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CHAPTER I

INTRODUCTION

All graphs considered in this thesis are undirected and simple. Let G be a

graph. The square of G, denoted G2, is the graph obtained from G by adding

edges joining those pairs of vertices whose distance from each other in G is two.

Although it is not true in general that the square of a graph is hamiltonian, in

1969, Plummer [9] and Nash-Williams [13] conjectured independently that G2

is hamiltonian if G contains no cut-vertices. In 1974, Fleischner [7] proved the

conjecture in the affirmative.

A graph is Hamilton-connected if any two vertices are connected by a Hamilton

path. In 1974, Chartrand et al. [3] showed that if G is 2-connected, then G2 is

Hamilton-connected. A graph is panconnected if, between any pair of distinct

vertices, it contains a path of each length at least the distance between the two

vertices. In 1976, Faudree and Schelp [5] showed that if G is 2-connected, then

G2 is panconnected. Clearly, a panconnected graph is Hamilton-connected but

not conversely. However, in the square of graphs, Fleischner [8] showed that these

two concepts are equivalent in 1976. He proved that for a connected graph G, G2

is panconnected if and only if G2 is Hamilton-connected.

Suppose G is connected. Then the number |E(G)|− |V (G)|+1, denoted c(G),

is called the cyclomatic number of G. Thus, c(G) = 0 if and only if G is a tree.

Also, c(G) = 1 if and only if G is a unicyclic graph, a graph with exactly one cycle.

A cut-edge xy of G is termed an internal cut-edge if both the degrees of x and y

in G are at least 2. In 2009, Chia et al. [4] showed that if G2 is panconnected,

then G has no internal cut-edge. An immediate consequence of this result is that,

if G has n(≥ 3) vertices and c(G) = 0, then G2 is panconnected if and only if

G ∼= K1,n−1, the tree with all vertices but one of degree 1.
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Chia et al. [4] also characterized all graphs G such that c(G) = 1 and G2 is

panconnected. They proved that for a unicyclic graph G, G2 is panconnected if

and only if G is a broken SF graph, a graph consisting of only one cycle together

with a set of independent vertices joining to each vertex on the cycle and some

set of independent vertices is empty.

Motivated by these, we would like to characterize all graphs G such that

c(G) = k for some integer k ≥ 2 and G2 is panconnected.

In Chapter II, we give preliminaries and literature reviews. We show in Chap-

ter III that if c(G) = 2 and G2 is panconnected, then G must be a member of

the two families of graphs defined in Section 3.1. We then determine all graphs

G such that c(G) = 2 and G2 is panconnected. In Chapter IV, we first show

that if c(G) = 3 and G2 is panconnected, then G is one of eight families of graphs

defined in Section 4.1. Next, three of these eight families of graphs are generalized

to larger families of graphs. Finally, necessary and sufficient conditions for these

three larger families of graphs to have panconnected square are determined.



CHAPTER II

PRELIMINARIES AND LITERATURE REVIEWS

This chapter gives definitions which will be used in our work and then literature

reviews are shown.

2.1 Definitions and examples

All definitions not defined in this thesis can be found in [15].

A Hamilton path of a graph G is a path that includes all its vertices. A

Hamilton cycle of G is a cycle that includes all its vertices. If G obtains a Hamilton

cycle, then G is called hamiltonian.

Figure 2.1(a) shows a hamiltonian graph with a Hamilton cycle indicated in

thick edges and Figure 2.1(b) shows a graph with a Hamilton path indicated in

thick edges and this graph is not hamiltonian.

(a) (b)

Figure 2.1: (a) A graph with a Hamilton cycle and (b) a graph with a Hamilton

path

It is natural to look for graphs with many edges which are hamiltonian.

The k-power of G, denoted Gk, is the graph with vertex set V (G) and two

vertices u and v are adjacent in Gk if and only if d(u, v) ≤ k where d(u, v) is the

length of a shortest path from u to v in G.
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In Figure 2.2, (a) shows a graph G while (b) shows G2 and (c) shows G3.

(a) (b) (c)

Figure 2.2: (a) G, (b) G2 and (c) G3

It is not true in general that the square of a graph is hamiltonian. Figure 2.3

shows a graph G such that G2 is not hamiltonian while G3 is hamiltonian.

G G2 G3

Figure 2.3: A graph G such that G2 is not hamiltonian while G3 is hamiltonian

A graph is pancyclic if it contains a cycle of each length at least three.

Figure 2.4(a) shows a pancyclic graph. Clearly, a pancyclic graph is a hamil-

tonian graph. The converse is not true as shown in Figure 2.4(b).

Based on the definition of a pancyclic graph, we have definitions of the specific

graphs involving every vertex (respectively edge).

A graph is vertex- (respectively edge-) pancyclic if every of its vertex (respec-

tively edge) is in a cycle of every length.

Figure 2.5(a) shows an edge-pancyclic graph. Clearly, an edge-pancyclic graph
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(a) (b)

Figure 2.4: (a) A pancyclic graph and (b) a hamiltonian graph which is not

pancyclic

is vertex-pancyclic, which of course is pancyclic. The converse is not true. The

graph in Figure 2.5(b) is a vertex-pancyclic graph but it is not an edge-pancyclic

graph.

(a) (b)

Figure 2.5: (a) An edge-pancyclic graph and (b) a vertex-pancyclic graph which

is not edge-pancyclic

A graph is Hamilton-connected if there is a Hamilton path between any pair

of distinct vertices.

Figure 2.6(a) shows a Hamilton-connected graph. Clearly, if G is a graph with

|V (G)| > 2, then a Hamilton-connected graph is necessary hamiltonian, but the

converse is not true as shown in Figure 2.6(b).

A graph is panconnected if, between any pair of distinct vertices, it contains a

path of each length at least the distance between the two vertices.
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(a) (b)

Figure 2.6: (a) A Hamilton-connected graph and (b) a hamiltonian graph which

is not Hamilton-connected

Figure 2.7(a) shows a panconnected graph. Clearly, a panconnected graph is

pancyclic and it is Hamilton-connected and hence it is hamiltonian. The converses

are not true. Figure 2.7(b) shows a pancyclic graph which is not panconnected

and Figure 2.6(a) shows a Hamilton-connected graph which is not panconnected.

(a) (b)

Figure 2.7: (a) A panconnected graph and (b) a pancyclic graph which is not

panconnected

2.2 Literature reviews

In 1960, Sekanina [14] and Karaganis [12] obtained a result concerning G3.

Theorem 2.1. ([14],[12]) If G is a connected graph, then G3 is Hamilton-connected.

It is not true in general that G2 is hamiltonian (see Figure 2.3). In 1969,

Plummer [9] and Nash-Williams [13] raised a conjecture independently which is
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known as the Plummer-Nash-Williams conjecture.

The Plummer-Nash-Williams conjecture If a graph G contains no cut-

vertices, then G2 is hamiltonian.

In 1971, Harary and Schwenk [10] characterized trees T such that T 2 is hamil-

tonian.

Theorem 2.2. ([10]) Let T be a tree on n (≥ 3) vertices. Then T 2 is hamiltonian

if and only if T does not contain S(K1,3) as a subgraph, where S(K1,3) is the graph

obtained by subdividing each edge of the complete bipartite graph K1,3 exactly once.

In 1974, Fleischner [7] proved the Plummer-Nash-Williams conjecture in the

affirmative.

Theorem 2.3. ([7]) The square of every 2-connected graph is hamiltonian.

In 1974, under the same condition of the Plummer-Nash-Williams conjecture,

Chartrand et al. [3] proved the result involving blocks.

Theorem 2.4. ([3]) The square of a block is Hamilton-connected.

In 1975, Alavi and Williamson [2] gave a result concerning G3.

Theorem 2.5. ([2]) If G is a connected graph, then G3 is panconnected.

In 1976, Faudree and Schelp [5] obtained a result which is stronger than the

Plummer-Nash-Williams conjecture.

Theorem 2.6. ([5]) The square of a block is panconnected.

Later, Fleischner [8] showed that in the case of square of connected graphs these

two properties, Hamilton-connectedness and panconnectedness, are equivalent.

Theorem 2.7. ([8]) Let G be a connected graph. Then

(i) G2 is vertex-pancyclic if and only if G2 is hamiltonian.

(ii) G2 is panconnected if and only if G2 is Hamilton-connected.
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In 1985, Hendry and Vogler [11] obtained a sufficient condition for a graph

which is not a tree such that the square is vertex-pancyclic based on the subgraph

S(K1,3).

Theorem 2.8. ([11]) Let G be a connected graph on 3 or more vertices which

does not contain S(K1,3) as a subgraph. Then G2 is vertex-pancyclic.

The result of Hendry and Vogler [11] (in Theorem 2.8) motivated Abderrezzak

et al. [1] to look for weaker conditions based on the subgraph S(K1,3) for which

the square of a connected graph remains hamiltonian.

Theorem 2.9. ([1]) If G is a connected graph such that every induced S(K1,3)

has at least three edges in a block of degree at most 2, then G2 is hamiltonian.

In 2009, Chia et al. [4] obtained a sufficient condition for a graph which

contains one or more cut-vertices such that the square is panconnected.

Theorem 2.10. ([4]) Let G be a connected graph having only one cut-vertex.

Then G2 is panconnected.

Theorem 2.11. ([4]) Suppose G is a connected graph with only two cut-vertices.

If the block that contains the two cut-vertices is hamiltonian, then G2 is pancon-

nected.

Chia et al. [4] also investigated the panconnectedness of graphs having at most

one cycle.

Theorem 2.12. ([4]) Let G be a graph. If G2 is panconnected or edge-pancyclic,

then G contains no internal cut-edge.

Corollary 2.13. ([4]) Let T be a tree on n(≥ 3) vertices. Then the following are

equivalent.

(i) T 2 is panconnected;

(ii) T 2 is edge-pancyclic;

(iii) T is a star K1,n−1.
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Theorem 2.14. ([4]) Let G be a unicyclic graph. Then G2 is panconnected if and

only if

(i) G contains no internal cut-edges and

(ii) G contains vertices of degree 2.

Corollary 2.15. ([4]) Let G be a unicyclic graph. Then the following are equiv-

alent.

(i) G2 is panconnected;

(ii) G2 is edge-pancyclic;

(iii) G is a broken SF graph.

Corollaries 2.13 and 2.15 characterize all graphs G with c(G) = 0 and c(G) = 1

respectively such that G2 is panconnected.



CHAPTER III

GRAPHS WITH CYCLOMATIC NUMBER TWO

HAVING

PANCONNECTED SQUARE

In this chapter, we define 2 families of graphs with cyclomatic number 2 and

obtain a necessary condition for graphs with cyclomatic number 2 whose square is

panconnected. Then, we characterize all graphs with cyclomatic number 2 whose

square is panconnected.

3.1 A necessary condition

Let G be a connected graph. The cyclomatic number of G, denoted c(G), is

defined to be |E(G)| − |V (G)| + 1.

Figure 3.1 shows graphs with different cyclomatic numbers.

G1

(a)

G2

(b)

G3

(c)

G4

(d)

Figure 3.1: (a) c(G1) = 0, (b) c(G2) = 1, (c) c(G3) = 2 and (d) c(G4) = 3
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Clearly, c(G) = 0 if and only if G is a tree and c(G) = 1 if and only if G is a

unicyclic graph, a graph with exactly one cycle.

A cut-edge xy of a graph G is termed an internal cut-edge if both the degrees

of x and y in G are at least 2.

Figure 3.2 shows a graph with an internal cut-edge indicated in the thick edge.

Figure 3.2: A graph with an internal cut-edge indicated in the thick edge

An SF graph, denoted G(m) where m ≥ 3, is a graph obtained from a cycle

u1u2 . . . umu1 by joining each vertex ui to a set of independent vertices Aui
. That

is, Aui
is the pendent set of ui. If for some 1 ≤ i ≤ m, Aui

is an empty set, then

we say that the SF graph is broken. Each vertex ui is termed a c-vertex of G(m).

Note that a broken SF graph has a vertex of degree 2.

In Figure 3.3, (a) and (b) show some SF graphs G(3) and (c), (d) and (e)

show some broken SF graphs G(4).

(a) (b)

(c) (d) (e)

Figure 3.3: (a) and (b) are some G(3) and (c), (d) and (e) are some G(4)

Let G(m) and G(n) be two SF graphs whose cycles are x1x2 . . . xmx1 and

y1y2 . . . yny1 respectively. Let G(m,n) denote the graph obtained from G(m)

and G(n) by identifying the two vertices x1 and y1. In this case, we may take
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Ax1
= Ay1

. We say that G(m,n) is broken if there exist i, j ≥ 2 such that Axi
= ∅

and Ayj
= ∅.

Figure 3.4(a) shows a non-broken G(3, 3) and Figure 3.4(b) shows a broken

G(3, 4).

(a) (b)

Figure 3.4: (a) G(3, 3) and (b) G(3, 4)

Let Pm = x1x2 . . . xm, Pn = y1y2 . . . yn and Pr = z1z2 . . . zr denote three paths

on m,n and r vertices respectively, where 2 ≤ m ≤ n, r. Identifying the end

vertices of three paths so that x1 = y1 = z1 = x and xm = yn = zr = y, we obtain

the generalized θ-graph. If m = 2, then we require that n, r ≥ 3. Let Θ(m,n, r)

denote the graph obtained by joining each vertex v of the generalized θ-graph to a

new set of independent vertices Av. That is, Av is the pendent set of v. A vertex

v in Θ(m,n, r) is called a t-vertex if v ∈ {x, y}.

Figure 3.5(a) shows Θ(2, 4, 5) and Figure 3.5(b) shows Θ(3, 4, 5).

x

y

(a)

x

y

(b)

Figure 3.5: (a) Θ(2, 4, 5) and (b) Θ(3, 4, 5)
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Note that the union of any two paths of Pm, Pn and Pr together with all their

pendent sets forms an SF graph.

It is routine to check that G(m,n) and Θ(m,n, r) have cyclomatic number 2.

In [4], Chia et al. gave a necessary condition for graphs whose square is

panconnected.

Theorem 3.1. ([4]) Let G be a graph such that G2 is panconnected. Then G has

no internal cut-edge.

We now obtain a necessary condition for graphs with cyclomatic number 2

whose square is panconnected.

Lemma 3.2. Let G be a graph with c(G) = 2. If G2 is panconnected, then G is

either the graph G(m,n) or else the graph Θ(m,n, r).

Proof. Since c(G) = 2, it is clear that G is obtained from a unicyclic graph H by

adding a new edge uv to two non-adjacent vertices u and v of H. Then either uv

creates (i) one or (ii) two extra cycles in H + uv.

Since G2 is panconnected, G has no internal cut-edge (by Theorem 3.1). As

such, Case (i) implies that G is the graph G(m,n) while Case (ii) implies that G

is the graph Θ(m,n, r).

Remark 3.3. Suppose v is a vertex of a graph G. If Av, which is a pendent set of

vertex v, is not empty, then Av induces a complete subgraph in G2. Let Pv denote

a Hamilton path in this induced subgraph. In what follows, very often, we shall be

dealing with subpath of the form vPvw or zPvw in G2, where z and w are vertices

adjacent to v and z, w 6∈ Av. In the event that Av is an empty set, then Pv is an

empty path and the corresponding subpath of the form vPvw or zPvw reduces to

the edge vw or zw respectively.

Suppose u and v are two vertices in a graph G. In what follows, whenever

we use P (u, v) = ua1a2 · · · an−1anv to denote a path in G from u to v, then by

P (v, u) we mean the path vanan−1 · · · a2a1u.
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3.2 G(m, n)

In this section, we obtain a necessary and sufficient condition for the graph

G(m,n) to have panconnected square.

In [4], Chia et al. characterized all graphs with cyclomitic number 1 having

panconnected square.

Theorem 3.4. ([4]) Let G be a unicyclic graph. Then G2 is panconnected if and

only if G is a broken SF graph.

Theorem 3.5. Let G denote the graph G(m,n). Then G2 is panconnected if and

only if G is broken.

Proof. To verify the necessary condition, suppose that G is not broken and assume

that Axi
6= ∅ for all i ≥ 2. We just need to show that there is no Hamilton path

in G2 having x2 and x3 as end vertices.

Let H denote the graph obtained from G2 by deleting the vertices x2 and x3

together with all edges incident to them. Notice that, in H, the vertices in Ax2

(respectively Ax3
) are adjacent only to the vertex x1 (respectively x4, or x1 if

m = 3). This means that if there is a Hamilton path P (x2, x3) in G2 with x2 and

x3 as end vertices, then P (x2, x3) must contain the subpaths uPx2
x1 and vPx3

x4

where {u, v} = {x2, x3}. (Note that, when m = 3, vPx3
x4 = vPx3

x1).

Now, in order that P (x2, x3) covers all the vertices in G1, the subpath vPx3
x4

must be extended to a subpath of the form vPx3
x4Px4

· · · xm−1Pxm−1
xmPxm

x1. But

this is a contradiction.

Next we assume that G is broken. Then there exist i, j ≥ 2 such that Axi
= ∅

and Ayj
= ∅. Let u and v be two vertices in G. We shall show that there is a

Hamilton path P (u, v) in G2 having u and v as end vertices.

Case (1): u is in G1 and v is in G2.

By Theorem 3.4, there is a Hamilton path P (respectively Q) in G2
1 (respec-

tively G2
2) with u and x1 (respectively y1 and v) as end vertices. As such PQ is a

Hamilton path in G2.
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Case (2): u and v are both in G1.

Without loss of generality, assume that u = xk and v = xl for some 1 ≤ k <

l ≤ m.

Case (2.1): 2 ≤ i ≤ k < l ≤ m.

Let L = xkPxk
xk−1Pxk−1

xk−2Pxk−2
· · · xi+1Pxi+1

xiPxi−1
xi−1Pxi−2

xi−2

· · · x2Px1
x1Pxm

xmPxm−1
xm−1 · · · xl+1Pxl

xl−1Pxl−2
xl−3.

If k and l are of different parity, then take M to be the following Hamilton

path in G2
1 with xk and xl as end vertices

L · · · xk+2Pxk+1
xk+1Pxk+2

xk+3Pxk+4
xk+5 · · · xl−2Pxl−1

xl.

If k and l are of the same parity, then take M to be the following Hamilton

path in G2
1 with xk and xl as end vertices

L · · · xk+3Pxk+2
xk+1Pxk+1

xk+2Pxk+3
xk+4 · · · xl−2Pxl−1

xl.

In the event that l = m, M reduces to xkPxk
xk−1Pxk−1

xk−2Pxk−2
· · · xi+1Pxi+1

xiPxi−1
xi−1Pxi−2

xi−2 · · · x2Px1
x1Pxm

xm.

Let N denote the following path in G2
2 with y2 and yn as end vertices

y2Py2
y3Py3

· · · yj−1Pyj−1
yjPyj+1

yj+1Pyj+2
· · · yn−1Pyn

yn. (∗)

Let M1 (respectively M2) denote the subpath of M with xk and x2 (respectively

x1 and xl) as end vertices. Since x2y2 is an edge in G2, we see that M1NPx1
M2 is

a suitable Hamilton path P (u, v) in G2.

Case (2.2): 1 ≤ k < i < l ≤ m.

If l < m, let

L = xk−3Pxk−2
xk−1Pxk

xk+1Pxk+1
xk+2Pxk+2

· · · xi−1Pxi−1
xiPxi+1

xi+1Pxi+2
xi+2 · · ·Pxl−1

xl−1Pxl
xl+1Pxl+2

xl+3.

Further, let L1 denote the following path

xm−3Pxm−2
xm−1Pxm

xmPxm−1
xm−2 · · · xl+2Pxl+1

xl

or the path

xm−2Pxm−1
xmPxm

xm−1Pxm−2
xm−3 · · · xl+2Pxl+1

xl
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depending on whether l and m are of the same or different parity.

If l = m, let

L2 = xk−3Pxk−2
xk−1Pxk

xk+1Pxk+1
xk+2Pxk+2

· · · xi−1Pxi−1
xiPxi+1

xi+1Pxi+2
xi+2 · · · xl−1Pxl

xl.

(i) Suppose k = 1.

If l = m, then we take

M = x1Px1
x2Px2

x3Px3
· · · xi−1Pxi−1

xiPxi+1
xi+1Pxi+2

xi+2 · · · xl−1Pxl
xl

to be the Hamilton path in G2
1 with xk and xl as end vertices. If l < m, then we

take

M = x1Px1
x2Px2

x3Px3
· · · xi−1Pxi−1

xiPxi+1
xi+1Pxi+2

xi+2 · · · xl−1Pxl
xl+1Pxl+2

xl+3 · · ·L1.

(ii) Now consider the case k > 1.

Suppose k is odd. Then take M to be the Hamilton path in G2
1 with xk and

xl as end vertices where

M = xkPxk−1
xk−2 · · · x3Px2

x1Px1
x2Px3

· · ·L · · ·L1 if l < m

and

M = xkPxk−1
xk−2 · · · x3Px2

x1Px1
x2Px3

· · ·L2 if l = m.

Suppose k is even. Then take M to be the Hamilton path in G2
1 with xk and

xl as end vertices where

M = xkPxk−1
xk−2 · · · x4Px3

x2Px1
x1Px2

x3 · · ·L · · ·L1 if l < m

and

M = xkPxk−1
xk−2 · · · x4Px3

x2Px1
x1Px2

x3 · · ·L2 if l = m.

Let N denote the path in G2
2 with y2 and yn as end vertices as defined in (∗)

(of Case (2.1)).

Suppose k = 1. Then let P (u, v) be the Hamilton path obtained from M by

replacing x1 with x1N .

Suppose k > 1.
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If k is odd, let M1 (respectively M2) denote the subpath of M from xk to

x1 (respectively Px1
to xl). Since ynPx1

x2 is a path in G2, we see that M1NM2

(where x1Px1
is replaced by ynPx1

) is a suitable Hamilton path P (u, v) in G2.

If k is even, let M1 (respectively M2) denote the subpath of M from xk to Px1

(respectively x1 to xl). Since x2Px1
y2 is a path in G2, we see that M1NM2 (where

Px1
x1 is replaced by Px1

y2) is a suitable Hamilton path P (u, v) in G2.

The case where u or v lies on some pendent set Axi
or Ayj

can be easily reduced

to the above cases.

3.3 Θ(m, n, r)

In this section, we obtain a lemma which is a necessary condition for the graph

Θ(m,n, r) to have panconnected square. Then a necessary and sufficient condition

for Θ(m,n, r) to have panconnected square is determined.

We first give a well-known fact which is a necessary condition for the existence

of a Hamilton path in a graph.

Theorem 3.6. ([15]) Suppose a graph G has a Hamilton path. Then the deletion

of any s vertices from it will result in G with at most s + 1 components.

Let A be a subset of the vertex set of a graph G and let G[A] denote the

subgraph of G induced by the set A.

Lemma 3.7. Let G denote the graph Θ(m,n, r) where 2 ≤ m < n, r. Suppose G

has no vertex of degree 2. Then G2 is not panconnected unless m = 2 and G has

a t-vertex such that its pendent set is empty.

Proof. We shall show that there is no Hamilton path in G2 having x1 and xm as

end vertices unless m = 2 and G has a t-vertex such that its pendent set is empty.

First, assume that there is no t-vertex such that its pendent set is empty in G.

Let H denote the graph obtained from G2 by deleting the vertices x1 and xm

together with all edges incident to them.
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Let S = {x2, . . . , xm−1, y2, . . . , yn−1, z2, . . . , zr−1}. Then |S| = m+n+r−6 and

H−S has m+n+r−4 components, H[Axi
], H[Ayj

], H[Azk
] where i = 1, 2, . . . ,m,

j = 2, . . . , n − 1 and k = 2, . . . , r − 1. This implies that H has no Hamilton path

and hence G2 has no Hamilton path with x1 and xm as end vertices unless Ax1
= ∅

or Axm
= ∅.

Now, assume that Ax1
= ∅ and m ≥ 3. Suppose there is a Hamilton path

P (x1, xm) in G2 having x1 and xm as end vertices. Then, without loss of generality,

we may assume that P (x1, xm) must begin with a subpath of the form

M1 = x1Px2
x2Px3

x3 · · · xm−2Pxm−1
xm−1, or

M2 = x1Px2
x3x2Px3

x4Px4
· · · xm−1Pxm−1

, or

M3 = x1x3Px2
x2Px3

x4Px4
· · · xm−1Pxm−1

, or

M4 = x1x2Px2
x3Px3

x4Px4
· · · xm−1Pxm−1

in order that P (x1, xm) covers all the vertices in Pm (except xm) and all the

corresponding pendent sets. Since M2, M3 and M4 each cannot be extended to

cover the rest of the vertices in G2, it follows that P (x1, xm) must take the form

M1L, where L is either the subpath Li or the subpath Pxm
Li, for some i ∈ {1, 2}.

Here L1 = yn−1Pyn−1
yn−2Pyn−2

· · · y2Py2
and L2 = zr−1Pzr−1

zr−2Pzr−2
· · · z2Pz2

.

Either case is a contradiction because the resulting path cannot be extended

to cover the rest of the vertices of G2 (because the vertices in Py2
are not adjacent

to those in Pz2
and vice versa).

We now obtain necessary and sufficient conditions for the graph Θ(m,n, r) to

have panconnected square.

Theorem 3.8. Let G denote the graph Θ(m,n, r).

(i) Suppose m = 2 and n, r ≥ 3. Then G2 is panconnected if and only if G has

a vertex w such that Aw is an empty set.

(ii) Suppose m,n, r ≥ 3. Then G2 is panconnected if and only if G has a vertex

of degree 2.

Proof. The necessary part has been established in Lemma 3.7. We now prove the

sufficiency.
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(i) Suppose m = 2. Let H be the graph obtained from G by deleting the edge

x1xm. Then H is an SF graph. Since G has a vertex w such that Aw is an empty

set, we see that H is a broken SF graph and H2 is panconnected by Theorem 3.4.

Consequently, G2 is also panconnected.

(ii) Suppose m,n, r ≥ 3. Let u and v be two vertices in G. We shall show

that there is a Hamilton path P (u, v) in G2 having u and v as end vertices. We

can just assume that u and v are in Pm ∪ Pn ∪ Pr (since the other cases can be

reduced to this case).

Recall that x and y are the two common vertices in G where all the end vertices

of the three paths Pm,Pn and Pr have been identified.

Case (1): u and v are on different paths of G.

In this case, since G has a vertex of degree 2, there exist two paths, say Pm

and Pn whose union (together with their pendent sets) form a broken SF graph

W . There is no loss of generality to assume that u is in W and v is in Pr.

By Theorem 3.4, there is a Hamilton path P1(u, x) in W 2 with u and x as end

vertices. We wish to extend P1(u, x) to a Hamilton path in G2.

Suppose v = zk for some 2 ≤ k ≤ r − 1.

If k = r − 1, then let P2(x, v) = z1Pz2
z2Pz3

z3 · · ·Pzr−2
zr−2Pzr−1

zr−1.

If k < r − 1, let

L1 = z1Pz2
z2Pz3

z3 · · · zk−2Pzk−1
zk−1Pzk

zk+1 and L2 = Pzk+3
zk+2Pzk+1

zk.

Also, let P2(x, v) denote the following path (which covers all the vertices in

G − W ) with end vertices x and v

L1Pzk+2
zk+3 · · · zr−3Pzr−2

zr−1Pzr−1
zr−2Pzr−3

· · ·L2

or

L1Pzk+2
zk+3 · · · zr−2Pzr−1

zr−1Pzr−2
zr−3 · · ·L2

depending on whether k and r have the same or different parity.

We can then take P1(u, x)P2(x, v) to be a suitable Hamilton path P (u, v).

Case (2): u and v are on the same path of G.

Suppose u and v are on the path Pr say u = zk and v = zl.
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Consider the case 2 ≤ k < l ≤ r − 1 first.

Case (2.1): Pr has no vertex of degree 2.

Let P1(y, v) denote the subpath zrPzr−1
zr−1Pzr−2

· · · zl−1Pzl
zl. Further, let L1 =

zkPzk+1
zk+2Pzk+3

zk+4 and L2 = zk+1Pzk
zk−1Pzk−1

zk−2Pzk−2
· · · z2Pz2

z1.

Now let P2(u, x) denote the subpath

L1 · · · zl−4Pzl−3
zl−2Pzl−1

zl−1Pzl−2
zl−3Pzl−4

· · ·L2

or the subpath

L1 · · · zl−3Pzl−2
zl−1Pzl−1

zl−2Pzl−3
zl−4Pzl−5

· · ·L2

depending on whether k and l are of the same or different parity.

Let W be the subgraph obtained from G by deleting all vertice of Pr − {x, y}

together with their pendent sets. Then W is a broken SF graph (because Pr has

no vertex of degree 2). Hence there is a Hamilton path P3(z1, zr) in W 2 with

z1 and zr as end vertices. Then P2(u, x)P3(z1, zr)P1(y, v) = P (u, v) is a suitable

Hamilton path in G2.

Case (2.2): Pr has some vertices of degree 2.

Suppose Azi
= ∅ with i 6∈ {1, r}.

(i) Suppose 1 < i < k. Then let M1 = Pzr−1
zr−1Pzr−2

zr−2 · · ·Pzl+1
zl+1Pzl

zl and

L1 = zk+1Pzk
zk−1Pzk−1

zk−2Pzk−2
· · ·Pzi+1

ziPzi−1
zi−1Pzi−2

· · · z2Pz1
.

Further let M2 denote the following path

zkPzk+1
zk+2 · · ·Pzl−3

zl−2Pzl−1
zl−1Pzl−2

zl−3Pzl−4
zl−5 · · ·L1

or the path

zkPzk+1
zk+2 · · ·Pzl−4

zl−3Pzl−2
zl−1Pzl−1

zl−2Pzl−3
zl−4 · · ·L1

depending on whether k and l have the same or different parity.

In the event that k = l − 1, M2 reduces to zkPzk
zk−1Pzk−1

· · ·Pzi+1
ziPzi−1

zi−1

Pzi−2
· · · z2Pz1

.
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Then we see that G − (M1 ∪ M2) = W is a broken SF graph. By Theorem

3.4, W 2 has a Hamilton path P3(z1, zr) with z1 and zr as end vertices. As such

M2P3(z1, zr)M1 is a suitable Hamilton path P (u, v).

(ii) Suppose i = k. Then let M1 = Pz1
z2Pz2

z3 · · · zk−1Pzk−1
zk and

L1 = zl−3Pzl−2
zl−1Pzl

zl+1Pzl+1
zl+2Pzl+2

· · · zr−1Pzr−1
.

Further let M2 denote the following path

zlPzl−1
zl−2Pzl−3

· · · zk+2Pzk+1
zk+1Pzk+2

zk+3Pzk+4
zk+5 · · ·L1

or

zlPzl−1
zl−2Pzl−3

· · · zk+3Pzk+2
zk+1Pzk+1

zk+2Pzk+3
zk+4 · · ·L1

depending on whether k and l have the same or different parity.

In the event that k = l − 1, M2 reduces to zlPzl
zl+1Pzl+1

· · · zr−1Pzr−1
.

Then G − (M1 ∪ M2) = W is a broken SF graph. By Theorem 3.4, W 2 has a

Hamilton path P3(z1, zr) with z1 and zr as end vertices. As such M2P3(zr, z1)M1

is a suitable Hamilton path P (v, u).

(iii) Suppose 2 ≤ k < i < l ≤ r − 1. Then let

L1 = zk−3Pzk−2
zk−1Pzk

zk+1Pzk+1
zk+2 · · · zi−1Pzi−1

ziPzi+1
zi+1Pzi+2

zi+2. Also, let

M1 denote the following path

zkPzk−1
zk−2Pzk−3

zk−4 · · · z5Pz4
z3Pz2

z2Pz3
z4Pz5

· · ·L1

or

zkPzk−1
zk−2Pzk−3

zk−4 · · ·Pz5
z4Pz3

z2Pz2
z3Pz4

z5 · · ·L1

depending on whether k is odd or even.

Now if l and r are of the same parity, then let

L2 = Pzr−1
zr−2Pzr−3

zr−4 · · · zl+2Pzl+1
zl and L3 = zl−2Pzl−1

zl−1Pzl
zl+1 · · · zr−1Pzr

otherwise let

L2 = Pzr
zr−1Pzr−2

zr−3 · · · zl+2Pzl+1
zl and L3 = zl−2Pzl−1

zl−1Pzl
zl+1 · · · zr−2Pzr−1

.

Finally, let P1(zk) = M1 · · ·L3. Then we see that G − (P1(zk) ∪ L2) = W is

a broken SF graph. So, by Theorem 3.4, W 2 has a Hamilton path P (zr, z) with
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zr and z as end vertices , where z is a vertex in W and z is adjacent to zr. In

this case, P1(zk)P (z, zr)L2 or P1(zk)P (zr, z)L2 (depending on whether l and r are

of the same or different parity) is a suitable Hamilton path P (u, v) (because z is

adjacent to a vertex of Pzr
and zr is adjacent to a vertex of Pzr−1

).

We now consider the remaining case where k = 1 or l = r.

Suppose l = r and k ≥ 2. Let P1(zk) and P (z, zr) be as defined in Case(2.2)(iii).

Then P1(zk)P (z, zr) is a Hamilton path in G2 with zk and zr as end vertices .

Suppose l = r and k = 1. Since Azi
is an empty set where 2 ≤ i ≤ r − 1, we

may take P (u, v) to be the following Hamilton path

z1Py2
y2Py3

y3 · · · yn−2Pyn−1
yn−1Pyn

zr−1Pzr−1
zr−2Pzr−2

· · ·

zi+1Pzi+1
ziPzi−1

zi−1 · · · z3Pz2
z2Pz1

x2Px2
x3Px3

· · ·Pxm−2
xm−1Pxm−1

zr.

This finishes the proof.



CHAPTER IV

GRAPHS WITH CYCLOMATIC NUMBER THREE

HAVING

PANCONNECTED SQUARE

In this chapter, we present 8 families of graphs denoted F1,F2, . . . ,F8 each

with cyclomatic number 3 having no internal cut-edges. It turns out that these are

the only such families of graphs whose square could be panconnected (see Proposi-

tion 4.1). Furthermore, we define three larger families of graphs G(m1,m2, . . . ,mr),

H(r, s, t) and Θ(m1,m2, . . . ,mr) which contain F1,F2 and F5 respectively as sub-

families. We then determine necessary and sufficient conditions for each of these

larger families of graphs to have panconnected square.

4.1 A necessary condition

Figure 4.1 depicts a list of 8 graphs each with cyclomatic number 3 having no

internal cut-edge.

X1 X2 X3 X4

X5 X6 X7 X8

Figure 4.1: A list of 8 graphs with cyclomatic number 3.
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It is routine to check that these are the only smallest simple graphs with

cyclomatic number 3 having neither internal cut-edges nor vertices of degree 1.

To each of these graphs we do the following operations:

(i) Subdivide any edge an arbitrary number of times. This is equivalent to

replacing any edge by a path of arbitrary length. This operation yields many

graphs with cyclomatic number 3.

(ii) To each resulting graph G obtained in (i), and to each vertex v of G we

join a new set of independent vertices Av, that is the pendent set of v, (which

may be empty).

Let C3 be the set of all graphs obtained by performing the operations (i) and

(ii) above to every graph in Figure 4.1.

We now obtain a necessary condition for graphs with cyclomatic number 3

whose square is panconnected.

Proposition 4.1. Suppose G is a graph with c(G) = 3. If G2 is panconnected,

then G ∈ C3.

Proof. Clearly a graph has cyclomatic number 0 if and only if it is a tree. Hence

graphs with cyclomatic number 1 are those that are obtained from the trees by

adding a new edge which are unicyclic graphs. Likewise, graphs with cyclomatic

number 2 are those that are obtained from unicyclic graphs by adding a new edge.

Since c(G) = 3, G is obtained from a graph with cyclomatic number 2 by

adding a new edge to two non-adjacent vertices. Since G2 is panconnected, G

has no internal cut-edge by Theorem 3.1. If we delete all vertices of degree 1 and

then contract those edges that are incident to vertices of degree 2 in the resulting

graph until we get a graph H with neither multiple edges nor loops, then H must

be one of those graphs shown in Figure 4.1. This shows that G ∈ C3.

For each i = 1, 2, . . . , 8, let Fi denote the set of all graphs obtained from the

graph Xi (in Figure 4.1) by applying the operations (i) and (ii) described above.

Then clearly, C3 = ∪8
i=1Fi.
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We focus our attention on 3 families F1, F2 and F5 of graphs. We determine

necessary and sufficient conditions for these families of graphs to have pancon-

nected square.

4.2 G(m1, m2, . . . , mr)

Suppose r ≥ 2. Let G(m1), G(m2), . . . , G(mr) be SF graphs. For each i = 1,

2, . . . , r, let zi be a c-vertex in G(mi). Let G(m1,m2, . . . ,mr) denote the graph

obtained by identifying all the c-vertices z1, z2, . . . , zr into a single vertex x. We

call G(m1,m2, . . . ,mr) a bouquet of r SF graphs. The graph G(m1,m2, . . . ,mr)

is said to be broken if for every i = 1, 2, . . . , r, there exists a vertex z in G(mi)

where z 6= x and Az = ∅.

Note that each of r SF graphs G(m1), G(m2), . . . , G(mr) of a broken G(m1,m2,

. . . ,mr) has a vertex of degree 2.

Figure 4.2(a) shows G(3, 3, 4) and Figure 4.2(b) shows G(4, 4, 4, 4, 4) which is

broken.

x

(a) (b)

x

Figure 4.2: (a) G(3, 3, 4) and (b) G(4, 4, 4, 4, 4)

Clearly, F1 is the set of all bouquet of 3 SF graphs. Bouquet of 2 SF graphs

having panconnected square are completely characterized in Theorem 3.5.

The following proposition will be needed for the necessary part of the proof of
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main results (Theorems 4.5 and 4.6).

Proposition 4.2. Let G(m) denote an SF graph with cycle x1x2 . . . xmx1. Let

H1 and H2 be two graphs with |V (H1)| ≥ 2 and |V (H2)| ≥ 2. Let G be a graph

obtained by

(i) identifying any vertex of H1 with the vertex x1 and

(ii) identifying any vertex of H2 with xj for some 2 ≤ j ≤ m of G(m).

If Axi
6= ∅, for every i 6∈ {1, j}, then G2 is not panconnected.

Proof. Since we can relabel the vertices (in the reverse order if necessary), we may

assume without loss of generality that 2 ≤ j ≤ m − 1.

We shall show that there is no Hamilton path in G2 having x1 and xm as end

vertices. Let Q be the graph obtained from G2 by deleting x1 and xm.

Let Q1 denote the graph obtained from Q by deleting m−2 vertices x2, x3, . . . ,

xm−1. Then there are at least m components in Q1, namely Q1[Ax2
], . . . , Q1[Axj−1

],

Q1[(Axj
∪H2)−xj], Q1[Axj+1

], . . . , Q1[Axm
] and Q1[(Ax1

∪H1)−x1]. Thus Q1 has

no Hamilton path and hence G2 has no Hamilton path having x1 and xm as end

vertices.

Suppose x is a vertex of a graph G, we let N(x) denote the set of vertices

adjacent to x in G.

The next 2 lemmas will be needed for the sufficient part of the proof of main

results (Theorems 4.5 and 4.6).

Lemma 4.3. (i) Suppose G is an SF graph with cycle x1x2 . . . xmx1. Suppose

Axi
= ∅ for some 2 ≤ i ≤ m. Then, for any 2 ≤ k < i, there is a Hamilton path

in G2 − ({x1} ∪ Ax1
) having xk and xm as end vertices.

(ii) Suppose G(m1,m2, . . . ,mr) is a broken bouquet of r SF graphs. Let Jr

denote the graph obtained from G(m1,m2, . . . ,mr)
2 by deleting all the vertices in

{x} ∪Ax. Suppose z ∈ N(x)∩ V (G(m1)) and w ∈ N(x)∩ V (G(mr)). Then there

is a Hamilton path P (z, w) in Jr with z and w as end vertices.
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Proof. (i) Let L denote the following path

x5Px4
x3Px2

x2Px3
x4Px5

x6 or x6Px5
x4Px3

x2Px2
x3Px4

x5

depending on whether k is odd or even.

If k > 2, then a suitable Hamilton path is given by

xkPxk−1
xk−2 · · ·L · · · xk−1Pxk

xk+1Pxk+1
· · · xi−1Pxi−1

xiPxi+1
xi+1Pxi+2

· · ·Pxm
xm

If k = 2, then a suitable Hamilton path is given by

x2Px2
x3Px3

· · ·Pxi−1
xiPxi+1

· · ·Pxm
xm

(ii) For each i = 1, 2, . . . , r, let zi and wi be two vertices in N(x) ∩ V (G(mi)).

From (i) (with k = 2), we know that there is a Hamilton path Pi(zi, wi) in G(mi)
2−

({x}∪Ax) with zi and wi as end vertices. Then P (z, w) = P1(z1, w1)P2(z2, w2) · · ·

Pr(zr, wr) where z1 = z and wr = w is a suitable Hamilton path in Jr.

Lemma 4.4. Let G(m) denote a broken SF graph with cycle x1x2 . . . xmx1. Sup-

pose W is a non-empty subset of {1, 2, . . . ,m} such that Axk
6= ∅ whenever k ∈ W .

For each k ∈ W , let Hk denote a graph with the following properties:

(i) Hk contains vertices uk, vk, wk such that uk is adjacent to both vk and wk.

(ii) H2
k − uk has a Hamilton path having vk and wk as end vertices.

Let G be the graph obtained from G(m) by first deleting Axk
and then identifying

uk of Hk with xk for each k ∈ W . Then for any two vertices u and v in G(m),

there is a Hamilton path in G2 having u and v as end vertices.

Proof. Since G(m) is a broken SF graph, for any two vertices u and v, there is a

Hamilton path P (u, v) in G(m)2 with u and v as end vertices by Theorem 3.4.

Using the Hamilton path P (u, v) in G(m)2, we shall construct a Hamilton path

P ∗(u, v) in G2 with u and v as end vertices in the following way.

First, if k 6∈ W , then any subpath of P (u, v) involving xk or Axk
in G(m)2 is

taken to be a subpath of P ∗(u, v) in G2.

Next, suppose k ∈ W . Let Pk(vk, wk) denote a Hamilton path in H2
k −uk with

vk and wk as end vertices. (i) If P (u, v) contains a subpath of the form xjPxk
xk

for some j ∈ {k− 1, k +1}, then in G2, we take xjPk(vk, wk)xk to be a subpath of
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P ∗(u, v). (ii) If P (u, v) contains a subpath of the form xk−1Pxk
xk+1, then in G2,

we take xk−1Pk(vk, wk)xk+1 to be a subpath of P ∗(u, v).

We now obtain a necessary and sufficient condition for the graph G(m1,m2,

. . . ,mr) to have panconnected square.

Theorem 4.5. Suppose r ≥ 2. Let G denote the graph G(m1,m2, . . . ,mr). Then

G2 is panconnected if and only if G is broken.

Proof. To prove the necessity, suppose some SF graph, say G(mr) of G is not

broken. If we take H1 to be the graph G(m1, . . . ,mr−1) and H2 to be the subgraph

of G(mr) induced by some c-vertex and its pendent set. Then the resulting graph

as constructed in Proposition 4.2 is isomorphic to the graph G. By Proposition

4.2, G2 is not panconnected.

Next, we shall prove the sufficiency by induction on r.

For r = 2, G is the graph G(m1,m2). Since G is broken, by Theorem 3.5, G2

is panconnected.

Let r ≥ 3 and assume that the result holds for any broken bouquet of k SF

graphs for k < r. Let G be the graph G(m1,m2, . . . ,mr) which is broken and let

u and v be two vertices in G. We shall show that there is a Hamilton path P (u, v)

in G2 with u and v as end vertices.

For each i ∈ {1, 2, . . . ,m}, let Bi denote the graph obtained from G(m1,m2, . . . ,

mr) by deleting all the vertices in G(mi) except those in {x} ∪ Ax. Then Bi is a

bouquet of r − 1 SF graphs.

Suppose u and v are on different SF graphs of G.

Without loss of generality, assume that u is in G(m1) and v is in G(mr). Since

Br is the graph G(m1,m2, . . . ,mr−1) which is broken, by the induction hypothesis,

B2
r is panconnected. So there is a Hamilton path P1(u, x) in B2

r with u and x as

end vertices. Since G is broken, G(mr) is also broken. By Theorem 3.4, G(mr)
2

is panconnected. So there is a Hamilton path P2(x, v) in G(mr)
2 with x and v as

end vertices. Then P1(u, x)P2(x, v) is a suitable Hamilton path P (u, v).

Hence we assume that u and v are both on the same SF graph of G.
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Without loss of generality, assume that u and v are both in G(mr) whose cycle

is x1x2 . . . xmr
x1. Suppose x = x1 and Axi

= ∅ for some 2 ≤ i ≤ mr.

Recall that Br is the graph G(m1,m2, . . . ,mr−1). Now if we take z ∈ N(x) ∩

V (G(m1)) and w ∈ N(x) ∩ V (G(mr−1)). Then, by Lemma 4.3(ii), there is a

Hamilton path in B2
r − ({x} ∪ Ax) having z and w as end vertices.

By Lemma 4.4, there is a Hamilton path in G2 having u and v as end vertices.

This completes the proof.

4.3 H(r, s, t)

Suppose r, s and t are integers such that r, s ≥ 1 and t ≥ 3. Let G(t) be an SF

graph with cycle z1z2 . . . ztz1. Let H(r, s, t) denote any graph obtained from G(t)

by identifying a c-vertex of each of the r SF graphs G(m1), G(m2), . . . , G(mr) with

z1 and identifying a c-vertex of each of the s SF graphs G(n1), G(n2), . . . , G(ns)

with zm where 2 ≤ m ≤ t. As such, the graph H(r, s, t) contains r + s + 1

SF graphs G(m1), . . . , G(mr), G(n1), . . . , G(ns) and G(t) as subgraphs. If each of

these SF graphs has a vertex of degree 2, we say that H(r, s, t) is broken.

Clearly, F2 is the set of all the graphs H(1, 1, t).

Let G1 (respectively G2) denote the subgraph of H(r, s, t) induced by G(m1),

G(m2), . . . , G(mr) (respectively G(n1), G(n2), . . . , G(ns)). Then G1 is the graph

G(m1,m2, . . . ,mr) and G2 is the graph G(n1, n2, . . . , ns). Further G1∪G(t) is the

graph G(m1,m2, . . . ,mr, t) and G2 ∪ G(t) is the graph G(n1, n2, . . . , ns, t).

In Figure 4.3, (a) shows H(1, 1, 3) with the subgraphs G1 and G2 and (b)

shows a broken H(1, 2, 4) with the subgraphs G1 and G2.

G1 G2

z1

z3

(a)
G1 G2

z1 z3

(b)

Figure 4.3: (a) H(1, 1, 3) and (b) H(1, 2, 4)
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We now obtain a necessary and sufficient condition for the graph H(r, s, t) to

have panconnected square.

Theorem 4.6. Let G denote the graph H(r, s, t). Then G2 is panconnected if and

only if G is broken.

Proof. Suppose G is not broken. We shall show that G2 is not panconnected by

using Proposition 4.2. Let J be an SF subgraph of G which is not broken. If J is

some subgraph of the type G(mi) or G(nj), we take H2 to be the subgraph of J

induced by some c-vertex and its pendent set, and H1 to be the subgraph induced

by the the rest of the SF subgraphs of G. If J is the SF subgraph G(t), then we

take H1 to be the subgraph G1 of G and H2 to be the subgraph G2 of G. This

proves the necessity.

Next, we prove the sufficiency. We shall show that, for any two vertices u

and v in G, there is a Hamilton path P (u, v) in G2 with u and v as end vertices.

Throughout, assume that zi is a vertex of degree 2 where 2 ≤ i ≤ m (since

otherwise we can relabel the vertices of the cycle in G(t) in reverse order).

Case (1): u, v ∈ V (Gi) for some i ∈ {1, 2}.

We may just assume that u, v ∈ V (G1).

(i) Suppose u ∈ V (G(m1)), v ∈ V (G(m2)) and u, v 6= z1. By Theorem 3.4,

there is a Hamilton path P1(u, z1) in G(m1)
2 with u and z1 as end vertices.

Let Qr denote the subgraph of G induced by G(m3), . . . , G(mr) if r ≥ 3. Let

w1 ∈ N(z1)∩ V (G(m3)) and w2 ∈ N(z1)∩ V (G(mr)). Then by Lemma 4.3, there

is a Hamilton path P2(w1, w2) in Q2
r − ({z1}∪Az1

) with w1 and w2 as end vertices.

If r 6≥ 3, then P2(w1, w2) is an empty path.

We can assume that the cycle y1y2 . . . yny1 in G(m2) is such that y1 = z1,

v = yk, Ayi
= ∅ with 2 ≤ k ≤ i ≤ n.

Suppose 2 ≤ k < i ≤ n. By Theorem 4.5, there is a Hamilton path P3(z1, zt)

in (G(t)∪G2)
2 from z1 to zt. By Lemma 4.3(i), there is a Hamilton path P4(yk, yn)

in G(m2)
2 − ({y1} ∪ Ay1

) from yk to yn.
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Then P (u, v) = P1(u, z1)P3(z1, zt)P2(w1, w2)P4(yn, v) is a suitable Hamilton

path in G2.

Suppose 2 < k = i ≤ n. Let P3(z1, z2) denote the following path

z1Py2
y3Py4

· · · yk−4Pyk−3
yk−2Pyk−1

yk−1Pyk−2
yk−3 · · ·Py3

y2z2

or

z1Py2
y3Py4

· · · yk−3Pyk−2
yk−1Pyk−1

yk−2Pyk−3
yk−4 · · ·Py3

y2z2

depending on whether k is odd or even.

Let P4(yn, yk) denote the path ynPyn
yn−1Pyn−1

· · · yk+1Pyk+1
yk. In the event

that k = i = n, take P4(yn, yk) = yk.

We shall construct a Hamilton path P5(z2, zt) in (G(t) ∪ G2)
2 − ({z1} ∪ Az1

).

Let z ∈ N(zm)∩V (G2). Then by Theorem 4.5, there is a Hamilton path P6(z, zm)

in G2
2 from z to zm. Let

P5(z2, zt) = z2Pz2
· · · zi−1Pzi−1

ziPzi+1
· · ·Pzm−1

zm−1P6(z, zm)Pzm+1
zm+1 · · ·Pzt

zt.

Then P (u, v) = P1(u, z1)P3(z1, z2)P5(z2, zt)P2(w1, w2)P4(yn, v) is a suitable

Hamilton path in G2.

(ii) Hence assume that u, v ∈ V (G(m1)).

Let H denote the subgraph G − (G(m1) − ({z1} ∪ Az1
)). We shall show that

for some vertex w ∈ V (H) − ({z1, z2} ∪ Az1
), there is a Hamilton path Q(z2, w)

in H2 − ({z1}∪Az1
) with z2 and w as end vertices. Then by Lemma 4.4, we have

a Hamilton path in G2 having u and v as end vertices.

To see this, let z ∈ N(zm)∩V (G2). Then by Theorem 4.5, there is a Hamilton

path P1(z, zm) in G2
2 with z and zm as end vertices. Let

P2(z2, zt) = z2Pz2
· · · zi−1Pzi−1

ziPzi+1
· · ·Pzm−1

zm−1P1(z, zm)Pzm+1
zm+1 · · ·Pzt

zt.

If r = 1, then take w = zt and Q(z2, w) = P2(z2, zt).

If r ≥ 2, let H1 denote the subgraph of G induced by G(m2), . . . , G(mr). Also,

let w1 ∈ V (G(m2)), w ∈ V (G(mr)). Then by Lemma 4.3(ii), there is a Hamilton

path P3(w1, w) in H2
1 − ({z1} ∪ Az1

) with w1 and w as end vertices. As such,

P2(z2, zt)P3(w1, w) is a suitable Hamilton path Q(z2, w).
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Case (2): u, v ∈ V (G(t)).

By Lemma 4.3, we can find two vertices u1, u2 ∈ N(z1) ∩ V (G1) such that

there is a Hamilton path in G2
1 − ({z1} ∪ Az1

) having u1 and u2 as end vertices.

Likewise, we can find two vertices v1, v2 ∈ N(zm) ∩ V (G2) such that there is a

Hamilton path in G2
2 − ({zm} ∪ Azm

) having v1 and v2 as end vertices.

Since the subgraph G(t) has a vertex of degree 2, by Lemma 4.4, G2 has a

Hamilton path having u and v as end vertices.

Case (3): u ∈ V (G1), v ∈ V (G2) ∪ V (G(t)) and {u, v} 6= {z1, zm} .

Suppose u 6= z1. By Case (1), we can assume that v 6= z1. As such there is a

Hamilton path P1(u, z1) in G2
1 with u and z1 as end vertices by Theorem 4.5 (or

Theorem 3.4 depending on the value of r). Also, by Theorem 4.5 again, there is

a Hamilton path P2(z1, v) in (G(t) ∪ G2)
2 with z1 and v as end vertices. Then

P (u, v) = P1(u, z1)P2(z1, v) is a suitable Hamilton path in G2.

Hence assume that u = z1. By Case (2), we may assume that v ∈ V (G2) and

v 6= zm. By Theorem 4.5, there is a Hamilton path P1(u, zm) in (G(t) ∪ G1)
2

with u and zm as end vertices. By Theorem 4.5 (or Theorem 3.4 depending on

the value of r), there is a Hamilton path P2(zm, v) in G2
2 with zn and v as end

vertices. Then P (u, v) = P1(u, zm)P2(zm, v) is a suitable Hamilton path in G2.

The proof is complete.

4.4 Θ(m1, m2, . . . , mr)

Suppose r ≥ 3 is an integer. Let θr be a multigraph with 2 vertices, say

x and y, together with r multiple edges. Suppose mi ≥ 2 is an integer for

each i = 1, 2, . . . , r. Let θ(m1,m2, . . . ,mr) denote the graph obtained by re-

placing the edges of θr with paths Pm1
,Pm2

, . . . ,Pmr
on m1,m2, . . . ,mr vertices

respectively. Note that if m1 = 2, then we require that m2,m3, . . . ,mr ≥ 3.

Let Θ(m1,m2, . . . ,mr) denote any graph obtained by joining each vertex v of

θ(m1,m2, . . . ,mr) to a new set of independent vertices Av. That is, Av is the

pendent set of v. We call Θ(m1,m2, . . . ,mr) an r-stripe cactus graph.
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Θ(2, 3, 3, 4) is depicted in Figure 4.4(a) and Θ(3, 4, 4, 5, 5) is depicted in Figure

4.4(b).

x

y

(a)

x

y

(b)

Figure 4.4: (a) Θ(2, 3, 3, 4) and (b) Θ(3, 4, 4, 5, 5)

Clearly, F5 is the set of all 4-stripe cactus graphs. 3-stripe cactus graphs

having panconnected square have been completely characterized in Theorem 3.8.

The next propositon forms the necessary part of the proof of main results

(Theorems 4.8 and 4.9).

Proposition 4.7. Suppose Θ(m,n, r) has no vertex of degree 2 and m,n, r ≥ 3.

Let H be any graph with |V (H)| ≥ 3. Let u and v be any two vertices in H. Let

G denote any graph obtained from Θ(m,n, r) and H by identifying x with u and

y with v respectively. Then G2 is not panconnected.

Proof. We shall show that there is no Hamilton path in G2 having x and y as end

vertices. Suppose on the contrary that there is a Hamilton path P (x, y) in G2

with x and y as end vertices.

Let Pm = x1x2 . . . xm,Pn = y1y2 . . . yn and Pr = z1z2 . . . zr where x1 = y1 =

z1 = x and xm = yn = zr = y.

We may assume that G is connected (otherwise G2 is clearly not pancon-

nected). As such H has at most two components. Further, if H has two compo-

nents H1 and H2, we may assume without loss of generality that u is in H1 and v

is in H2.

Then we assert that J = G2−{x, y}, has no Hamilton path and this contradicts

the assumption that P (x, y) is a Hamilton path in G2 with x and y as end vertices.
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To see this, let S = {x2, . . . , xm−1, y2, . . . , yn−1, z2, . . . , zr−1}. Then |S| = m + n +

r− 6 and J −S has at least m+n+ r− 4 components, namely H1 ∪Ax, H2 ∪Ay,

J [Axi
], J [Ayj

], J [Azk
] where i = 2, . . . ,m−1, j = 2, . . . , n−1 and k = 2, . . . , r−1.

Hence we assume that H is a connected graph. Further, we may assume that,

for some vertices w1 and w2 in H such that w1 and w2 are neighbors of u and v

respectively, there is a Hamilton path P1(w1, w2) in H2−{u, v} with w1 and w2 as

end vertices. If there is no such path in H2 −{u, v}, then the following argument

shows that P (x, y) does not exist.

Let

L1 = xm−1Pxm−1
xm−2Pxm−2

· · · x2Px2
, L2 = yn−1Pyn−1

yn−2Pyn−2
· · · y2Py2

,

L3 = zr−1Pzr−1
zr−2Pzr−2

· · · z2Pz2
, L4 = x2Px2

x3Px3
· · · xm−1Pxm−1

,

L5 = y2Py2
y3Py3

· · · yn−1Pyn−1
and L6 = z2Pz2

z3Pz3
· · · zr−1Pzr−1

.

If uv /∈ E(H), then we may assume without loss of generality that P (x, y)

must begin with a subpath of the form

M1 = xPxL4, or

M2 = xPxw1L4, or

M3 = xPxP1(w1, w2), or

M4 = xPx2
x2Px3

· · · xm−2Pxm−1
xm−1, or

M5 = xL4, or

M6 = xw1L4, or

M7 = xP1(w1, w2).

If uv ∈ E(H), then P (x, y) may also begin with a subpath of the form

M8 = xPy, or M9 = xP1(w2, w1) or M10 = xLi for some i ∈ {1, 2, 3}

in addition to those given by M1,M2, . . . ,M7.

Since M1,M2,M5,M6 and M10 cannot be extended to cover the rest of the

vertices in G2 (because vertices in a pendent set from one path are adjacent

neither to vertices from another path nor to vertices of the graph H − {u, v}), it

follows that P (x, y) must begin with M3,M4,M7,M8 or M9.

If P (x, y) begins with M3, then it must take the form M3Li for some i ∈
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{1, 2, 3}.

If P (x, y) begins with M4, then it must take the form M4Li or M4PyLi for some

i ∈ {2, 3}, or the form M4P1(w2, w1)Lj or M4P1(w2, w1)PxLj for some j ∈ {5, 6}.

If P (x, y) begins with M7, then it must take the form M7Li or M7PyLi for

some i ∈ {1, 2, 3}.

If P (x, y) begins with M8, then it must take the form M8Li for some i ∈

{1, 2, 3} or the form M8P1(w2, w1)Lj or M8P1(w2, w1)PxLj for some j ∈ {4, 5, 6}.

If P (x, y) begins with M9, then it must take the form M9PxLi or M9Li for

some i ∈ {4, 5, 6}.

Since all these paths end with some pendent set, none of them can be ex-

tended to P (x, y) (for the same reason as has been explained for the case with

M1,M2,M5,M6 or M10). This contradiction proves the proposition.

We now obtain necessary and sufficient conditions for the graph Θ(m1,m2, . . . ,

mr) to have panconnected square.

Theorem 4.8. Let G denote the graph Θ(m1,m2, . . . ,mr) where r ≥ 3 and

m1,m2, . . . ,mr ≥ 3. Then G2 is panconnected if and only if G has at most 2

paths without vertices of degree 2.

Proof. Suppose G has at least 3 paths without vertices of degree 2, say Pm1
,Pm2

and Pm3
. Then these three paths together with their pendent sets form the graph

Θ(m1,m2,m3) without vertices of degree 2. Let H denote the graph obtained

from G by deleting all vertices of (Pm1
∪ Pm2

∪ Pm3
) − {x, y} together with their

pendent sets. By Proposition 4.7, G2 is not panconnected.

We shall establish the sufficiency by induction on r. For r = 3, G is the graph

Θ(m1,m2,m3). Since G has at most 2 paths without vertices of degree 2, by

Theorem 3.8 (ii), Θ(m1,m2,m3)
2 is panconnected.

Hence we assume that r ≥ 4. Suppose the theorem is true for any k-stripe

cactus graph which has at most 2 paths without vertices of degree 2 for k < r.

Let G be the graph Θ(m1,m2, ...,mr) which has at most 2 paths without vertices
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of degree 2 and let u and v be two vertices in G. We shall show that there is a

Hamilton path P (u, v) in G2 with u and v as end vertices. We may assume that

neither u nor v is of degree 1.

Case (1): u and v are on different paths of G.

Without loss of generality, we may assume that u is in Pmr
= x1x2 . . . xmr

and

v is in Pm1
.

Suppose u = xk for some 2 ≤ k ≤ mr − 1. Let H denote the graph obtained

from G by deleting all the vertices of Pmr
− {x, y} together with their pendent

sets. Then H is the graph Θ(m1,m2, ...,mr−1) which has at most 2 paths without

vertices of degree 2. By the induction hypothesis, H2 is panconnected. So there

is a Hamilton path P1(x, v) in H2 with x and v as end vertices.

If k = mr−1, let P2(u, x) denote the path uPxmr−1
xmr−2Pxmr−2

xmr−3 · · · x2Px2
x.

If k < mr − 1, let L = xk+1Pxk
xk−1Pxk−1

· · · x2Px2
x. Also, let P2(u, x) denote

the following path

xkPxk+1
xk+2Pxk+3

· · ·Pxmr−3
xmr−2Pxmr−1

xmr−1Pxmr−2
xmr−3 · · ·L

or

xkPxk+1
xk+2Pxk+3

· · · xmr−3Pxmr−2
xmr−1Pxmr−1

xmr−2Pxmr−3
xmr−4 · · ·L

depending on whether k and mr are of the same or of different parity.

Then P (u, v) = P2(u, x)P1(x, v) is a suitable Hamilton path. Notice that if

Pmr
contains a vertex of degree 2, then P2(u, x)P1(x, v) is still a suitable Hamilton

path in view of Remark 3.3.

Case (2): u and v are on the same path of G.

Without loss of generality, we may assume that u and v are on Pmr
= x1x2 . . . xmr

.

Let H denote the graph obtained from G by deleting all the vertices of Pmr
−

{x, y} together with their pendent sets. Then H is the graph Θ(m1,m2, ...,mr−1)

which has at most 2 paths without vertices of degree 2. By the induction hypoth-

esis, H2 is panconnected, and so there is a Hamilton path P1(x, y) in H2 with x

and y as end vertices.
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Suppose u = xk and v = xl where 1 ≤ k < l ≤ mr.

Assume first that 2 ≤ k < l ≤ mr − 1.

Let P2(u, x) denote the path xkPxk
xk−1Pxk−1

· · · x2Px2
x.

If k < l − 1, let L = yPxmr−1
xmr−1Pxmr−2

xmr−2 · · · xl+1Pxl
xl−1Pxl−2

xl−3. Also,

let P3(y, v) denote the following path

L · · · xk+3Pxk+2
xk+1Pxk+1

xk+2Pxk+3
· · · xl−2Pxl−1

xl

or

L · · ·Pxk+3
xk+2Pxk+1

xk+1Pxk+2
xk+3 · · · xl−2Pxl−1

xl

depending on whether l and k are of the same or of different parity.

If k = l−1, then P3(y, v) reduces to the path yPxmr−1
xmr−1Pxmr−2

xmr−2 · · ·Pxl
xl.

Then P (u, v) = P2(u, x)P1(x, y)P3(y, v) is a suitable Hamilton path.

Notice that this Hamilton path also covers the case k = 1 and l ≤ mr − 1 if

we take P2(u, x) = u.

By changing the labels of the vertices in Pmr
in reverse order, we see that the

above Hamilton path also covers the case k ≥ 2 and l = mr.

It remains only to consider the case k = 1 and l = mr.

Suppose Pm1
,Pm2

, . . . ,Pmr−2
are r − 2 paths of G each having a vertex of

degree 2.

Suppose i ∈ {1, 2, . . . , r−2}. Let Pmi
= wi,1wi,2 . . . wi,mi

where wi,j is a vertex

of degree 2. Let

Pi(mi) = wi,mi−1Pwi,mi−1
wi,mi−2Pwi,mi−2

· · ·Pwi,j+1
wi,jPwi,j−1

wi,j−1 · · ·Pwi,2
wi,2 if

i is odd and let

Pi(mi) = wi,2Pwi,2
wi,3Pwi,3

· · ·Pwi,j−1
wi,jPwi,j+1

wi,j+1 · · ·Pwi,mi−1
wi,mi−1 if i is

even.

Suppose Pmr−1
= y1y2 . . . ymr−1

and Pmr
= z1z2 . . . zmr

.

Let N1 = Py2
y2Py3

y3 · · ·Pymr−1−1
ymr−1−1.

Suppose r is odd. Let N2 = z2Pz2
z3Pz3

· · · zmr−1Pzmr−1
. Then

P (u, v) = xN1PyP1(m1)P2(m2) · · ·Pr−2(mr−2)PxN2y
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is a suitable Hamilton path.

Suppose r is even. Let

N2 = zmr−1Pzmr−2
zmr−3 · · · z4Pz3

z2Pz2
z3Pz4

z5 · · · zmr−4Pzmr−3
zmr−2Pzmr−1

if mr is odd and let

N2 = zmr−1Pzmr−2
zmr−3 · · · z5Pz4

z3Pz2
z2Pz3

z4 · · · zmr−4Pzmr−3
zmr−2Pzmr−1

if mr is even.

Then

P (u, v) = xN1PyP1(m1)P2(m2) · · ·Pr−3(mr−3)PxPr−2(mr−2)N2y

is a suitable Hamilton path.

In the r-stripe cactus graph Θ(m1,m2, . . . ,mr), we say that Pmi
is a long path

if and only if mi ≥ 3.

Theorem 4.9. Let G denote the graph Θ(2,m1,m2, . . . ,mr) where r ≥ 3 and

m1,m2, . . . ,mr ≥ 3. Then G2 is panconnected if and only if G has at most 2 long

paths without vertices of degree 2.

Proof. Suppose G has at least 3 paths without vertices of degree 2, say Pm1
,Pm2

and Pm3
. Then these three paths form the graph Θ(m1,m2,m3) having no vertices

of degree 2. Let H denote the graph obtained from G by deleting all the vertices

of (Pm1
∪ Pm2

∪ Pm3
) − {x, y} together with their pendent sets. By Proposition

4.7, G2 is not panconnected.

On the other hand, if G has at most 2 paths without vertices of degree 2,

then by deleting the edge xy from G, we obtain the graph Θ(m1,m2, . . . ,mr). By

Theorem 4.8, Θ(m1,m2, . . . ,mr)
2 is panconnected and this implies that G2 is also

panconnected.

The classification of the other five families of graphs having panconnected

square remains to be explored.
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