blending method of milled diazepam gave the shozter dissolution time than simple blending method of unmilled diazepath, And it was found that solvent deposition method gave the shorter difsolution time than simple blending method of unmilled diazepám.

According to the diazepam capsule formula, using mannitol as diluent in preparing the $1: 10$ ratio of diazepam-diluent mixtures (Formula 17, 21, 25, 29) there was a significant difference in the dissolution profiles among the diazepam capsyle formulas (Formula 17, $21,25,29$ - prepared by different dispersion method as shown in Figure 33. The dissolution time of the diazepam capsule formulas
 formula, pefepared in the absence of mannitol. Formula 17, 21, 29, 25, 6 - 0
 unmilled diazepam, simple blending method of milled diazepam, solvent deposition method of diazepam and ball-milling method of diazepam in 10-fold of mannitol, respectively. It was found that ball milling method gave the shorter dissolution time than solvent deposition method and simple blending method. According to simple blending method, simple blending method of milled diazepam gave the shorter dissolution

$\Psi_{7}, 21,25,29$ (1:10 Diazepam - Mannitel Capsules) จุหาลงกรณมหาวิทยาลย
Key. -. Formula 0, control

- - Formula 17, unmilled, simple blending
- - Formula 29, solvent deposition
—o- Formula 21, milled, simple blending
-- Formula 25, ball milling
time than simple blending method of unmilled diazepam, And it was found that solvent deposition method gave the shorter dissolution time than simple blending method of unmilled diazepam.

According to the diazepan/ capsule formula, using mannitol as diluent in preparing the $1: 5$ rabso of diazepam-diluent mixtures (Formula 33, 37, 41, 45) there was a significant difference in the dissolution profiles among/the diazepam capsule formulas (Formula $33,37,41,45$) prepared by difference dispersion methods as shown in Figure 34. The dissolution time of the diazepam capsule formulas was ranked, as $\operatorname{follow}: 0\rangle 33 \geqslant 45\rangle 37\rangle 41$. Formula 0 was the control formula prepared in the absence of mannitol. Formula 33, 37, 45, 41 the diazepam-mannitol mfxtures sere prepared by simple blending method of unmilled diazepam, simpleliolending method of milled diazepam, solvent deposition method of diazepam and ball-millog method of diazepam in 5-fold of mannitof, respectively. It was found that ball milling method gave the shorter dissolution than solvent deposition method and simple blending method, Q According to simple blending method, simple blending method of milled diazepam gave the shorter dissolution time than simple blending, thethoi of unmilied diazepam. And it was found that solvent deposition method gave the shorter dissolution time than simple blending method of unmilled diazepam.

According to the diazepam capsule formula, using sucrose as diluent in preparing the $1: 20$ ratio of diazepam-diluent mixtures, there was a difference in the dissolution profiles among the diazepam capsule

 จุหาลงกรณมหาวิทยาลย

Key. -. Formula 0, control
——— Formula 33, unmilled, simple blending

- A- Formula 45, solvent deposition
-o- Formula 37, milled, simple blending
—— Formula 41, ball milling
formulas (Formula 2, 6, 10, 14) prepared by different dispersion methods as shown in Figure 35. The dissolution time of the diazepam capsule formula was ranked as follow: 0$\rangle 2\rangle 14\rangle 6\rangle 10$. Formula 0 was the control formula, prepared in the absence of sucrose.

Formula 2, 6, 14, 10 the diakepam-sucrose mixtures were prepared by simple blending method of unmifled diazepam, simple blending method of milled diazepam, solvent deposteron method of diazepam and ballmilling method of diazepari in 20 -fold of sucrose, respectively. It was found that ball-milling method gave the shorter dissolution time than solvent deposition method aud simple blending method. According to simple blending method, 誼iple blending method of milled diazepam gave the shorter dissolution, time than simple blending method of unmilled diazepam. And it was foundehat/solvent deposition method gave the shorter dissolution time than simple blending method of unmilled diazepam.

Accordint to the diazepam-capsule formula, using sucrose as. diluent in preparing the $1: 10$ ratio of diazepam-diluent mixtures, there was a different in the dissolutionpopiles among the diazepam capsule formulas (Formula $18,22,26,30$) prepared by different dispersion methods/as sfown on Figime 36 : 9 , he dissolution fine of the diazepamcapsule formulas was ranked as follow: 0$\rangle 18\rangle 30\rangle 22\rangle 26$. Formula 0 was the control formula prepared in the absence of sucrose. Formula $18,22,30,26$ the diazepam-sucrose mixtures were prepared by simple blending method of unmilled diazepam, simiple blending method of milled diazepam, solvent deposition method of diazepam and ball-milling method of diazepam in 10 -fold of sucrose, respectively. It was found that

श, 6, 10, 14 (1:20 Diazepam-Sucrose Capsules)
จุหาลงกรณมหาวทยาลย
Key. -. Formula 0, control
-x-Formula 2, unmilled, simple blending

- 4 - Formula 14 , solvent deposition
-o- Formula 6, milled, simple blending
——— Formula 10, ball milling

———Formula 18, unmilled, simple blending
- Formula 30, solvent deposition
—o- Formula 22, milled, simple blending
-. Formula 26, ball milling
ball-milling method gave the shorter dissolution time than solvent deposition method and simple blending method. According to simple blending method, simple blending method of milled diazepam gave the shorter dissolution time than simple blending method of unmilled diazepam. And it was found that, solvent deposition method gave the shorter dissolution time than giapteblending method of unmilled diazepam.

According to the ghazepam-capsule formula, using sucrose as diluent in preparing the $1: 5$ ratio of diazepam-diluent mixtures, there was a different in the dissolution profiles among the diazepan capsule formulas (Formula $34,38,42,46$), prepared by different dispersion methods as shown in figure 37. Formula 0 was the control formula, prepared in the abscnce of sucrose. Formula 34, 38, 46, 42 the diazepam-sucrose mistugesywere Prepared by simple blending method of unmilled diazepgn, simple blending method ofiniled diazepam, solvent deposition methoa of diazepam and ball-miling method of diazepam in 5-fold of sucrose, respectively. The dissolution time of the diazepam-
 slightly dffference in the dissolution profiles between formula 0 and
 the shorter dissolution time than solvent deposition method and simple blending method. According to simple blending method, simple blending method of milled diazepam gave the shorter dissolution time than simple blending method of unmilled diazepam. And it was found that solvent deposition method gave the shorter dissolution time than simple blending method of unmilled diazepam.

94, 38, 42,46 ($1: 5$ Diazepam-Sucrose Capsules)
-x- Formula 34, unmilled, simple blending
\rightarrow - Formula 46, solvent deposition
-O-Formula 38, milled, simple blending
—. Formula 42, ball milling

According to the diazepam capsule formula, using dibasic calcium phosphate as diluent in preparing the $1: 20$ ratio of diazepamdiluents mixtures, there was a differrence in the dissolution profiles among the diazepam capsule formulas (Formula 3, 7, 11, 15) prepared by different dispersion methods, as shown in Figure 38. The dissolution time of the diazepam capsule formulas was ranked as follow: 0$\rangle 3\rangle 15\rangle 7\rangle 11$. Formule 0 was the control formula, prepared in the absence of dibasio calcium phosphate. Formula 3, 7, 15, 11 the diazepam-dibasie calcfum phosphate mixtures were prepared by simple blending method of unimiled/diazepam, simple blending method of milled diazepam, solvent deposition method of diazepam and ball-milling method of diazepam in 20 -fold of dibasic calcium phosphate, respectively. It was found that ball-midhing fmethod gave the shorter dissolution time than solvent depositiofimethod and simple blending method. According to simple blending methody/simple brending method of milled diazepan gave the shorfe dissolution time than simple blending method of unmilled diazepam. And If was found that solvent deposition method gave shorter dissolution time than simple blending method of unmilled
 phosphate as diluent in preparing the 1:10 ratio of diazepam-diluent mixtures, there was a difference in the dissolution profiles among the diazepam capsule formulas (Formula 19, 23, 27, 31) prepared by different dispersion method as shown in Figure 39. The dissolution time of the diazepam capsule formula was ranked as follow: $0>19$ 31) 23) 27. Formula 0 was the control formula, prepared in the absence

 จุห ใจษ中คครณมหาวิทยาลย

Key. —. Formula 0, control
-×- Formula 3, unmilled, simple blending

- - Formula 15, solvent deposition
-o-Formula 7, milled, simple blending
- Formula 11, ball milling

 19, 23, 27, 31 (1:10 Diazepam-Dibasic Calcium Phosphate

Key. -. Formula 0, control
-×- Formula 19, unmilled, simple blending
\rightarrow Formula 31, solvent deposition
-o- Formula 23, milled, simple blending
—— Formula 27, ball milling
of dibasic calcium phosphate. Formual 19, 23, 31, 27 the diazepamdibasic calcium phosphate mixtures were prepared by simple blending method of unmilled diazepam, simple blending method of milled diazepam, solvent deposition method of diazepam and ball-milling method of diazepam in 10 -fold of dibasic calcium phosphate, respectively. It was found that ball-milling mechod gavel the shorter dissolution time than solvent deposition method and simple blending method. According to simple blending method, simple blending method of milled diazepam gave the shorter dissolution tiff than simple blending method of unmilled diazepam. And it was found that solvent deposition method gave the shorter dissolution time than simple blending method of unmilled diazepam.

According to the diazepambapsule formula, using dibasic calcium phosphate as diluent in preparing the $1: 5$ ratio of diazepam-diluent mixtures, there were a difference in the dissolution profiles among the diazepam capsule prmulas (Formula 35, 39, 43, 47) prepared by different dispersion methods as shown in Figure 40. The dissolution time of the diazepam capsube formulas wete ranked as follow: 0) 35 47) 39 43. Forpulab was the control formula, prepared in the absence of dibasic calcium phosphate. Formala $35,39,47,43$ the diazepam-dibasic caDcium phosphates mixtures were prepared by simple blending method of unmilled diazepam, simple blending method of milled diazepam, solvent deposition method of diazepam and ball-milline method of diazepam in 5-fold of dibasic calcium phosphate, respectively. It was found that ball-milling method gave the shorter dissolution time than solvent deposition method and simple blending method. According to

 35, 39, 43, 47 61:5 Diazepam-Dibasic Calcium Phosphote

Key. -. Formula 0, control
-x- Formula 35, unmilled, simple blending

- A- Formula 47, solvent deposition
-o- Formula 39, milled, simple blending
—— Formula 43, ball milling
simple blending method, simple blending method of milled diazepam gave the shorter dissolution time than simple blending method of unmilled diazepam. And it was found that solvent deposition method gave the shorter dissolution time than simple blending method of unmilled diazepam.

According to the diazepam cansule formula, using microcrystalline cellulose as diluent in preparing the 1:20 ratio of diazepam-diluent mixtures, there was a difference in the dissolution profiles among the diazepam-capsule formulas (Formula $4,8,12,16$) prepared by different dispersion methods as shown in Figure 41. The dissolution time of the diazepam capsule fornmia was ranked as follow: 0) 4 16) 8) 12. Formula 0 was the control formula, prepared in the absence of microcrystalline cellulosc Rormua $4,8,16,12$ the diazepammicrocrystalline cellulose mixturgse were prepared by simple blending method of unmilled diazepam, simple blending method of,nilled diazepam, solvent deposition method of diazepam and bali-milling method of diazepam in 20 -fold of microcrystalline cellulose, respectively. It was found that ballamiking rettog gaven the shorter dissolution time than solvent deposition method and simple blending method. According to simple 99? gave the shorter dissolution time than simple blending method of unmilled diazepam. And it was found that solvent deposition method gave the shorter dissolution time than simple blending method of unmilled diazepam.

Figure: 41 Dissoilution Brofies of Diakepan Chesules, Formula 0, 4, 8, 12, 16 (1:206Diazepam-Microcrystalline cellulose

Key.
Formula 0, control
-x- Formula 4, unmilled, simple blending

- Formula 16 , solvent deposition
-o- Formula 8, milled, simple blending
—— Formula 12, ball milling

According to the diazepam-capsule formula, using microcrystalline cellulose as diluent in preparing the $1: 10$ ratio of diazepamdiluent mixtures, there was a difference in the dissolution profiles among the diazepam-capsule formula (Formula 20, 24, 28, 32) prepared by different dispersion methods, as shown in Figure 42. The dissolution time of the diazepam capsule formulas, was ranked as follow: $0>20$ $32\rangle 24>28$. Formula 0 was the conerol formula, prepared in the absence of microcrystalline cellulose. Formula $20,24,32,28$, the diazepammicrocrystalline cellulose/fixtures were prepared by simple blending method of unmilled diazepam, simp 19 blending method of milled diazepam, solvent deposition method of Ciazepam and ball-milling method of diazepam in 10 -fold of microctystalline-cellulose, respectively. It was found that ball-milling, hieftod, gave the shorter dissolution time than solvent deposition flecfodand simple blending method. According to simple blending method, simple blending method of milled diazepam gave the shortercissolution time than simple blending method of unmilled diazepam And it was found that solvent deposition method gave the shorter dissolution time than simple blending method of
 cellulose as diluent in preparing the $1: 5$ ratio of diazepam-diluent
mixtures, there was a difference in the dissolution profiles among
the diazepam capsule formulas (Formula $36,40,44,48$) prepared by
different dispersion methods as shown in figure 43 . The dissolution
time of the diazepam capsule formula was ranked as follow: 0$\rangle 36$
$48>40\rangle 44$. Formula 0 was the control formula, prepared in the

Figure: 42 Dissolirbiea puofihess di ndazepam Capsuled, Formula 0,
 Key. \qquad Formula 0, control
-x- Formula 20, unmilled, simple blending
-A- Formula 32, solvent deposition
-o Formula 24 , milled, simple blending

- Formula 28, ball milling

Figure: 43 Dibsolution Profifes of Diazepam Capsules, Formula 0, ล $9,936,60,944$ (apsules)

Key. —. Formula 0, control
-x- Tormula 36, unmilled, simple blending

- Formula 48 , solvent deposition
-a- Formula 40, milled, simple blending
-* Formula 44, ball milling
absence of microcrystalline cellulose. Formula 36, 40, 48, 44, the diazepam microcrystalline cellulose mixtures were prepared by simple blending method of unmilled diazepam, simple blending method of milled diazepam, solvent deposition method of diazepam and ball-milling method of diazepam in 5-fold of microcrystalline cellulose, respectively. It was found that ball-milling method gave the shorter dissolution time than solvent deposition method and simple blending method. According to sfinple blending method, simple blending method of milled diazepam gave phe shorter dissolution time than simple blending method of unnilied diazepam. And it was found that solvent deposition method gave the shorter dissolution time than simple blending method of unnilledidiazepam.

From the experimentaldata, it may be concluded as the. following : Among three dispersion methods of diazepam in four diluents, used prepared the diazepam-diluent mixtures in different ratio, ball-miling method was likely to be the best way that gave the shortest dissolution time. In generally, solvent deposition methods gaye the shorter dissoldtion than simple blending method, however simple blending methodsoof mililed diazepam gave the shorter dissolution time than solyent deposifton method if four diluents. Therefore, the dispersion methods that gave the Shorter dissolution time were ordered as follow ball-milling method < simple blending method of milled diazepam < solvent deposition method < simple blending method of unmill diazepam.

3.4.2 The Effects of Diluents on The Dissolution Time

 of Diazepam CapsulesIn consideration of the effects of diluents on the dissolution time of diazepam capsules, the two groups of diluents had been included in this study : water-soluble diluent group and water-insoluble diluent group. Mannitol and sugrose were selected for water-soluble diluent. Dibasic calcium phosphage and microcrystalline cellulose were selected for water-insoluble diluents. According to table 45, the time required for 85 percent/bf diazepam to dissolve (t85\%) and read from the dissolution profiles were used as comperative parameter in the comparison of the effects of diluents on the dissolution time of diazepam capsules. The tipiemequired for 85 percent of the labeled amount of diazepam to dissolye into solution is recommended to be limited not more than 45 minutesjag syggested, by USP XXI (64).

The diazepam capsule formulations using mannitol as diluent at $1: 20$ and $1: 10$ rasio of diazepam-diluent mixtire prepared by simple blending method of milled diazepam (Formula 5, 21) and at $1: 20,1: 10$ and $1: 5$ ratio of diazepam-diluentenixtures prepared by ball milling method (Fornula $2,25,41$) wene dound that theot 85% was not more than 45 minutes and met the requirementaccording to dissolution test of diazepan dapsule $(649.6$ But the diazepam capsule formulations using mannitol as diluent at $1: 20,1: 10$ and $1: 5$ ratio of diazepam-diluent mixture prepared by simple blending method of unmilled diazepam (Formula 1, 17, 33) and solvent deposition method (Formula 13, 29, 45) were found that the $t 85 \%$ was more than 45 minutes and did not meet the requirement according to dissolution test of diazepam capsule (64).

The diazepam capsule formulation using mannitol as diluent at 1:5 ratio of diazepam-diluent mixture prepared by simple blending method of milled diazepam (Formula 27) also did not meet the requirement according to dissolution test of diazepam capsule (64).

The diazepam capsule formulation using sucrose as diluent at 1:20 and 1:10 ratio of diazepam-ffuent mixture prepared by ballmilling method (Formula 10,26) were found that the 585% was less than 45 minutesand met eqe requirement according to dissolution test of diazepam capsule (64)./But che diazepam capsule formulation using sucrose as diluent at 1:5 ratio of diazepam-diluent mixture prepared by ball mialing method ((Formula 42) did not meet the requirement according to dissollifion test of diazepam capsule (64). The other diazepam capsule fortilations using sucrose as diluent at $1: 20,1: 10$ and $1: 5$ ratio dfazepam-diluent mixtures prepared by simple blending method of unmilled diazepam (Formula 2, 18, 34), simple blending mettyod of milled diazepam (Fontila 6, 22, 38) and solvent deposition nethod (Formula 14, 30, 46) also did not meet the requirement according to dissolution test of diazepam capsule (64).

The diadepam capsule formulations using dibasic calcium
 mixture prepared by simple blending method of milled diazepam (Formula 7, 23), solvent deposition method (Formula 15, 31) and ball milling method (Formula 11, 27) were found to meet the requirement according to dissolution test of diazepam capsule, but the another method, simple blending method of unmilled diazepam (Formula 3, 15) did not meet
the requirement according to dissolution test of diazepam capsule (64). The diazepam capsule formulation using dibasic calcium phosphate dihydtate as diluent at $1: 5$ ratio of diazepam-diluent mixture only prepared by ball milling method (Formula 43) was also found to meet the requirement according to dissolution test of diazepam capsule, but the otherfrethod, simple blending method of unmilled diazepam (Formula 31), Simple blending method of milled diazepam (Formual 35) and solvent deposition method (Formula 39) did not meet the requipemerts adcording to dissolution test of diazepam capsule (64)

The diazepam capsule foftrulation using microcrystalline cellulose as diluent at $1: 20,2: 10$ gndace 5 ratio of diazepam-diluent mixture prepared by simple blending method bs milled diazepam (Formula 8, 24, 40) and ball milling methot (Formula 12, 28, 44) were found to meet the requirement according to dissolution test gf diazepam capsule, but the other methods, simple blending of unmiled diazepam ($4,20,36$) and solvent deposicion method $(16,32,48)$ did not meet the requirement according to dissolytion tast phadiazepam capsule (64).

From the experiment, dt was likely that amongthe water-soluble
 capsules better than sucrose. When compared among the water-insoluble diluent group, the diazepam capsule formulation which prepared by simple blending method and ball milling method, microcrystalline cellulose gave the superior dissolution rate over the dibasic calcium phosphate, however the diazepam capsule formulations used dibasic calcium
phosphate as diluent prepared by solvent deposition method gave the superior dissolution rate over microcrystalline cellulose.

It was observed that the color of diazepam-dibasic calcium phosphate dihydrate mixture was changed from white to yellowish color after storage at room temperature for about two weeks, however the amount of diazepam in the mixturc wos not lowered. The change in color of diazepam-diluent mixture was not found in the other three diluents after storage at the same conditions.

ศูนย์วิทยทรัพยากร
จุฬาลงกรณ์มหาวิทยาลัย

